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ABSTRACT 

Despite the importance of agricultural grains appearance for 

their choice by the consumers as well as for determining their 

selling price, the visual inspection of the quality of these 

products is usually conducted in a manual way and, therefore, 

susceptible to high operational costs, human errors and 

inaccurate results. Recently, a computer vision system for 

quality inspection of beans composed by a set of hardware 

and software, named the SIVQUAF, was proposed in the 

literature. However, the software of the SIVQUAF was 

designed for a personal computer, which makes its operation 

more complex, decreases its performance and raises the cost 

of the equipment. Thus, in this work we explored the 

customization and optimization of SIVQUAF aiming its 

running on a Raspberry Pi 3, keeping similar performance, 

generating the SIVQUAFCompact. Besides redesigning and 

parallelizing algorithms, we proposed improvements in the 

classification and defect detection steps, and a new touch-

sensitive interface. The experiments conducted with 

SIVQUAFCompact embedded in a Raspberry Pi 3 

demonstrated that in addition to reproducing high hit rates in 

the tasks of segmentation (97.50%), classification (97.06%) 

and detection of defects (74.78% ), there was a significant 

gain in terms of cost, operation and compaction of the 

equipment, increasing its operational, technical and economic 

viability.   
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1. INTRODUCTION 
The largest producers of beans in the world are Myanmar, 

India, Brazil, the United States of America (USA), Mexico, 

and Tanzania, respectively, which are responsible for 

approximately 60% of all global production of the grain [1]. 

Brazil is the world’s largest consumer and producer of 

common beans (Phaseolus vulgaris L.). No wonder, bean and 

rice form the Brazilian basis diet. 

One question of extreme importance in the commercialization 

of agricultural grains, both in the acquisition and the sale is 

the visual quality, which is evaluated from properties such as 

color, shape, and size. These characteristics generally impact 

on product’s market price. Thus, the visual quality inspection 

is a task of great importance for most agricultural products, 

including beans [2–4]. However, it is very common that these 

tasks occur manually, demanding a lot of time, increasing 

operational costs and difficulting the standardization of results 

[5,6]. In this context, the use of computer vision systems 

(CVS) aiming at the automation of these tasks can bring a 

competitive advantage for companies. Actually, computer 

vision can be considered as one of the keys for achieving 

industry 4.0 [7]. 

In the last decade, several works have been presented in the 

literature proposing the development of CVS for inspection 

the visual quality of agricultural grains, such as the works 

presented in Table 1. In such systems, the first, and most 

critical step is the segmentation of grains, since the 

classification and detection of defects depend on the success 

of this step. 

Despite the reported high success rates, only the most recent 

works (since 2015) present robust approaches for 

segmentation of touching grains. This was a severe limitation 

that hampered the practical application of some proposed 

systems. In addition, one can see that there are only a few 

works addressing the detection of defects in grains. It is also 

rare works proposing specific equipment for visual inspection 

of grains. In our literature review we found the works of 

OuYang et al. (2010) [8] and Zareiforoush et al. (2016) [9] 

proposing equipment for the inspection of rice quality.  

Regarding beans, only Belan (2019) [10] proposed a CVS 

composed by set of hardware (equipment) and software, 

named SIVQUAF, to inspect the visual quality of the product. 

However, the software that composes the SIVQUAF must be 

run on a personal computer, which compromises its usability 

and performance, since the various tasks performed on a 

general use computer compete by the same hardware 

resources. Besides that, the need for a personal computer to 

control the equipment increases the cost of the proposed CVS, 

compromising its operational and economic viability. 

It should also be noted that from all the investigated works, 

only Araújo, Pessota and Kim (2015); Belan, Araújo & 

Santana (2015); Belan et al. (2016); Belan et al. (2018) and 

Belan (2019) report concern with the processing time to make 

the use of the proposed systems in practical applications 

feasible and, possibly, their running on low cost embedded 

platforms. 

It is in this context that the present work is inserted, with the 

proposal to customize, optimize and improve some steps of 

the SIVQUAF, making feasible its running on a Raspberry Pi 

3, which consists of a versatile and low cost embedded 

platform with limited hardware resources. 
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Table 1: Works addressing CVS for quality inspection of agricultural grains found in the literature (from 2009 to 2019) 

Reference Ref. Inspected grain(s) 
Executed  

task(s) 
Results 

Segments 

touching 

grains? 

Employs 

embedded 

technology? 

Employs 

Equipment (E) / 

Apparatus (A) / 

only Camera (C) / 

Others (O) 

Qing et al. (2009) [11] Rice 
Defects  

detection 
Precision: 99.5% Yes No A 

Venora et al. (2009) [12] Italian beans Classification Precision: 98.49% No No A 

Anmi & Savakar 
(2010) 

[13] 
Wheat, peas, peanuts and 

others 
Classification – No No A 

Aggarwal & Mohan 

(2010) 
[2] Rice Classification Precision: 90.00% No No C 

Laurent et al. (2010) [14] Beans Classification 
Not informed in terms 

of rates 
No No A 

OuYang et al. (2010) [8] Rice 
Classification of  

5 varieties 

Success rates: 99.99%. 
99.93%. 98.89%. 

82.82% e 86.65% 

No No E  

Liu et al (2011) [15] Soja Classification Precision: 97.00% No No A 

Patil, Yadahalli & 

Pujuari (2011) 
[5] 

 Corn, soy, lentils, 

sorghum, wheat and 
others 

Classification – No No C 

Pessota (2013) [16] Beans Classification 
Average success rate: 

95.00% 

 

Yes No A 

Siddagangappa & 

Kulkarni (2014) 
[17] Rice, beans and others Classification Success rates: 98.00% No No A 

Kambo e Yerpude 
(2014) 

[18] Indian Rice Classification 
Accuracy: 80%. 75% e 

80% 
No No A 

Dubosclard et al. 

(2014, 2015a, 2015b) 

[19–

21] 
Rice Classification 

Time: 90s to classify an 

image 
Yes No A 

Potter et al. (2015) [22] Corn Classification 
Success rates: 

81.00 a 89.00% 
No No A 

Belan, Araújo & 

Santana (2015) 
[23] 

Brazilian  

Beans  
Classification Success rates: 99.95% No No A 

Araújo, Pessota e 

Kim (2015) 
[24] 

Brazilian  

Beans 
Classification Success rate: 99.99% Yes No A 

Araújo et al. (2015) [25] 
Brazilian  

Beans 
Classification Success rate: 99.95% Yes No A 

Belan, Araújo & 

Alves(2016) 
[26] 

Brazilian  

Beans 
Classification Success rate: 99.14% Yes No A 

Belan et al. (2016) [27] 
Brazilian  

Beans 
Classification Success rate: 99.48%  Yes No A 

Zareiforoush et al. 

(2016) 
[9] Rice 

Defects  

detection 
Precision: 98.72% Yes No E 

Ramos et al. (2017) [29] Coffee bean Classification Precision: 95.00% Yes Yes 
O  

(Smartphone) 

Bhat, Panat & 

Arunachalam (2017) 
[30] Rice Classification – Yes No A 

Belan et al. (2018) [31] Beans 
Only  

segmentation 
Accuracy: 86.20% Yes No 

O  
(Database of 

images) 

Belan (2019) [10] 
Brazilian  

Beans 

Classification and 

defects detection 

Average success rate: 

99.00% 
Yes No E  

 

2. THEORETICAL BACKGROUND 

2.1 Visual inspection of Brazilian bean 

grains quality 
The rules established by the Brazilian Ministry of Agriculture, 

Livestock and Supply (BMALS) determine the classification 

of Brazilian beans in Group, Class, and Type. The Group 

refers to the botanical species, being the beans classified in 

Group I when belonging to the species Phaseolus vulgaris L. 

(common bean), or in Group II when belonging to the species 

Vigna unguiculata L. Walp. The Class depends on the color of 

the skins of the grains contained in the inspected sample 

(Black, White, Colored, or Mixed), regardless of the group. 

The Type, on the other hand, is related to the defects found, 

being the main ones: broken, burnt, moldy, bored, germinated, 

impurities, and foreign matter [32].  

The quality inspection of beans is carried out manually and 

consists of extracting at least a sample of 1 Kg from a lot of 

beans, from which two subsamples of at least 250g are 

obtained for visual inspection and chemical inspection. From 

the subsample for visual inspection, foreign matter and 

impurities are separated using a sieve with holes of 5mm of 

diameter, to then determine the Group, Class and Type, 

according to the reference values stablished by BMALS [32].  
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The main problems associated with the current bean quality 

inspection process are the high probability of errors, the cost 

of the process and the difficulty in standardizing the results. 

2.2 SIVQUAF 
The SIVQUAF proposed by Belan (2019) consists of a set of 

software and hardware (equipment), which are briefly 

described in sections 2.2.1 and 2.2.2. 

2.2.1 Software 
The software, composed by an interface (Figure 1) and image 

processing algorithms, was developed in C/C++ language 

using the Microsoft® Visual Studio™ 2012 platform and the 

OpenCV 2.4 library [33]. Its working, including all processing 

steps briefly described in the subsections 2.2.1.1 to 2.2.1.5, is 

illustrated in the diagram of Figure 2. Details about computer 

vision and artificial intelligence techniques employed in the 

development of the SIVQUAF can be found in Belan (2019). 

 

Fig 1: Interface for the SIVQUAF operation. Adapted from Belan (2019)

 

Fig 2: Diagram of working of the SIVQUAF software. 

Adapted from Belan (2019) 

2.2.1.1 Acquisition 
The input of the software is an RGB color image (Figure 4a), 

acquired in the image acquisition chamber, which is processed 

by the steps described below. 

2.2.1.2 Pre-processing 
The pre-processing step employs a method based on the k-NN 

algorithm (k-nearest neighbors), with k=1 (that is, 1-NN), 

which maps each pixel of the input image (Figure 4a) for a 

grayscale value, being the typical colors of beans mapped to 

darker tones and typical background colors mapped to clearer 

tones. However, instead of conducting training for each image 

as proposed in Araújo, Pessota & Kim (2015), the mapping is 

done in an efficient way using a previously created lookup 

table (LUT) [10]. 

2.2.1.3 Segmentation  
The segmentation process consists of isolating and each grain 

in the image, even in the case of touching grains, so it’s 

possible to make an individualized analysis. In the SIVQUAF 

the algorithm for segmentation, called WT-H-CCG, uses the 

Watershed Transform (WT), heuristics (H) for joining (J) 

and/or separation (S) connected components and Cross-

Correlation Granulometry (CCG). 

The working of this algorithm can be described as follows: 

first, the pre-processed image (Figure 4b) is segmented by 

applying WT. Since the segmentation by WT is susceptible to 

errors, heuristics based on information of grains such as 

average and the distance between their centers, are applied 

aiming at the junction (J) or separation (S) of two or more 

segmented connected components (CCs) erroneously grouped 

or divided. As the use of heuristics cannot fix all segmentation 

errors, the CCG algorithm is used only in the cases where the 

application of heuristics was not effective. For the application 

of the CCG, 72 templates were used, considering 4 scales and 

18 rotation angles for each scale (4×18).  

Figure 4b illustrates cases where joints (J) of small connected 

components and CCG were applied, while Figure 4c 

illustrates a part of the input image with the grains segmented. 

2.2.1.4 Classification 
The grains classification consists in labeling each segmented 

CC to one of the three classes considered in this work 

(Carioca  C, Mulatto  M or Black  B). To this end, from 

ten radial projections of each grain, average values from the 

three bands of the RGB color space and the three bands of the 
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CieLab space are extracted, that is { ,  ,  ,  ,  ,  }. Thus, as 

illustrated in Figure 3, a Multi-Layer Perceptron artificial 

neural network (MLPANN) maps each grain for a 

                 . 

The employed MLPANN was configured with the following 

architecture: 6 neurons in the input layer, two hidden layers 

with 30 and 45 neurons, and three neurons in the output layer 

to indicate the grain class.  

 

Fig 3: RNA-MLP employed in the SIVQUAF’ software for 

grains classification. Belan (2019) 

It should be noted that this method of extracting features can 

be susceptible to errors since there are many occurrences of 

dark brown streaks covering a considerable area of carioca 

beans (grains of predominantly light brown skin) that can 

make the MLPANN confuse them with mulatto (grains of 

skin predominantly dark brown). Part of a classified image is 

shown in Figure 4d. 

2.2.1.5 Defects detection 
a) Broken grains 
A whole bean has an almost elliptical shape. However, as a 

consequence of mechanical impact on the harvest or due to 

another factor in the inspection process, some grains may be 

broken. The algorithm for detection broken grain employs the 

seven invariant moments of Hu (MHu) that compose the 

signature of a grain, which is compared with the signature 

extracted from the image of an ellipse or from an image of a 

healthy grain considered as standard.  

An example of identification of this type of defect is shown in 

Figure 4e. It is worth mentioning that Belan (2019) tested 

other algorithms for this task and, according to him, but the 

use of MHu presented the best cost-benefit. 

b) Bored grains  

The bored grains, such as those illustrated in Figure 4e, are 

grains having one or more holes caused by woodworm 

Acantoscelides obtectus, whose attack seriously compromises 

the appearance, conservation, and quality of the beans.  

 

   
(a) (b) (c) 

 

    
(d) (e) (f) (g) 

Fig 4: Results of the processing steps of the software that composes the SIVQUAF. (a) input image; (b) details of the 

application of CCG and the heuristic for joining (J) fragments of grains; (c) final segmentation result; (d) classification; (e) 

detection of broken grains; (f) detection of bored grains and (g) detection of moldy grains 

In the detection of the holes, the Hough transform for circle 

detection (HTC), which is implemented in the OpenCV 

library, was used. To avoid problems in the detection of holes, 

maximum and minimum radius are stipulated and used as 

parameters of the HTC algorithm. They are easily obtained 

because the holes do not have large differences in terms of 

diameter. According to Belan (2019), images with resolutions 

lower than 1920×1080 can make the detection of this defect 

unfeasible. 

c) Moldy grains 

According to Belan (2019), it is extremely difficult to discern 

whether a grain is moldy or burnt, observing only its external 
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appearance. According to literature, for determining if the 

grain is burnt it is necessary to open it and check the internal 

part, since the coloring of its skin is very similar to the moldy 

grain [32]. Thus, both defects are treated as unique defect 

(moldy/burnt). The moldy defect (Figure 4g) is identified in 

the SIVQUAF by a convolutional neural network (CNN) 

implemented in Python language (and not attached to the 

software), which was trained from a database of 5920  images 

of defective and healthy grains. 

2.2.2 Hardware (equipment)  
The equipment (Figure 5) that composes the SIVQUAF was 

developed with low-cost electromechanical materials, such as 

a table made of structural aluminum, which includes an image 

acquisition chamber (opaque white acrylic box, with a built-in 

camera and a lighting system), servo motor, input box with 

grain separator mechanism and a grain output box. 

 

Fig 5: The SIVQUAF (set of hardware and software). 

Belan (2019) 

The cost of the materials to make the equipment, including a 

full-HD camera, was approximately US$1,200.00. Also 

considering a personal computer for running the software, the 

total cost of the SIVQUAF is approximately US$ 2,400.00. 

2.3 Embedded systems 
According to Ondřej (2016), an embedded system is a 

software embedded in an equipment such as in an electronic 

car injection system, in a pen that is capable of translating 

texts from one language to another, in a refrigerator, 

televisions, etc. An embedded system can also be defined as a 

specialized computer system that is part of a larger machine or 

system.  

We can see an increasing use of embedded systems or 

embedded computing (CE), in practically all objects 

constructed by man, although most of them go unnoticed by 

us. Virtually all electronic equipment already has or will soon 

have an embedded computer system. 

The main feature of embedded systems is the unique 

functionality, that is, running only one program repeatedly. In 

other words, an embedded system performs a set of 

predefined tasks, according to requirements. In addition, some 

issues such as ease of operation, cost, and size of the hardware 

for embedded systems must be taken into account [34].  

There are numerous hardware platforms (Single Board 

Computers – SBC) for embedded systems, such as Raspberry 

Pi, Orange Pi, Odroid, Banana Pi, Tinker Board, and Inforce, 

among others [35].  

3. SIVQUAF–Compact 

3.1 Software 
The software that composes the SIVQUAF–Compact includes 

the same processing steps of the SIVQUAF software and was 

also developed in C/C++ using the OpenCV library. Figures 6 

and 7 illustrates, respectively a schematic diagram of its 

functioning and the SIVQUAF–Compact interface.  

The customized, optimized, and/or improved steps are 

highlighted in red and enumerated from 1 to 5 in the diagram, 

and described in Table 2. It is worth mentioning that other 

customizations related to the change of operating system 

(Windows to Linux) were also necessary. However, they are 

not described in this work. 

 

Fig 6: Diagram of working of the SIVQUAF–Compact software
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Fig 7: Interface for the SIVQUAF–Compact operation

Table 2: Optimizations, customizations, and improvements proposed in this work for embedding the SIVQUAF software 
Processing step SIVQUAF SIVQUAF–Compact Advantages 

1. Acquisition 

* Interface designed for a general 

purpose computer, not allowing 
adjustments in lighting and camera 

parameters. 

* Capture images with resolution of 
1920×1080. 

* Interface designed for a Display 

TFT Touchscreen 7″, allowing 
adjustments in lighting, camera 

parameters and file recording. 

* Capture images with resolution of 
1280×720. 

* Customization of the screen. 

* Improvements in the system 
operation. 

* Optimization of the average time for 

processing an image, through the 
adoption of lower image resolution. 

2. Pixel mapping 

 Performed for each pixel in a serial 

manner. 

 Use of parallelism in the call of 

LUT to map the pixels. 

 Optimization of the time to remove 

the background from the analyzed 

image. 

3. WT-H-CCG 

 Use of WT-H-GCC (serial 

programming) 

 Use of WT-H-GCC (parallel 

programming) 

 Optimization of time when calling 

the procedure of CCG in the 

segmentation algorithm. 

4. Classification 

* Extraction of features from radial 

projections considering all channels 
from Lab and RGB color spaces. 

* Use of MLP-ANN with 4 layers of 

6, 30, 45 and 3 neurons. 

* Extraction of features from circular 

projections considering the following 
channels from Lab and RGB color 

spaces: a, b, R, G, B.  

 Use of MLP-ANN with 3 layers of 
20, 45 and 3 neurons. 

* Improvements in the invariance 

regarding the aging of the grain and 
gain in the classification success rate. 

* Time optimization in calling the 

classification algorithm. 

5. Detection of defects 

 Use of CNN with LeNet 

architecture. 

 CNN to identify the moldy beans 
was not incorporated to the 

SIVQUAF software. 

 Use of CNN with YOLOv3 

architecture.   

 Incorporation of the CNN to 
identify moldy beans in the 

SIVQUAF–Compact software. 

 Improvement of the software 

allowing the execution of experiments 

with the detection of the three defects 
in online mode. 

 

3.1.1 User interface 
The interface designed and customized for the SIVQUAF–

Compact (Figure 6) allows the operator to control the 

movement of the conveyor belt, process a sample, activate 

online (continuous) and offline inspection modes, and 

configure the system. The lighting control allows the 

brightness adjustment of LEDs (Light-emitting diode) inside 

the image acquisition chamber between 0 and 1500 lumens. It 

should be noted that this functionality did not exist on the 

SIVQUAF. 

3.1.2 Pre-processing (mapping) 
As can be seen in subsection 2.2.1.2, SIVQUAF’s pre-

processing step uses a lookup table (LUT). However, as this 

task requires a lot of processing time to map the entire image, 

a special OpenCV method called forEach was employed 

allowing parallel access to pixels optimizing this step of the 

software. 

3.1.3 Segmentation 
Just like on the SIVQUAF, segmentation is done using WT-

H-CCG. However, this step was optimized with the use of 

parallelism to make possible the use of the CCG algorithm. 

The optimized algorithm allows us to employ all available 

hardware resources (processing cores and memory) so that 

operations are processed faster. 
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3.1.4 Classification 
The task of grain classification, as in the SIVQUAF, is 

performed by a Multi-Layer Perceptron artificial neural 

network (MLPANN). However, unlike Belan (2019) which 

opted for the extraction of color features from radial 

projections as illustrated in Figure 3, here the features are 

extracted over circular projections. Another difference in this 

work were the color channels considered from RGB and 

CIELab spaces.  

In short, for the extraction of the color attributes it was 

decided to use 4 circular projections from the center of the 

grain (Figure 8) on which are extracted the average values of 

RGB bands and the average values of the bands a and b from 

the CieLab color space, that is, ( ,  ,  ,  ,  ), composing a 

vector of 20 attributes that serves as input of the MLPANN 

employed to classify and label each grain, which was defined 

with the following architecture: 20 neurons in the input layer, 

a hidden layer with 45 neurons, and an output layer with 3 

neurons to indicate the grain class (C, M, or B). 

 
Fig 8: RNA-MLP employed in the SIVQUAF–Compact 

software for grains classification. 

These improvements in the classification step allowed us to 

overcome a limitation of the SIVQUAF related to imprecision 

in the classification of Carioca grains with darkened skins due 

to the aging time. Nevertheless, the modification in the 

MLPANN architecture allowed a reduction in the processing 

time, essential to increase the viability of the embedded 

software. 

3.1.5 Detection of defects 
The same algorithms proposed by Belan (2019) for detecting 

broken and bored grains were used in the SIVQUAF–

Compact. However, to identify moldy beans we developed a 

new CNN based on the YOLOv3 architecture, which is 

entirely incorporated into the software of the SIVQUAF–

Compact. Just to remember, for this task the SIVQUAF 

employs a LeNet architecture CNN, written in Python, which 

was not incorporated in its software.  

The training of the CNN YOLOv3 was carried out using the 

following parameters: 3,000 training epochs, training set 

containing 4,000 images, being 2,000 of defective and 2,000 

of healthy grains, considering carioca, mulatto, and black 

beans. 

3.2 Hardware (equipment) 
The equipment is the same proposed by Belan (2019). 

However, it can be seen in Figure 9 that SIVQUAF–Compact 

includes an embedded module attached to the equipment, 

without the need for a computer, mouse, and keyboard for its 

control, since there is a touch screen for the operation of the 

developed software. 

 

 

Fig 9: SIVQUAF–Compact (set of hardware and software) 

The embedded module is indicated by the red arrow on the 

image acquisition chamber. Its arrangement in the equipment 

provides a comfortable operation, and without the need for 

extra connections for the working of the set of hardware and 

software.  

The Raspberry Pi 3 was chosen as embedded platform due to 

the fact that there is ample documentation and libraries 

available on it, and also because it is a relatively compact, 

robust and a low cost platform (US$ 35.00), compared to 

many of its competitors. 

As the operating system (OS), Linux Debian version 4.9 was 

chosen due to its compatibility with Raspberry Pi 3. The 

camera used was the OV2710 CMOS Full HD (1080p) model 

with a USB-2.0 connection. It was configured to acquire 

images with a resolution of 1280×720 pixels. To measure 

illumination inside the chamber, the Gy30 light sensor was 

used.  It was positioned inside the acquisition chamber and 

connected to the Raspberry module. 

Regarding the cost, there was a significant reduction when 

compared to the cost of the SIVQUAF, due to the non-need a 

personal computer (with an approximate cost of US$ 1,200), 

which is being supplied by the embedded module with a total 

cost of US$ 125 (Raspberry Pi 3 = US$35 + touchscreen 7'' = 

US$70 + class 10 micro-SD = US$10 + box to embed the 

devices and attach the touchscreen = US$10). Adding to this 

the customization of the interface and the compacting of the 

equipment, it can be said that there was an increase in its 

operational, technical, and economic viability. 

4. RESULTS 

4.1 Experimental setup 
To evaluate the performance of the SIVQUAF–Compact, 
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experiments were carried out in online (or continuous) mode. 

As described in Belan (2019), in this mode, the grains 

contained in a batch are spilled continuously on the conveyor 

belt for the system to capture and process the images (frames). 

As explained in Table 2, SIVQUAF–Compact acquires 

images with resolution of 1280×720. 

Belan (2019) also mention that using a limit speed of the 

conveyor belt to maintain the quality of the images, the time 

between two consecutive acquisitions is 8 seconds. So, we 

considered this time as a limit for the SIVQUAF–Compact to 

conclude all the processing steps to analyze an image. 

As in the work of Belan (2019), we considered beans from 

Group I named Carioca, Black and Mulato, being the first two 

most consumed in Brazil. Batches containing 1000 grains 

were used in the experiments, with 400 Carioca (new and 

aged), 300 Mulatto, and 300 Black. The reason for having 

new and aged beans was to test the improvement made in the 

classification step.  

Samples containing 50 grains of each defect mixed to another 

150 healthy grains were used to evaluate the algorithms for 

detection of broken and bored grains. In the case of the moldy 

defect, samples containing only 20 defective grains mixed 

with the other 150 grains were used, due to the difficulty of 

obtaining and maintaining grains with this defect. 

For each experiment, considering segmentation, classification 

and detection of defects, the success rates and average 

processing times were computed and compared with those 

obtained by SIVQUAF.  

4.2 Experiments conducted with the 

SIVQUAF–Compact 

4.2.1 Segmentation and classification 
The results of the experiments regarding segmentation and 

classification are shown in tables 3 and 4. As was done in 

Belan (2019), repetitions of each experiment were carried out 

to obtain average success rates. 

Table 3 - Results obtained in the segmentation of grains 

 
Batch 

1 

Batch 

2 

Batch 

3 

Batch 

4 

Batch 

5 
Avg  

Standard 

deviation 

 

Number of grains 

correctly segmented 

in each batch 

975 969 967 975 989 975 8.6 

Success rates (%) 97.50 96.90 96.70 97.50 98.90 97.50 - 

Table 4 – Results obtained in the classification of grains 

Class  

Number of grains correctly classified in 

each batch 
Avg 

success 

rate (%)  Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 

Carioca 398 393 395 396 396 98.90 

Mulatto 279 276 280 283 281 93.27 

Black 297 292 295 296 296 98.40 

Success rates 

(%) 
97.40 96.10 97.00 97.30 97.06 97.06 

As can be seen in Tables 3 and 4, in experiments for both 

segmentation and classification tasks, success rates above 

96% were obtained. Such rates, despite being slightly lower 

than those obtained by the SIVQUAF (98.47% and 98.10%), 

demonstrate the technical viability of the SIVQUAF–

Compact.  

The fact that the performance of the SIVQUAF-Compact was 

lower than the performance of the SIVQUAF in these two 

steps of processing, can be justified mainly by the 

segmentation failures in the cases of grains that were divided 

at the edges of images (see Figure 10) and, consequently, 

were not processed by the classification step. 

 

Fig 10: Grains at the edges of two consecutive acquired images that were not processed 

4.2.2 Detection of defects 
In the experiments with broken grains, the success rates of the 

SIVQUAF–Compact (57.33%) was lower than those obtained 

by the SIVQUAF (82.00%). This can be explained, in part, by 

the fact that during the experiments conducted some grains 

had the broken face down at the time of image acquisition, 

leading the algorithm to identify them as healthy (entire) 

grains. Another problem is when two broken grains are glued 

together, making the algorithm recognize them as a single 

grain. The solution to these problems requires further 

investigation, which is not a goal of this work.  

Regarding bored grains, the SIVQUAF–Compact achieved 

85.33% of success rate, that is, slightly less than that obtained 

by the SIVQUAF (88.00%). In these experiments, it can be 

observed that the errors are mainly related to the quality of the 

image (lack of detail), a fact that was already indicated by 

Belan (2019) and was proven in this work. 

The results of experiments involving the detection of broken, 

bored, and moldy grains are shown in Table 5. 

Table 5: Results obtained in the defects detection 

Defect Sample 1 Sample 2 Sample 3 
Avg success 

rate (%) 

Broken 

Correct 

detections 
24 26 36  

Success 

rate (%) 
48.00 52.00 72.00 57.33 

Bored 
Correct 
detections 

42 43 43  
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Success 

rate (%) 
84.00 86.00 86.00 85.33 

Moldy 

Correct 

detections 
16 18 15  

Success 

rate (%) 
80.00 90.00 75.00 81.67 

Finally, the detection of the moldy defect in the average 

success rate obtained by the SIVQUAF–Compact (81.67%) 

was also lower than the rate obtained by the SIVQUAF 

(85.00%).  

It is important to highlight that the experiments conducted by 

Belan (2019) did not consider images containing healthy 

grains mixed with defective grains. In addition, his 

experiments with moldy grains were not carried out in 

continuous mode. This explains, in part, the high success rates 

obtained by SIVQUAF in the detection of defects. 

4.2.3 Processing time 

The average times spent by SIVQUAF–Compact to process 

an image from each batch of 1000 grains considered in our 

experiments are described in Table 6. In such times, all steps 

of software processing were considered, that is, pre-

processing, segmentation, classification and defects detection. 

Table 6: Average processing times (in s) 

 
Batch 

1 
Batch 

2 
Batch 

3 
Batch 

4 
Batch 

5 

Overall 

avg 

time 

Number of 

images 

processed in 

each batch 

7 6 6 6 7 - 

Average 

processing time 

per image 

6,3 7,0 8,2 5,6 4,2 6,3 

The average time spent by SIVQUAF–Compact to process an 

image was 6.3 s, that is, below the time of 8 s defined by 

Belan (2019) as the maximum time for processing an image. 

A comparison between the processing times of the 

SIVQUAF-Compact and the SIVQUAF is shown in Table 7, 

in which the time spent by each processing step is described. 

Table 7 – Comparison of processing times (in s): SIVQUAF–

Compact × SIVQUAF 

 Segmentation Classification 
Detection of defects Total 

time 

spent Broken Bored Moldy 

SIVQUAF–

Compact 
2.38 1.25 0.67 0.70 1.32 6.3 

SIVQUAF 0.80 0.10 0.10 0.10 1.00 2.1 

It should be emphasized that before performing the 

customizations, improvements, and optimizations of the 

algorithms, the average time to process an image on the 

Raspberry Pi 3 was more than 15 s, which would make the 

embedded version of the SIVQUAF unfeasible. 

5. CONCLUSIONS 
The experiments conducted with the SIVQUAF–Compact 

showed that it is capable of processing images of 1280×720 

pixels with average success rates of 97.50% in segmentation, 

97.06% in classification and 74.78% in defects detection. As 

expected, due to adjustments made in the algorithms because 

of the hardware of Raspberry Pi 3 limitations, the success 

rates obtained by the SIVQUAF–Compact were lower than 

those obtained by the SIVQUAF. However, the results 

obtained in segmentation and classification are still superior to 

the results of many works found in the literature.   

The customizations, optimizations, and improvements made 

have led to a good reduction in the time spent for processing 

an image on Raspberry Pi 3, reaching 6.3 s on average. Based 

on the developments and experiments described in this work, 

one can see that there was a significant gain in both the cost 

and operation/compacting of the equipment, increasing its 

operational, technical, and economic viability. 

The SIVQUAF–Compact represents a contribution to 

technological innovation, given the new functionalities 

implemented. As scientific contributions, we can cite 

improvements made in the SIVQUAF's algorithms, which 

allowed to overcome some of its limitations and 

disadvantages. Besides, this work can be used as a “roadmap” 

for researchers who intend to embed CVS on compact 

hardware such as Raspberry Pi3.  

In future works we intended to carry out new experiments 

aiming to overcome the segmentation problems mentioned in 

section 4.2.1, as well as considering the optimization of the 

parameters used in the algorithms for detection of defects 

aiming to improve their performances. 
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