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ABSTRACT 

In this paper, we developed a new method within an interval 

of four for numerical solution of third-order ordinary 

differential equations. Interpolation and collocation approach 

was used by choosing interpolation points at 3s steps 

points using power series, while collocation points at 

 1 kr step points. The method adopts a combination of 

powers series and perturbation terms gotten from the 

Legendre polynomials, giving rise to a polynomial of degree 

2 sr and sr  equations. All the analysis on the 

derived method shows that it is stable has order of accuracy 

p=2, convergent and the region is absolutely stable. Numerical 

examples were provided to test the performance of the new 

method. The developed method was used to solve problems 

ranging from linear, non-linear and non-stiff Problem to test 

the applicability of the new method. Results obtained when 

compared with existing methods in the literature shows that 

the method is accurate, efficient and computational reliable.  
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1. INTRODUCTION 
Numerical analysis is the fraction of mathematics which 

provides convenient methods for obtaining the solution of 

mathematical problems and to dig out useful information from 

available solutions which are not expressed in tractable forms. 

Such problems begin for the most part, from real world 

applications of algebra, geometry, calculus and they include 

variables which change consistently. There are three 

fundamental ways for focusing on the numerical analysis; it 

can develop techniques for the computational problems that 

emerge from utilization of science, it can be the provision and 

examination of algorithms for fundamental calculations that 

are common to numerous applications, and it can be 

theoretical work on questions that are very important to the 

accomplishment of algorithms.  

Many real life problems in sciences, engineering biology and 

social sciences are model of third order ordinary differential 

equations. Interestedly, some differential equations arising 

from the modelling of physical phenomena, often do not have 

analytic solutions, hence the development of numerical 

method to obtain approximation solutions become necessary. 

[1]. this paper focuses on application of third order ordinary 

differential equations of the form.  
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In the past, equation (1.1) is usually solved by method of 

reducing it to its equivalent system of first order ordinary 

differential equations and thereafter appropriate numerical 

method for first order ODEs would be applied to solve the 

systems. On the other hand, the reduction of higher order 

ordinary differential equations, to a system of first order has 

serious problems, which included: consumption of human 

effort, computational burden and non economization of 

computer time, as discussed by [2, 3, 4 ,5, 6, 7]. But to cater 

for the setbacks encountered in reduction method and also 

bring about improvement on numerical methods [8, 9, 10, 11, 

12, 13, 14] developed block methods for solving higher order 

ODEs directly in which the accuracy is better than, when it is 

reduced to system of first order ordinary differential 

equations.  

A variety of Linear multi-step method for solving equation 

(1.1) directly have been developed by some researchers such 

as [15, 16, 17, 18, 19, 20]. They develops a block method for 

the solution of third order ordinary differential equations.  

In the light of this, we want to derive a block method for 4 

steps linear multi-step method using power series as the 

interpolation equation and power series with Legendre 

polynomial as the perturbation term as the collocation 

equation to solve equation (1.1) without reduction to first 

order ODEs.  

2. DERIVATION OF THE METHOD 
In this section, we derive discrete method to solve (1.1) at a 

sequence of nodal points nhxxn  0 , where 0h  is 

the step length or grid size defined by nn xxh  1 and 

 xy denotes the true solution to (1.1) while the approximate 

solution is denoted by the point series. 

 
k
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1
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0
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                                (2.1)  

The proposed method depends on the perturbed collocation 

method with respect to the power series with the Legendre 

polynomials as the perturbation term. Interpolation and 

collocation procedures are used by choosing interpolation 

point at 3s grid points and collocation points at 
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 1 kr step points. We have a polynomial of degree 

2 sr  and  sr   equations.  

In the first place, we consider the approximation solution of 

(1.1) in the power series.  

 

 

 

  kixxp i

i ,...,1,0,   

Hence (2.1) becomes k  

    
0

k i
y x c p x c xi i ik i

 


                       (2.2) 

With the third derivatives as  

       ''' ''' 3
1 2

0

R i
y x c p x i i i c xi i ik i


   


                                     (2.3) 

Combining equation (1.1) and (2.3), with the perturbation term, we have  

        ''' ' ''
, , , , 2 1c p x f x y y y L x i ki i n iki n

   


                                    (2.4) 

Where  xLk  is the Legendre polynomial of degree k valid in knn xxx   .  is a perturbed parameter.  

In particular, we shall be dealing with case k = 4 (four step points), where equation (2.2) and (2.4) are the interpolation and 

collocation equations respectively. 

The well-known Legendre polynomials are generated using the Rodrigues formula  

    
1 1 2

1
2 !

n
P x xn n n

n dx
 

 
  

, where  

   1,0 1L x L x x  . The rest are computed using the recurrence formula.  

     
2 1

, 1, 2, ...1 1
1 1

i i
L x xL x L x iii i

i i


   

 
 

giving:        
1 12 3

3 1 , 5 3 ,2 3
2 2

L x x L x x x     

       
1 14 2 5 3

35 30 3 , 63 70 1554
8 8

L x x x L x x x x      etc                    (2.5) 

In order to use these polynomials in the interval  knn xx , , we define the shifted Legendre polynomials by introducing the change 

of variables. 
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[21]                       (2.6) 

Interpolating (2.2) at s grid points and collocating (2.4) at k-1 grid points respectively leads to the following systems of equation.  

   2,1,0,
0

 



 syxpc sx
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i

ii                        (2.7) 

      kjxLfxpc jnkjn

k

i

ii 12,
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                      (2.8) 

Now we take the polynomial    
1 4 2

35 30 34
8

L x x x    to obtain value for  4 3L xn
 and  4 4L xn

 to be 
8

3 , 
128

37


and 
8

443
respectively  

In addition, from (2.3),         3

'''

33

'''

22

'''

11

'''

00 6,0,0,0 cxpcxpcxpcxpc   and   44

'''

44 24  nxcxpc  

Then (2.8) will reduce to the form: 

   3 4 4 40 0 0 6 24 , , ', '' , 2,3 4n n ic c x f x y y y L x i and                        (2.9) 

We now collocate equation (2.9) at 2,  ix in and 3 and interpolate equation (2.1) at 2,1,0,  ix in  to produce a system of 6 

equations with , 0,1,2,3,4ic i and   which in matrix from is  
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2 3 4
1 0

2 3 4 01 01 1 1 1
12 3 4 1

1 02 2 2 2
22

30 0 0 6 24 2 28 3

37 30 0 0 6 24 43 128
44430 0 0 6 24 4 8

x x x xn n n n
yc nx x x xn n n n yc n

x x x xn n n n yc n

fcx n

fc nxn
fn

xn



   


   



 






 
    
    
    
    
    
    

    
    

 

                             (2.10) 

Equation (2.10) is solved by Gaussian elimination method to obtain the value of the unknown parameters,  4,3,2,1,0, ici  and 

 , which are substituted into (2.1) to yield a continuous implicit four steps method in the form of a continuous linear multistep 

method describe by the formula  

     
4

3

1 2 2 2

2

, 2 1o n n n j n jx
j

y y y y h x f j k     



                      (2.11)   

Where  
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2

2

tt
t   

   
1 3 4 3 3 3 2 3

7051 84464 204035 126622 30722
169488

t h t h t h t h t        

   4854492643755
10593

8 3233343

3  ththththt  

   307249476328011
169488

1 3233343

4  ththththt                   (2.12) 

are the continuous functions of t with 
3 ,n nx x

t
h


  as the transformation equation. Using (2.12) for 3 nxx  and 4nx

,
 at t = 0 

and 1 respectively, equation (2.11) reduces to  

3

3 3 64 1973 2 1 4 3 2
132

h
y y y y f f fnn n n n n n               

3

6 8 3 203 6656 351074 2 1 4 3 2
7062

h
y y y y f f fnn n n n n n                                      (2.13) 

Differentiating (2.12) yields  

  
2

3'

0  tt  

   22'

1  tt  

  
2

1'

2  tt  

   
3

' 3 2
28204 253392 4080702

169488

h
t t t t      

   
3

8' 3 2
220 1311 1852 5443

10593

h
t t t t      

   
3

' 3 2
44 840 1526 4944

169488

h
t t t t                                   (2.14) 
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Evaluating (2.14) at 4321 ,,,  nnnnn xandxxxxx , where 3, 2, 1, 0 1t and    , (2.11) yield the following discrete 

methods respectively.  

' 3
84744 42372 169488 127116 247 34816 633112 1 4 3 2hy y y y h f f fn nn n n n n              

' 3
42372 21186 21186 59 6944 140651 2 4 3 2hy y y h f f fnn n n n n              

' 3
28248 42372 56496 14124 75 6912 164032 2 1 4 3 2hy y y y h f f fnn n n n n n               

' 3
1926 4815 7704 2889 26 1232 47893 2 1 4 3 2hy y y y h f f fnn n n n n n                                        (2.15) 

' 3
84744 296604 508464 211860 2507 2048 3717794 2 1 4 3 2hy y y y h f f fnn n n n n n               
Furthermore, differentiating (2.12) twice, we have  

     '' '' ''
1, 2, 1,0 1 2t t t       

 
3

'' 2
84612 506784 4080702

169488

h
t t t     

   

 
3

8'' 2
660 2622 18523

10593

h
t t t    

   

 
3

'' 2
132 1680 15264

169488

h
t t t    

                                     (2.16) 

Evaluating (2.16) at 321 ,,,  nnnn xxxxx and 4nx , where 0,1,2,3 t  and 1, (2.11) yield the following discrete 

method respectively, 

2 '' 3
84744 84744 169488 84744 763 118528 2040352 1 4 3 2h y y y y h f f fn nn n n n n               

2 '' 3
7704 7704 15408 7704 640 6411 2 1 4 3 2h y y y y h f f fnn n n n n n                                           (2.17) 

2 '' 3
84744 84744 169488 84744 653 48128 1335252 2 1 4 3 2h y y y y h f f fnn n n n n n               

2 '' 3
84744 84744 169488 84744 1163 4736 1753873 2 1 4 3 2h y y y y h f f fnn n n n n n               

2 '' 3
84744 84744 169488 84744 1541 123136 1326374 2 1 4 3 2h y y y y h f f fnn n n n n n               
Now we obtained the modified block formulae from (2.13), (2.15) and 2.17 as  

396 396 132 0 0 0 0 0 0 0 0 0

56496 42372 0 7062 0 0 0 0 0 0 0 0

169488 42372 0 0 0 0 0 0 0 0 0 0

0 21186 0 0 42372 0 0 0 0 0 0 0

56496 42372 0 0 0 28248 0 0 0 0 0 0

7704 4815 0 0 0 0 1926 0 0 0 0 0

508464 296604 0 0 0 0 0 84744 0 0 0 0

169488 84744 0 0 0 0 0 0 0 0 0 0

15408 7704 0 0 0 0 0

h

h

h

h
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2 1
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2 2169488 84744 0 0 0 0 0 0 0 0 84744 0
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2 3169488 84744 0 0 0 0 0 0 0 0 0 84744
''
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yn

yn

yn

yn

yn

yn
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132 0 0 197 64 1

21186 0 0 35107 6656 203

127116 84774 0 63311 34816 247

21186 0 0 14065 6

14124 0 0

2889 0 0 ' 3

211860 0 0
''

2
84744 0 84744

7704 0 0

84744 0 0

84744 0 0

84744 0 0

h

yn

y hn

ynh
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2

4789 1232 26

3371779 2048 2507

4204035 118528 763

641 640 1

133525 48128 653

175387 4736 1163

132637 123136 1541

fn

fn

fn



 


 

 

 

 

 

 



 
 
 
 
 
   
   
   
   
 
 
 
  
 

                                           

(2.18) 

Taking the normalized version of 2.18, we obtained the block solution  

1

1 0 0 0 0 0 0 0 0 0 0 0 2

0 1 0 0 0 0 0 0 0 0 0 0 3

0 0 1 0 0 0 0 0 0 0 0 0 4
'0 0 0 1 0 0 0 0 0 0 0 0

1
0 0 0 0 1 0 0 0 0 0 0 0 '

20 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

yn

yn

yn

yn

yn

yn
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'
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3
269

593 169488
3 3 3

3909 6976 43

1177 3531 3531
3 3 3

189933 6528 741

18832 1177 18832
3 3 3

225040 111104 944

10593 10593 14593
2 2 2

56297 8728 199

42372 10593 42372
2 2 2

49246 27872 188

10593 10593 10593
2

42195

4708

h

h h h

h h h

h h h

h h h

h h h

h



 

 



 

 



2 2
5208 177

1177 4708
2 2 2

140576 55168 664

10593 10593 10593

11727 1744 43

4708 1177 4708

14065 6944 59

3531 3531 3531

197 16

44 11 44

4676 64 32

1177 1177 1177

h h

h h h

h h h

h h h

h h h

h h h
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(2.19)3
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To simultaneously obtain values for 
' ' ' ' '' '' ''

1 2 3 4 1 2 3 4 1 2 3, , , , , , , , , ,n n n n n n n n n n ny y y y y y y y y y y            and 
''

4ny
 

Equation (2.19) can be written explicitly as:  

2 3
' ''

77413 48896 2691 2 3 4
2 169488

h h
y y hy y f f fn n nn n n n            

3
' 2 ''

2 2 11727 6976 432 2 3 4
3531

h
y y hy h y f f fn n nn n n n            

2 3
9' ''

3 189933 104448 7413 2 3 4
2 18832

h h
y y hy y f f fn n nn n n n            

3
' 2 ''

4 8 225040 111104 9444 2 3 4
10593

h
y y hy h y f f fn n nn n n n            
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2
' ' ''

56297 34912 1991 2 3 4
42372

h
y y hy f f fn nn n n n           

2
' ' ''

2 49246 27872 1882 2 3 4
10593

h
y y hy f f fn nn n n n           

2
' ' ''

3 42195 20832 1773 2 3 4
4708

h
y y hy f f fn nn n n n           

2
' ' ''

4 140576 55168 6644 2 3 4
10593

h
y y hy f f fn nn n n n              (2.20) 

'' ''
11727 6976 431 2 3 4

4708

h
y y f f fnn n n n          

'' ''
14065 6944 592 2 3 4

3531

h
y y f f fnn n n n          

'' ''
197 643 2 3 4

44

h
y y f f fnn n n n          

'' ''
4676 64 324 2 3 4

1177

h
y y f f fnn n n n        

 

 

3 ANALYSIS OF THE METHOD  
Basic properties of the method are analysed to establish its 

validity. These properties help to show the nature of 

convergence of the method. These properties include order 

and error constant, consistency and zero stability. All these 

put together reveal the nature of convergence of the method. 

Also the regions of absolute stability of the method have also 

been established in this section. However, brief introductions 

of these properties are made for a better understanding of the 

section. 

3.1 Order and error constant of the method 
Let the linear difference operator L associated with the 

continuous multi-step method (2.11) be defined as  

      3 '''
, . ; 0,1, 2 .

0
L y x h y x jh h y x jh j kn nj

j
      


  

 

[5]  (3.1) 

Where  xy  is an arbitrary test function that is continuously differentiable in the interval [a,b], and 0 and 0 are both non – zero.  

Expanding  jhxy n   and  '''
, 0,1, 2, 3, ...,y x jh j kn    in Taylor’s series about xn and collecting like terms in h and y gives.  

         ' 2 2
. ... ...0 1 2

p p
L y x h C y x C hy x C h y x Cph y x          

 

Definition 1 

The difference operator L and the associated implicit multi-step method (2.11) are said to be of order p ,if in (3.2) 

0,0... 321210   pppp ccccccc       (3.2) 

Then 3pc is called the error constant and it implies that the local truncation error is given by  

  
   33 4

3 0
n

pp p

n k p x
t c h y h

 

  
  
[5]      (3.3)  

3.2 Order and error constant of the new 

method 

 

From equation (2.13) 

3

6 8 3 203 6656 351074 2 1 4 3 2
7062

h
y y y y f f fnn n n n n n               

Can be rewritten in the form;  

35017 3328 2033
6 8 34 2 1 2 3 4

7062 3531 7062
y y y y h f f fnn n n n n n          

 
  

   (3.4) 

Expanding (3.4) in Taylor series form, we have  

             
 

      04
7062

203
3

3531
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2

7062

35107
.

2
3

!

1
8

!

2
6

!

4 2222

2

0000

































jjjj

n

j

j

n

j

n

jj

j

j

n

jj

j

j

n

jj

j

y
j

h
yy

j

h
y

j

h
y

j

h  

On evaluation 

1 6 8 3 00c       
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1
4 1 1 1 1

6 2 8 1 3 0 01
1! 1!

c       

 
      

2
4 1 2 2 2

6 2 8 1 3 0 02
2! 2!

c       

 
            

3
4 1 1 35107 3328 2033 3 3 0 0 0

6 2 8 1 3 0 2 3 4 03
3! 3! 0! 7062 3531 7062

c        

   
   

   

 

 
            

4
4 1 1 35107 3328 2034 4 4 1 1 1

6 2 8 1 3 0 2 3 4 04
4! 4! 1! 7062 3531 7062

c        

   
   

   

 

 
            

5
4 1 1 35107 3328 203 53985 5 5 2 2 2

6 2 8 1 3 0 2 3 45
5! 5! 2! 7062 3531 7062 3531

c        

   
   

   

 

Hence the main method is of order p = 2, with error constant 
5398

3
3531

c p   

3.3 Order and error constant of the new 

block method: 
Using part of the block in (2.20) i.e. 

 

 

2 3
' ''

77413 48896 2691 2 3 4
2 169488

h h
y y hy y f f fn n nn n n n            

3
' 2 ''

2 2 11727 6976 432 2 3 4
3531

h
y y hy h y f f fn n nn n n n            

2 3
9' ''

3 189933 104448 7413 2 3 4
2 18832

h h
y y hy y f f fn n nn n n n            

3
' 2 ''

4 8 225040 111104 9444 2 3 4
10593

h
y y hy h y f f fn n nn n n n            

as 

2
77413 3056 269' '' 3

01 2 3 4
2 169488 10593 169488

h
y y hy y h f f fn n nn n n n         

 
  

 

3909 6976 43' 2 '' 3
2 2 02 2 3 4

1177 3531 3531
y y hy h y h f f fn n nn n n n         

 
  

    (3.5) 

2
9 189933 6528 741' '' 3

3 03 2 3 4
2 18832 1177 18832

h
y y hy y h f f fn n nn n n n         

 
  

 

225040 111104 944' 2 '' 3
4 8 04 2 3 4

10593 10593 10593
y y hy h y h f f fn n nn n n n         

 
  

 

And using Taylor’s series expansion on (3.5) and collecting terms in h and y lead to the following: 

 

 
     

1 .1 1 77413 3056 2693 3 3
2 3 4

! 3 ! 169488 10593 169488

n
n n n

cn
n n

  
   



 
 
 

 

 

 
     

2 .1 1 3909 6976 433 3 3
2 3 4

! 3 ! 1177 3531 3531

n
n n n

cn
n n

  
   



 
 
 

 

 

 
     

3 .1 1 189933 6528 7413 3 3
2 3 4

! 3 ! 18832 1177 18832

n
n n n

cn
n n
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4 .1 1 225040 111104 9443 3 3
2 3 4

! 3 ! 10593 10593 10593

n
n n n

cn
n n

  
   



 
 
 

 

On evaluating at n = 0, 1, 2, 3 and 4, c0 = c1 = c2 = c3 =      

           (3.6) 

 
85963 46118 83883 739168

, , ,3
211860 17655 11770 52965

T

C p 
 
    

Hence the method is of order p = 2, with error constant  

3.4 Consistency 
Given a continuous implicit multi-step method (2.11), the first 

and second characteristics polynomials are defined as: 

 

 

  
0

k j
z Zj

J
 


        (3.7) 

  
0

k J
z ZJJ

 


        (3.8) 

Where Z is the principle root, 0k  and 03

0

3

0    

Definition 2 

The continuous implicit multi-step method (2.11) is said to be consistent if it satisfies the following conditions  

i. The order 1P  

ii. 



k

j

j

0

0  

iii.    ll '   

iv.    ll  !3'"  [5] 

 

Remark: 

Condition (i) is sufficient for the associated block method to be consistent i.e. 0P [22, 25] 

Recall the main method; (2.13) 

 
3

4 2 1 4 3 26 8 3 203 6656 35107
7062

n n n n n n n

h
y y y y f f f             

The first and second characteristics polynomial of the method are given by:  

  386 24  zzzz  

And  

  
7062

351076656203 234 zzz
z


 respectively 

By definition 2, the method (2.13) is consistent, since it satisfies the following:  

i. The order of the method is 12 p  

ii. 6,8,3 210    and 13   

Thus 01683,3,2,1,0,
3

0

3

0

 
 j

j

j

j j   

iii.   386 24  zzzz  

        0311611
24

  

  8124 31  zzz  

      08112141
31   

    011 1    

iv.    1!31'''    

Recall   8124' 3  zzz  

   1212'' 2  zz  
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  zz 24'''   

    241241'''   

Recall  
7062

351076656203 234 zzz
z


  

Hence  
     

4
7062

135107166561203
1

234




  

  24461!3    

    241!31'''    

3.5 Zero Stability  

Definition 3 

 The continuous implicit multi-step method (2.11) is said to be zero-stable if no root of the first characteristics polynomial 

 z  has modulus greater than one, and if every root of modulus one has multiplicity not greater than three. [23].  

Definition 4 

The implicit block method (2.19) is said to be zero stable if the roots nSZs ,...,1,  of the first characteristics polynomial

 zP , defined by  

    EAZzP  det        (3.9) 

Satisfies 1sZ and every root with 1sZ has multiplicity not exceeding three in the limit as 0h  

3.6 Zero stability of the block method 
From (2.19), using definition as 0h  

   EAzzp  det gives  19 zz , which when solved gives; 2 3 4 9... 0z z z z      and 11 z  

Hence the block method is stable.  

3.7 Zero stability of the main method 
Recall the first characteristics polynomial of (2.13) given by  

  386 24  zzzzp        (3.10) 

Equating (3.10) to zero and solving for Z, gives     1 1 1 3 0Z Z Z Z      

1321  ZZZ  

The roots of Z of (3.10) for 1Z  is simple, hence the 

method is zero stable as 0h as defined by (3) and by the 

stability of the block method (2.19) 

3.8 Convergence 
The convergence of the continuous implicit multi-step method 

(2.11) is considered in the light of the basic properties, in 

conjunction with the fundamental theorem of Dahlquist, [24], 

for linear multistep method. In what follows, we state 

Dahlquist’s theorem without proof.  

Theorem 3.1: Dahlquist theorem [5] 
The necessary and sufficient condition for a linear multi-step 

method to be convergent is for it to be consistent and zero 

stable.  

Remark 
The numerical method derived here are considered to be 

convergent by theorem 3.1 as 0h . Following theorem 

(3.1), the method (2.13) is convergence since it satisfies the 

necessary and sufficient conditions of consistency and zero 

stability.  

Region of Absolute Stability of the method 

Definition 5 
If the first and second characteristics polynomials of 

linear multi-step the method are   and   respectively, then 

the polynomial equation can be written as  

 

      0,  rhrhr         (3.11) 

Where  3hh  , then  hr,  is called the stability polynomial of the method defined by p and  and  3hh  is the test 

equation. [12,13] 

So, to get the graph of the stability region,  

we make h the subject of the formular from (3.11) to get  
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          (3.12) 

which is plotted in MATLAB environment to produce the required absolute stability region of the method that will be plotted in a 

graph. 

Using definition 5 and expressing the first and second characteristics polynomials of equation (2.13) as   4 2
6 8 3r r r r     , 

and  
4 3 2

203 6656 35107

7062

r r r
r

  
 and using the boundary locus method, where  

 
 

 

 4 2
7062 6 8 3

4 3 2
203 6656 35107

r r rr
h r

r r r r





  

 
  

 

And  3hh  and setting 
ier  , where  sincos ii  , we have  

 
   

   

7062 cos 4 6 cos 2 8 cos 3 sin 4 6 sin 2 8 sin 3

203cos 4 6656 cos 3 35107 cos 2 203sin 4 6656 sin 3 35107 sin 2

i
h

i

     


     

      


      

  
This is simplified to the form  

     iyx   

And plotted in MATLAB environment to produce the required absolute stability region of the method as shown below 

 
4 NUMERICAL EXAMPLES 
In order to study the efficiency of the developed method, we 

present some numerical examples with the following four 

problems. The continuous implicit multi-step method 4SM 

was applied to solve the following test problems. 

Problem one (Non-Stiff problem) 

     ''' ' ''
3sin , 0 1, 0 0, 0 2, 0.1y x y y y h      ,  

Exact solution:  
2

3 cos 2
2

x
y x x  

 
 
 

 

Source: [15] 

Problem two (Non-linear problem) 

       
1

''' ' 2 '' ' , 0 1, ' 0 , '' 0 0
2

y y xy y y y y      

1.0h . Exact solution:  
1 2

1
2 2

x
y x In

x


 



 
  

 

Source: [16] 

Problem three (Linear Problem) 

      10'',00',00,'4'''  yyyyxy  

1.0h . Exact solution:    
2

3 3
cos 2

16 16 8

x
y x x     

Source: [17] 

Problem four (Stiff problem) 

      10'',00',10,0''''''  yyyyyyy  

h =0.01. Exact solution:   xxy cos  

Source: [18] 
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Table 1: Showing the exact solution and the computed results from the proposed method for problem one and its comparism 

with predictor- corrector method of order eight problem in [15] 

x-value Exact solution 4SM Error in 4SM Error in predictor/ correction 

method of order 8. [15] 

0.1 0.990012495834 0.990012495345 4.8906e-010 4.1723e-009 

0.2 0.960199733523 0.960199730257 3.2663e-009 9.5785e-008 

0.3 0.911009467376 0.911009457080 1.0296e-008 3.9916e-007 

0.4 0.843182982008 0.843182958499 2.3509e-008 1.0369e-006 

0.5 0.757747685671 0.757747640907 4.4764e-008 2.1285e-006 

0.6 0.656006844729 0.656006768881 7.5847e-008 3.7895e-006 

0.7 0.539526561853 0.539526443415 1.1844e-007 6.1301e-006  

0.8 0.410120128041 0.410119953933 1.7411e-007 9.2537e-006 

0.9 0.269829904811 0.269829660522 2.4429e-007 1.3257e-005 

1.0 0.120906917604 0.120906587327 3.3028e-007 1.822e-005 

It can be observed in table 1 that the four step block multi-step method of order p=2 is more accurate than predictor-corrector method 

of order p=8 in [15]. 

Table 2: Showing the exact solution and the computed results from the proposed method for problem two and its comparism 

with non linear problem in [16] 

x-value Exact solution 4SM Error in 4SM Error in [16] 

0.1 1.050041729278 1.050041729298 2.0348e-011 1.9315e-008 

0.2 1.100335347731 1.100335347299 4.3140e-010 5.6083e-007 

0.3 1.151140435936 1.151140430348 5.5879e-009 3.7551e-006 

0.4 1.202732554054 1.202732525793 2.8261e-008 1.3403e-005 

0.5 1.255412811882 1.255412714163 9.7719e-008 3.2591e-005 

0.6 1.309519604203 1.309519334228 2.6997e-007 5.8165e-005 

0.7 1.365443754271 1.365443105333 6.4894e-007 7.1524e-005 

0.8 1.423648030193 1.423647514442 1.4158e-006 2.5648e-005 

0.9 1.484700278594 1.484697384407 2.8942e-006 1.7092e-004 

1.0 1.549306144334 1.549300493471 5.6508e-006 6.7064e-004 

It can be observed in table 2, that the four step block multistep method of order p=2 is more accurate than the non-linear problem in 

[16]. 

Table 3: Showing the exact solution and the computed results from the proposed method for problem three and its comparism 

with problem in [17] 

x-value Exact solution 4SM Error in 4SM Error in [17] 

0.1 0.004987516654 0.004987513772 2.8818e-009 1.6655e-008 

0.2 0.019801063624 0.019801030731 3.2893e-008 3.8096e-007 

0.3 0.043999572204 0.043999452664 1.1954e-007 1.5665e-006 

0.4 0.076867401997 0.076867204907 2.8709e-007 3.9866e-006 

0.5 0.117443317649 0.117442763670 5.5398e-007 7.9597e-006 

0.6 0.164557921035 0.164556991288 9.2975e-007 1.3680e-005 

0.7 0.216881160706 0.216879745800 1.4149e-006 2.1196e-005 

0.8 0.272974910431 0.272972910201 1.9995e-006 3.0396e-005 

0.9 0.331350392754 0.331347729201 2.6636e-006 4.1009e-005 

1.0 0.390527531852 0.390524154206 3.3776e-006 5.2605e-005 

It could be observed in table 3, that the four step block multi-step method of order p=2 is better off than that in [17] 

Table 4: Showing the exact solution and the computed results from the proposed method for problem four and its comparism 

with problem in [18] 

x-value Exact solution 4SM Error in 4SM Error in [18] 

0.01 0.9999500004166 0.9999500004161 5.1470e-013 6.7200e-007 

0.02 0.9998000066665 0.9998000066633 3.1950e-012 1.3441e-006 

0.03 0.9995500337489 0.999550037404 8.5684e-012 2.0170e-006 

0.04 0.9992001066609 0.9992001066443 1.6662e-011 2.6884e-006 

0.05 0.9987502603949 0.9987502603668 2.8100e-011 3.3594e-006 

0.06 0.9982005399352 0.9982005398906 4.4536e-011  

0.07 0.9975510002523 0.9975510001867 6.6520e-011  

0.08 0.9968017063026 0.9968017062085 9.4104e-011  

0.09 0.9959273301190 0.9959527328862 1.2574e-010  

0.10 0.9950041652780 0.9950041651140 1.6393e-010  

It could be observed in table 4, that the four-step block multi-step method of order p=2 is more accurate than that in [18] 
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5 CONCLUSION 
In this study, we developed a continuous implicit multi-step 

method with application to third- order ordinary differential 

equations. The method is consistent, convergent and zero 

stable. The method derived, efficiently solved third order 

initial value problem as displaced in tables 1 - 4. In terms of 

accuracy, our method performs better than the existing 

methods compared with in the literature. 
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