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ABSTRACT

In this paper, we developed a new method within an interval
of four for numerical solution of third-order ordinary
differential equations. Interpolation and collocation approach

was used by choosing interpolation points at S = 3steps
points using power series, while collocation points at

r= (k —1)step points. The method adopts a combination of

powers series and perturbation terms gotten from the
Legendre polynomials, giving rise to a polynomial of degree
r+S—2and I+ Sequations. All the analysis on the
derived method shows that it is stable has order of accuracy
p=2, convergent and the region is absolutely stable. Numerical
examples were provided to test the performance of the new
method. The developed method was used to solve problems
ranging from linear, non-linear and non-stiff Problem to test
the applicability of the new method. Results obtained when
compared with existing methods in the literature shows that
the method is accurate, efficient and computational reliable.
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1. INTRODUCTION

Numerical analysis is the fraction of mathematics which
provides convenient methods for obtaining the solution of
mathematical problems and to dig out useful information from
available solutions which are not expressed in tractable forms.
Such problems begin for the most part, from real world
applications of algebra, geometry, calculus and they include
variables which change consistently. There are three
fundamental ways for focusing on the numerical analysis; it
can develop techniques for the computational problems that
emerge from utilization of science, it can be the provision and
examination of algorithms for fundamental calculations that
are common to numerous applications, and it can be
theoretical work on questions that are very important to the
accomplishment of algorithms.

Many real life problems in sciences, engineering biology and
social sciences are model of third order ordinary differential
equations. Interestedly, some differential equations arising
from the modelling of physical phenomena, often do not have
analytic solutions, hence the development of numerical
method to obtain approximation solutions become necessary.
[1]. this paper focuses on application of third order ordinary
differential equations of the form.
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y (x)=f(xy.y.y"),
y(xo) =Y, y('xl) =y, y("xz) =Y, (1.1)

In the past, equation (1.1) is usually solved by method of
reducing it to its equivalent system of first order ordinary
differential equations and thereafter appropriate numerical
method for first order ODEs would be applied to solve the
systems. On the other hand, the reduction of higher order
ordinary differential equations, to a system of first order has
serious problems, which included: consumption of human
effort, computational burden and non economization of
computer time, as discussed by [2, 3, 4 ,5, 6, 7]. But to cater
for the setbacks encountered in reduction method and also
bring about improvement on numerical methods [8, 9, 10, 11,
12, 13, 14] developed block methods for solving higher order
ODEs directly in which the accuracy is better than, when it is
reduced to system of first order ordinary differential
equations.

A variety of Linear multi-step method for solving equation
(1.1) directly have been developed by some researchers such
as [15, 16, 17, 18, 19, 20]. They develops a block method for
the solution of third order ordinary differential equations.

In the light of this, we want to derive a block method for 4
steps linear multi-step method using power series as the
interpolation equation and power series with Legendre
polynomial as the perturbation term as the collocation
equation to solve equation (1.1) without reduction to first
order ODEs.

2. DERIVATION OF THE METHOD
In this section, we derive discrete method to solve (1.1) at a
sequence of nodal points X, = X, + nh, where h>0 is

the step length or grid size defined by h=X_, — X, and

y(x) denotes the true solution to (1.1) while the approximate
solution is denoted by the point series.

0 1 2 k

y(x) =CyX, +C X, +C, X, +...+C X,
(2.1)
The proposed method depends on the perturbed collocation
method with respect to the power series with the Legendre

polynomials as the perturbation term. Interpolation and
collocation procedures are used by choosing interpolation

point at S =3grid points and collocation points at
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r :(k—l)step points. We have a polynomial of degree
r+s—2 and (I’ + S) equations.

In the first place, we consider the approximation solution of
(1.1) in the power series.

p(x)=x',i=01,...k

Hence (2.1) becomes k

k .
vi (%) = cipi (x) = iEOCiX' 2.2)
With the third derivatives as
Y (x):ci Pi (x):igjoi(i—l)(i—z)cix'_3 (2.3)
Combining equation (1.1) and (2.3), with the perturbation term, we have
2 GiP; (x)=f (X’ y.y.y )+M‘k (xn4i ) 1 =2(1)k (2.4)

Where Lk (X) is the Legendre polynomial of degree k valid in X, < X< X, . A is a perturbed parameter.

In particular, we shall be dealing with case k = 4 (four step points), where equation (2.2) and (2.4) are the interpolation and

collocation equations respectively.
The well-known Legendre polynomials are generated using the Rodrigues formula

()= bt [(xz—l)n]where

2"n1 ax"
Lo (x) =1L (x) = Xx. The rest are computed using the recurrence formula.

2i+1 i _
L (x) = ﬁ x (x) RS (x).i=12..

giving: L, (x) = i(sx2 —1), Ly(x)= z(sx?’ —3x),

1 1
Ly (x) == (35x* ~30x% +3), L5 (x) = = (63x° — 70x® + 15x ) etc (2.5)
Vg Vg
In order to use these polynomials in the interval [Xr1 Xtk ] we define the shifted Legendre polynomials by introducing the change
of variables.
2X —(X ., +X
X = ( n+k n) [21] (2.6)
(Xn+k =X, )
Interpolating (2.2) at s grid points and collocating (2.4) at k-1 grid points respectively leads to the following systems of equation.
S
Zci Pi (X) =Y S= 012 (2.7)
i=0
k "
Zci P (X): fn+j + AL, (Xn+j ), 1= 2(1)k (2.8)
i=0

and ? respectively

In addition, from (2.3), C, Py (X)=0,¢,p; (x)=0,¢,p, (X)=0,c,p; (X) = 6¢, and ¢, p, (X) = 24c,X, .,
Then (2.8) will reduce to the form:
0+0+0+6c,+24c,x,., = F (X, ¥, y")+ AL, (X, ).i =2,3and 4 2.9)

n+4

We now collocate equation (2.9) at X,,,;,1 = 2and 3 and interpolate equation (2.1) at X, ,;,i =0,1,2 to produce a system of 6

equations with C,,i =0,1,2,3,4and A which in matrix from is
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2 3 4

S - I L PR
0 n
1 il *nel *nul Xn41 0
el Yn+1
L Xp2 *ni2 *ns2 *na2 0 ¢y Yni2
0 0 0 6 24, 3 = (2.10)
+2 C3 ft2
0 0 0 6 %//;8 Cy fre3
0 o0 0 6 443 * fn+4
28Xn44 8

Equation (2.10) is solved by Gaussian elimination method to obtain the value of the unknown parameters, C; ,(i = 0,1,2,3,4) and

A, which are substituted into (2.1) to yield a continuous implicit four steps method in the form of a continuous linear multistep
method describe by the formula

4
Yix) = %Yn T AUYnio T Y0 + hSZIBJ‘ (X) foji I = 2(1)k (2.11)
j=2
Where :
1t? 3
ao(t):7+2—§t +1

oy (t)=—t% + 2t

t? ot
t)=———
az() 2 o
ﬂz(t)z-—169488(7051h3t4-—84464h3t3—r204035h3t24+126622h3t+3072)
B,(t)= 10?93(55ht — 437t + 926h°t> —544h’t + 48)
Bi(t)= 16914 - (L1n°t* — 280h°° + 7630 — 494h°t — 3072) (212)

— X3

are the continuous functions of t with T = , as the transformation equation. Using (2.12) for X =X .5 and X, , att=0

and 1 respectively, equation (2.11) reduces to

h
Yn+3 "3Yn42 t3Yny ~¥n = E[_ freq — 6410 3 +197 fn+2]

.3
Yied —6Yan +8Ynug - sy”__?BEE[ 203f,, 4 ~ 6656, 5 +35107f,, | (2.13)
Differentiating (2.12) yields
. 3
ay(t)=t—>
2
o, (t)= -2t +2
- 1
az(t)zt—E
' h’ 3 2
By (t)=- (28204t — 253302t -+408070t)
169488
' 8h3 3 2
By(t)=—— (220t ~1311t +1852t—544)
10593
' 3 3 2
By (t) = (44t — 840t +1526t—494) (2.14)
169488
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Evaluating (2.14) at X=X, X
methods respectively.

' 3
84744hy,, +42372y,,, , ~160488y,, ) +127116y, =h°| 247, ~34816f, 5 + 633111, , |

X Xni3 and x where t=-3,-2,-1,0and 1, (2.11) yield the following discrete

n+17 *n+2? n+4°

~42372hy,,,; + 21186y, , — 21186y, = h°| 501, , , 69441, , 5 +14065 1, |
28248hy,,, , - 42372y, + 56496y, 1 ~14124y, = h°[ 75f,, , ~6912f, 5 +16403f, , |
' 3
1026hy,,, 3 ~ 4815y, + 7704y, | — 2889y, = h°[ 26, , 12321 o +4789f,, | (2.15)

84744hy,, , — 206604y, + 508464y, 1 — 211860y, = h°[ ~2507 f,, 5 20481, , 5 + 3717791, |
Furthermore, differentiating (2.12) twice, we have

az) (t) =1, ai (t) =-2, a; (t) =1,

" h?’ 2
By () =- |:84612t — 506784t + 408070i|
169488
3
" 8h 2
By(t)=—— [660t — 2622t + 1852:|
10593
3
" h 2
By (t) = [132t —1680t+1526} (2.16)
169488
Evaluating (2.16) at X = X, X1, X, 2 Xp,3and X, ,, where t =—-3,—2,—1,0 and 1, (2.11) yield the following discrete

method respectively,
~84744h%y,, +8ATARY, , , ~160488Y,, | + 84744y, = h° | T63f,, , ~118528 1, 5+ 204035f, ,, |

2" 3
77040y, 4 — 7704y, 5 +15408y, 4 — 7704y, =h [— fo 4 —640T, 5 +641f, +2] (2.17)

2. 3
84744h°y,,,, ~B4TAdY,  » +160488y, ., ~84744y, = h°| 6531, , —48128f, 5 +133525f |

2 3
84744n°y . o —84744y_ , +169488y, , —84744y, =h [—1163 fr g4 —4736f o +175387 +2]

84744h2yn+4 —84744yn+2 +169488yn+1 —84744y, = h3 [—1541 fn+4 +123136 fn+3 +132637 fn+2:|
Now we obtained the modified block formulae from (2.13), (2.15) and 2.17 as

Yn+1
396 396 132 0O 0 0 0 0 0 0 0 0 Viin
56496 42372 0 7062 0 0 0 0 0 0 0 0 Yors
_169488 42372 0 0O 0 0 0 0 0 0 0 0 y

0 21186 0 0 —-42372h 0 0 0 0 0 0 0 n+4
56496 42372 0 0 0 28248h 0 0 0 0 0 0 Yni1
7704  —4815 0 0 0 0  1926h 0O 0 0 0 0 Yrio
508464 -296604 0 O 0 0 0  84744h 0 0 0 0 Vs

_169488 84744 0 O 0 0 0 0 0 0 0 0 -
2 Yn+4

15408 -7704 0 0 0 0 0 0  7704h 0 0 0 L
160488 -84744 0 O 0 0 0 0 0 84744n° 0 0 Y+
169488 -84744 0 O 0 0 0 0 0 0 84744h° 0 Yn+2
169488 —84744 0 O 0 0 0 0 0 0 0 ga7aan? )| Yn+3
Yn+4
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-132
—21186
127116
—21186
-14124
—2889
—211860

84744

~7704

84744
-84744
-84744

Taking the normalized version of 2.18, we obtained the block solution

O O OO OO0 oo rr oo o

O O O O O O O O O O O
O O O O O O o o o o r o
O O O OO O O O o Fr O o

0

0
84774h

0

O O O O O o o

0

O O OO OO0 okr O o o o
O O OO O o Pr O o o o o
O O O 0O O Fr OO0 o o o o

O O O O o o

0

—84744h2

O O O O Fr OO O o o o o

O O O r OO0 O O O o o o

0
0
0
0

O O P OO O O O O o o o

O P OO O O O o o o o o

P O O O OO O o o o o o

Yn

Yn

+h

Ynu1
Ynt2
Yn+3
yp+4
Y
Yn+2
Yn+3
Yn+4
Yn1
Yn+2
Yn+3
Yn+4

197
35107
63311
14065
16403
4789
371779
204035
641
133525
175387
132637

[EEN

2h

[ERN
w
=

N
=

O O O O O O © O
O O O O~ F P =

—64
—6656
—34816
—6944
—6912
-1232
—2048

-118528

—640
—48128
—4736
123136
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-1
-203
247
59
75 .
26 n+2
f
2507 n+3
-763 fn+4
-1
653
1163
1541
774130°  3056h°  269h°
169488 10593 169488
3000h°  eo7eh®  43n°
1177 3531 3531
189933h°  6528h°  741n°
18832 1177 18832
225040n°  111104h°  944n°
10593 10593 14593
56207h®  8728h°  199h°
42372 10593 42372
yn) | 49246n®  27872n%  188n’
v |+| 10593 10503 10593
y; 42195h° 5208h° 177h2
4708 1177 4708
140576h°  55168h°  664h°
10593 10503 10593
11727h 1744h 43h
4708 1177 4708
14065h 6944h 59h
3531 3531 3531
197h 16h h
44 11 44
4676h 64h 32h
1177 1177 1177

(2.18)

fn+2

f

n+3

fn+4

To simultaneously obtain values for yn+17 yn+2’ yn+3’ yn+4’ yn+1’ yn+2’ yn+3’ yn+4’ yn+l’ yn+2’ yn+3 and yn+4

Equation (2.19) can be written explicitly as:
2
h

Yn+1 = Yn +hyp +7)’n +

169488
3

3

[ 774131, , — 488961, 5 2697, 4 |

' 9 h
y =y, +2hy, +2h"y, + —— [ 11727 f —6976 f —43f
n+2 n n n 3531[ n+2 n+3 n+4]

Yn43 = Yn +3hyp +

. 5
Yn+a = Yn +4hy, +8h7y, +

9h?

PR

hS

10593

h
4444—[189933f
18832

n+2

1044481 5~ 741%, 4 |

[ 2250401, , ~1111041, 5 ~944f, , |

(2.19)

29



International Journal of Computer Applications (0975 — 8887)
Volume 175 — No. 24, October 2020

2
: L h
Yot =n Mo+ nep 34912 o -199f ]
2
: C e h
Yiip = Yn +2hyp + nip — 278721, o 1881, |
2
Ynea = Yn +3yp +h—[42195 frup 208321 o 1771, |
4708
2

Yoyea = Yo + 40y + hep ~551681, 6641, | (2.:20)
© e h

Yoot = Vi +%[11727 fryp 6976 543, |
+ s+ h

Yoo = Yn +ﬁ[14065fn+2 6944 1,,3 59T 4 |
« e oh

Yn+3 =¥n +L|:197 fri2 =64Th3 - fn+4]

h
Yia =Vn + — ——[4676f,, 5 + 641,532, 4 |

3 ANALYSIS OF THE METHOD been established in this section. However, brief introductions
Basic properties of the method are analysed to establish its of these properties are made for a better understanding of the
validity. These properties help to show the nature of section.
convergence of the method. These properties include order 3.1 Order and error constant of the method
and error constant, consistency and zero stability. All these Let the linear difference operator L associated with the
put together reveal the nature of convergence of the method. continuous multi-step method (2.11) be defined as
Also the regions of absolute stability of the method have also

L[y(x).h]= Z {ajy(xn+in) -8y (4 + i)} =012k [5] (3.1)

Where y(x) is an arbitrary test function that is continuously differentiable in the interval [a,b], and &, and ,BO are both non — zero.
Expanding y(xn + jh) and y (Xn + jh), j=0,1,2,3,...,k in Taylor’s series about X, and collecting like terms in h and y gives.

L[y(x).h] = Coy(x) +C1hyl (x) + C2h2y2 (x) +...+Cph py P ( )

Definition 1
The difference operator L and the associated implicit multi-step method (2.11) are said to be of order p ,if in (3.2)
¢ =¢=C=..,=C,,;=C,,,=0,C,;#0 (3.2)
Then Cpis is called the error constant and it implies that the local truncation error is given by
3
[ _Cp+3hp+3y P:3) +0(hp+4) [5] 3.3)

3.2 Order and error constant of the new

method
From equation (2.13)
3

h
Ynea ~Yns2 +BYnyg ~3¥n = [ 2031, , 6656, 5 +35107f , |

Can be rewritten in the form;

6 8 3 h 35017 ‘ 3328 ; 203 ‘ (3.4)

y —by +0Yn41 —9Yn — - - - .

n+4 n+2 n+1 n 7062 n+2 3531 n+3 7062 n+4

Expanding (3 4)in Taylor series form, we have

& (4)(h) : 2 (h)? 2{ 35107 i, 3328, 203 }
+8 -3 yiv = (2) P - === (3)" =0

,Z:;‘ j! Z; ! y” z Yo JZ:;‘ 4 7062 @ 3531( ) 7062( r

On evaluation
) =1-6+8-3=0
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5398

3531

11
2
(4)" 1 2
2= _2.(6(2) -8(1)” +3(0) ):0
[/ \3
(@) 1( 3 3 3) 1(35107 0 3328, .0 203 oj_
R TR °(2) -8(1) +3(0) o1\ 7062 2) 73531(3) 77062(4) -0
. __(4)4 _i(6(2)4—8(1)4+3(0)4) _1(35107 (2)1_3328 (3)1_ 203 (4)1j_0
A TRRY 1\ 7062 3531 7062 )
[/ \5
18 1( 5 5 5) 1(35107 , \2 33282 203, .2)
I T o(2)" -8(1)"+3(0) 21\ 7062 ) _3531(3) _7062(4) B
Hence the main method is of order p = 2, with error constant Cpe3 = @
3531

3.3 Order and error constant of the new

block method:
Using part of the block in (2.20) i.e.

2 3
. h® o« h
Yri1 =Yn +hyn +—yp + 77413 f — 48896 f —269f
n+1 n n ’ n 169488[ n+2 n+3 n+4:|
. 5 h3
Yneo = Yn +2hyp +2h%yp +ﬁ[11727 fryp —6976% 5 431, 4 |
T
Vo oa=yn 43y 4y [ 180933f ., —104448f . —741f
n+3 n n ’ n 18832 [ n+2 n+3 n+4]
. o h3
Yna = Yn 40 +8h Yy [ 2250401, , ~111104 1, 5 ~944f, , |

as

con e g 77413 3056 269

Ynia=¥n=MWn = Yo 0 [169488 2 0503 ™3 Lo0ass f”*"’} -0

. 5« 3[ 3000 6976 43
Yni2 ~Yn —2yp —2h"yp —h [1177 M2 7 gy 437 geay fn+4} =0

. oh? +  3[189933 6528 741
yn+3_yn_3hyn_7yn —h [18832 2" o n+3_18832fn+4}:0

. o3[ 225040 111104 944
Y =Y =4 =80 yn =0 [ 10593 ™2 0503 ™3 105es f”*"’} -0

And using Taylor’s series expansion on (3.5) and collecting terms in h and y lead to the following:

269

77413 n-3 3056 n-3 n-3
2 -— (3 - 4
169488( ) 10593( ) 169488( ) j

(1?1!.1_(n—13)!(

- (2)" 11 (3909 (2)n_3_m(3)”‘3_“(4)n—3)

nt (n-3)1\1177 3531 3531

Cn:(3)" 1 (189933 (2)n_3 6528 (S)n—?,_ a1 (4),1_3)

nt  (n-3)\ 18832 1177 18832

(3.5)
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Ch =

(42: .1(n f3)!(225040 (Z)n—a 111104 (3)n—3 944 (4)n—3j

10593 10593 10593

Onevaluatingatn=0,1,2,3and4,¢cp=C;=C;=C3=¢c, =0
(3.6)

-
85963 46118 83883 739168
p+3 =

211860 17655 11770 52965
Hence the method is of order p = 2, with error constant

3.4 Consistency
Given a continuous implicit multi-step method (2.11), the first
and second characteristics polynomials are defined as:

k

p(z):JEOaij 3.7)

K
o(2) = JEOﬂJZJ (3.8)

Where Z is the principle root, &, # 0 and 0{03 + ,803 =0

Definition 2
The continuous implicit multi-step method (2.11) is said to be consistent if it satisfies the following conditions

i. The order P >1
K

i Za =0
-0

i p(l)=p'(1)

v, (;: (1))

Remark:

Condition (i) is sufficient for the associated block method to be consistent i.e. P > 0 [22, 25]
Recall the main method; (2.13)
3

Ynia — 6yn+2 + 8yn+l - 3yn = h 2 [_203 fn+4 — 6656 f

The first and second characteristics polynomial of the method are given by:

p(z)=2*—62° +82-3

n+3

+35107f,,]

And

—2032* - 66562° + 3510777
o(z)=
7062

By definition 2, the method (2.13) is consistent, since it satisfies the following:
. The order of the method is p=22>1

respectively

i, o, =—3,a;, =8,a, =6 and o3 =1
3 3

Thus Y a;,j=0123) a; =-3+8-6+1=0
< -

7)=2"—-62°+82-3

p1)=@0)" -6(1)° +(1)-3=0
p'(z)=4z>-122+8
Yo

2R

v, P [1)=30c(1)
Recall p'(2) =4z —122 +8
p"(z)=122% -12
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p"(z)=24z
st ()=2401)=24
—203z* -66562° +351072°

Recall G(Z) =
7062
4 3 2
rence (1) = ~ 203" 66561 + 351070 _,
7062

~.3lo(1)=6x4=24
- p"(1)=30(1)="24

3.5 Zero Stability
Definition 3
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The continuous implicit multi-step method (2.11) is said to be zero-stable if no root of the first characteristics polynomial

p(Z) has modulus greater than one, and if every root of modulus one has multiplicity not greater than three. [23].

Definition 4

The implicit block method (2.19) is said to be zero stable if the roots Z¢,S =1,..., N of the first characteristics polynomial

P(z), defined by
P(z)=det(zA-E)

3.9)

Satisfies |Zs| < 1and every root with |ZS| = 1 has multiplicity not exceeding three in the limitas h — 0

3.6 Zero stability of the block method
From (2.19), using definitionash — 0

ﬁ(2)= det[zﬂ— E]gives Zg(Z —1),which when solved gives; Z, =Z, =7, =...=Z; =0 and z; =1

Hence the block method is stable.

3.7 Zero stability of the main method

Recall the first characteristics polynomial of (2.13) given by

p(z)=2*-62°+82-3

(3.10)

Equating (3.10) to zero and solving for Z, gives (Z —1)(2 —1)(2 —1)(Z + 3) =0

£2,=2,=2,=1

The roots of Z of (3.10) for |Z| =1 is simple, hence the

method is zero stable as N —> O as defined by (3) and by the
stability of the block method (2.19)

3.8 Convergence

The convergence of the continuous implicit multi-step method
(2.11) is considered in the light of the basic properties, in
conjunction with the fundamental theorem of Dahlquist, [24],
for linear multistep method. In what follows, we state
Dahlquist’s theorem without proof.

Theorem 3.1: Dahlquist theorem [5]

The necessary and sufficient condition for a linear multi-step
method to be convergent is for it to be consistent and zero

7(r.h)= p(r)-ho(r)=0

stable.
Remark
The numerical method derived here are considered to be
convergent by theorem 3.1 as h — 0. Following theorem
(3.1), the method (2.13) is convergence since it satisfies the
necessary and sufficient conditions of consistency and zero
stability.
Region of Absolute Stability of the method
Definition 5

If the first and second characteristics polynomials of
linear multi-step the method are p and o respectively, then

the polynomial equation can be written as

(3.11)

Where h = (ﬂh)S, then 7[(I’, ﬁ) is called the stability polynomial of the method defined by p and o and h = (/Ih)3 is the test

equation. [12,13]
So, to get the graph of the stability region,

we make h the subject of the formular from (3.11) to get
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(3.12)

which is plotted in MATLAB environment to produce the required absolute stability region of the method that will be plotted in a

graph.

Using definition 5 and expressing the first and second characteristics polynomials of equation (2.13) as p(r) = r4 —6r2 +8r -3,

—203r4 - 6656r3 + 35107r2
7062

p(r) 7062(r4—6r2+8r—3)

o(r) —208r* —6656r° +35107r°

and a(r) =

h(r)=

and using the boundary locus method, where

And h = (ﬂ, h)3 and setting T = €', where ' =c0s@+isin @, we have

7062 (cos 40~ 6.¢05 20 +8c0s 6 —3) +i (sin 40~ 6sin 20 +8sin 0 - 3) |

h(e)= (
x(0)+iy(0)

—203 cos 46 — 6656 cos 36 + 35107 cos 29) +i (7203 sin 46 — 6656 sin 36 + 35107 sin 20)

This is simplified to the form

And plotted in MATLAB environment to produce the required absolute stability region of the method as shown below

2.5 T T
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4 NUMERICAL EXAMPLES

In order to study the efficiency of the developed method, we
present some numerical examples with the following four
problems. The continuous implicit multi-step method 4SM
was applied to solve the following test problems.

Problem one (Non-Stiff problem)
y =3sinx,y(0)=1y (0)=0,y (0)=-2h=0.1,

- X2
Exact solution: y(x)=3c05x+ — -2
2

Source: [15]
Problem two (Non-linear problem)

v =y'(297+y').y(0) =1y'(0) =

y'(0)=0

1
2

1 2+X
h = 0.1. Exact solution: y(x) =1+- In[ :l
2 2—-Xx

Source: [16]
Problem three (Linear Problem)

y"'=x-4y",y(0)=0,y(0)=0,y"(0)=1

h =0.1. Exact solution: y (x) = —i cos (2x) +—+—
16 16 8

Source: [17]

Problem four (Stiff problem)

y"=y"+y-y=0,y(0)=1y(0)=0,y"(0)=-1
h =0.01. Exact solution: y(x) =COS X
Source: [18]
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Table 1: Showing the exact solution and the computed results from the proposed method for problem one and its comparism
with predictor- corrector method of order eight problem in [15]

x-value Exact solution 4SM Error in 4SM Error in predictor/ correction
method of order 8. [15]
0.1 0.990012495834 0.990012495345 4.8906e-010 4.1723e-009
0.2 0.960199733523 0.960199730257 3.2663e-009 9.5785e-008
0.3 0.911009467376 0.911009457080 1.0296e-008 3.9916e-007
0.4 0.843182982008 0.843182958499 2.3509e-008 1.0369e-006
0.5 0.757747685671 0.757747640907 4.4764e-008 2.1285e-006
0.6 0.656006844729 0.656006768881 7.5847e-008 3.7895e-006
0.7 0.539526561853 0.539526443415 1.1844e-007 6.1301e-006
0.8 0.410120128041 0.410119953933 1.7411e-007 9.2537e-006
0.9 0.269829904811 0.269829660522 2.4429e-007 1.3257e-005
1.0 0.120906917604 0.120906587327 3.3028e-007 1.822e-005

It can be observed in table 1 that the four step block multi-step method of order p=2 is more accurate than predictor-corrector method
of order p=8 in [15].

Table 2: Showing the exact solution and the computed results from the proposed method for problem two and its comparism
with non linear problem in [16]

x-value Exact solution 4SM Error in 4SM Error in [16]
0.1 1.050041729278 1.050041729298 2.0348e-011 1.9315e-008
0.2 1.100335347731 1.100335347299 4.3140e-010 5.6083e-007
0.3 1.151140435936 1.151140430348 5.5879e-009 3.7551e-006
0.4 1.202732554054 1.202732525793 2.8261e-008 1.3403e-005
0.5 1.255412811882 1.255412714163 9.7719e-008 3.2591e-005
0.6 1.309519604203 1.309519334228 2.6997e-007 5.8165e-005
0.7 1.365443754271 1.365443105333 6.4894e-007 7.1524e-005
0.8 1.423648030193 1.423647514442 1.4158e-006 2.5648e-005
0.9 1.484700278594 1.484697384407 2.8942e-006 1.7092e-004
1.0 1.549306144334 1.549300493471 5.6508e-006 6.7064e-004

It can be observed in table 2, that the four step block multistep method of order p=2 is more accurate than the non-linear problem in

[16].

Table 3: Showing the exact solution and the computed results from the proposed method for problem three and its comparism
with problem in [17]

x-value Exact solution 4SM Error in 4SM Errorin [17]
0.1 0.004987516654 0.004987513772 2.8818e-009 1.6655e-008
0.2 0.019801063624 0.019801030731 3.2893e-008 3.8096e-007
0.3 0.043999572204 0.043999452664 1.1954e-007 1.5665e-006
0.4 0.076867401997 0.076867204907 2.8709e-007 3.9866€-006
0.5 0.117443317649 0.117442763670 5.5398e-007 7.9597e-006
0.6 0.164557921035 0.164556991288 9.2975e-007 1.3680e-005
0.7 0.216881160706 0.216879745800 1.4149e-006 2.1196e-005
0.8 0.272974910431 0.272972910201 1.9995e-006 3.0396e-005
0.9 0.331350392754 0.331347729201 2.6636e-006 4.1009e-005
1.0 0.390527531852 0.390524154206 3.3776e-006 5.2605e-005

It could be observed in table 3, that the four step block multi-step method of order p=2 is better off than that in [17]

Table 4: Showing the exact solution and the computed results from the proposed method for problem four and its comparism
with problem in [18]

x-value Exact solution 4SM Error in 4SM Errorin [18]
0.01 0.9999500004166 0.9999500004161 5.1470e-013 6.7200e-007
0.02 0.9998000066665 0.9998000066633 3.1950e-012 1.3441e-006
0.03 0.9995500337489 0.999550037404 8.5684e-012 2.0170e-006
0.04 0.9992001066609 0.9992001066443 1.6662e-011 2.6884e-006
0.05 0.9987502603949 0.9987502603668 2.8100e-011 3.3594e-006
0.06 0.9982005399352 0.9982005398906 4.4536e-011
0.07 0.9975510002523 0.9975510001867 6.6520e-011
0.08 0.9968017063026 0.9968017062085 9.4104e-011
0.09 0.9959273301190 0.9959527328862 1.2574e-010
0.10 0.9950041652780 0.9950041651140 1.6393e-010

It could be observed in table 4, that the four-step block multi-step method of order p=2 is more accurate than that in [18]
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5 CONCLUSION

In this study, we developed a continuous implicit multi-step
method with application to third- order ordinary differential
equations. The method is consistent, convergent and zero
stable. The method derived, efficiently solved third order
initial value problem as displaced in tables 1 - 4. In terms of
accuracy, our method performs better than the existing
methods compared with in the literature.
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