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ABSTRACT  
Convective heat and mass transfer from a rotating sphere have 

been study here. The study cases were divided into the 

rotating sphere in an axial flow and in still fluid. The heat 

transfer is a major part in this study because the mass transfer 

that we got was from analogy. The heat transfer from rotating 

sphere in an axial flow was solved by taking the advantage of 

Merk’s method, with uniform wall temperature (UWT) and 

uniform heat flux (UHF) heating conditions, while in still 

fluid we obtained a new equation for heat transfer for constant 

wall temperature heating condition. The result was that the 

heat transfer from the (UHF) case is greater than (UWT) case, 

while booth cases are increased with the rotation parameter 

(B) and Prandtl number. Now, for the still fluid case, the heat 

transfer increases with rotational Reynolds number and with 

Prandtl number. The mass transfer case had been obtained by 

the analogy, and because of that we got almost the same 

equations but with different coefficients and with the same 

cases that we dealt with heat transfer. A central finite 

deference method was used to solve fi, gi and θi's parameters 

for the case of heat and mass transfer from a rotating sphere. 

Keywords 
Heat Transfer, Mass Transfer, Rotating Sphere in an Axial 

Flow, Rotating sphere in still Flow.  

1. INTRODUCTION 
The heat transfer from a rotating body (sphere) in flow is 

important in the problems involving projectile motions, 

reentry missile behavior, fiber coating applications and rotary 

machine design. While in the mass transfer from rotating 

bodies of revolution in a stream has applications in many 

industrial processes, in chemical or electrochemical 

engineering, important in determining the transport process 

between particles and in particle – fluid mixed flow, also in 

purely hydrodynamic interests. The heat and mass transfer 

from a rotating sphere in still fluid have the interest in fluid 

mechanics, metrology, astrophysics and aeronautical 

engineering. Also it is important in several different 

applications from combustion of fuel droplets to formulation 

of hailstones. Siekmann [1] utilized his results in the problem 

of determining the thermal boundary layer of rotating sphere 

in an axial stream; by taking the velocity distribution results 

of Hoskin [2] who investigated the velocity distribution in 

laminar boundary layer of rotating sphere in an 

incompressible fluid having uniform flow. Siekmann, in his 

method expressed the temperature distribution as a power 

series expansion and presented his results for infinite 

Reynolds number with Prandtl number (0.7) and (1.0). Chao 

and Greif [3] have described the heat and mass transfer in 

laminar forced convection over a rotating body of revolution. 

The analysis introduced a unique coordinate transformation, 

which makes it possible to express the solution of the energy 

boundary layer equation in terms of universal functions. They 

had also shown that the same analysis could be used for a 

rotating body of revolution with and without axial forced 

flow. 

Lee et-al [4] has described a procedure for the calculation of 

momentum and heat transfer rates through laminar boundary 

layers over rotating axisymmetric bodies in forced flow. They 

applied appropriate coordinates transformation and Merk’s [5] 

type of series. The governing momentum equations have been 

expressed as a set of coupled ordinary differential equations 

that depends on wedge parameter and rotation parameter. 

Konno et-al [6] has studied the heat transfer from a rotating 

sphere in an air flow and in still air. The heat transfer 

coefficients were varied by changing the dimensionless 

rotation parameter (aw/u) value above 3.0. At rotation 

parameter below 0.7 the influence of rotation was negligible. 

The influence of the buoyancy forces on a rotating sphere 

which is situated in an axial flow has been studied by Le Palec 

and Daguenet [7] by means of Merk’s series technique. This 

method being adapted to pure axial forced convection 

problems, only small and moderate values of the buoyancy 

and rotation parameters have been chosen and Prandtl number 

taken as (1.10) and (100). Their equations were solved for the 

case of sphere with fourth-order Runge-Kutta method, and the 

results have shown that the buoyancy effects are adversely by 

the rotation parameter, which is due to the increasing of 

centrifugal forces, as the rotation parameter is higher and it 

became less important as (Pr) increases, this is due to the fact 

that the thermal boundary layer thickness strongly decreases 

as (Pr) is higher. 

The density difference arising as a result of temperature 

difference gives rise to buoyancy by Palekar and Rajasekaran 

[8] who made a theoretical analysis for the flow and heat 

transfer of a rotating sphere and the effect of the buoyancy 

force on laminar boundary layer over the rotating sphere in 

forced flow for two kinds of heating: uniform surface heat 

flux and uniform wall temperature. Their results were carried 

out for Prandtl number (0.7), (1.0) and for various values of 

buoyancy and rotating parameters. It was found that both the 

friction factor (Cf) and the local Nusselt number (Nu) increase 

with the increasing of the buoyancy force. The local free 

stream velocity increases with buoyancy, which in turn, 

affects friction coefficient and Nusselt number. For an 

equivalent buoyancy effect, heating by uniform surface heat 

flux yields larger local Nusselt number than heating by 

uniform wall temperature. The power series of several 

dimensionless variables are used by Le Palec and Daguenet 

[9] for the laminar mixed convection about an isothermal 
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rotating sphere in a stream in order to study the three-

dimensional effect of the flow when the angle β (the angle 

between the direction of forced flow and the axis of rotation) 

is not equal to zero. The mathematical model leads to 

determination of the local and average heat transfer rates and 

the components of the local friction factor. Results are first 

given for gases with Prandtl number of unity. Finally, 

experimental results which were obtained by electrochemical 

method were compared with the theoretical ones for a 

Schmidt number of (2730). 

The theoretical analysis of laminar mixed convection around a 

rotating sphere in a stream was presented by    Le Palec   [10]. 

His results showed the effect of the viscous dissipation in the 

boundary layer. A new correlation for the average Nusselt 

(Sherwood) number presented for the Prandtl (Schmidt) 

number ranging from 0.7 to 100 (25 to 2730) and negligible 

viscous dissipative effects. This correlation is validated with 

numerical and experimental results. It can be used for the 

entire mixed convection regime, under buoyancy assisting 

flow and uniform wall temperature conditions. Nusselt 

number was presented by Al-Jamal et-al [11] as a function of 

Reynolds number and Prandtl number for a Laminar flow 

about a non -rotating sphere. The sphere rotation was 

expressed in terms of Taylor number (Ta) and  Prandtl 

number (Pr) is ranging between (0.2) to (0.7). The governing 

equations were solved numerically using finite difference 

method for constant wall temperature and constant heat flux 

conditions. Hossain and Takhar [12] were investigated the 

interaction of the steady mixed convection boundary layer 

flow past a rotating impermeable body  placed in a uniform 

stream moving opposite to the gravitational force and parallel 

to the axes of the body of revolution with uniform surface 

temperature and uniform thermal radiation. Numerical 

simulations of the boundary layer equations are performed 

using the local non-similarity method as well as an implicit 

finite–difference method. 

The flow and the convection heat transfer characteristics of 

sphere spinning about its diameter in still flow (quiescent 

fluid) are closely related. Stockes [13] gave a quite accurate 

description of the flow mechanism: “The sphere acts like a 

centrifugal fan, the motion of a flow outwards the poles, 

superimposed on a motion of rotation”. The problem of the 

boundary layer on a sphere rotating with uniform angular 

velocity in an unbounded fluid at rest had been considered   

theoretically by Howarth [14] who set up the appropriate 

boundary layer equations and obtained an approximate 

solution by means of the Karaman momentum integral 

method, for the case of an incompressible fluid. He was able 

to deduce that fluid was drawn in towards the sphere along the 

axis of rotation and moved down over the surface of the 

sphere towards the equator where the boundary layers 

originating at opposite poles collided. The angular momentum 

in steady flow would be continuously transformed from the 

sphere to infinity via the redial jet. This argument was 

presented by Nigam [15] who said that the flow must meet at 

the equator there would be no actual collision because the 

velocity of flow of the fluid towards the equator would tend to 

zero as the equator was approached. Kreith et-al[16] 

investigated experimentally and theoretically the flow 

engendered by convection heat transfer from a rotating sphere 

over ranges of Reynolds numbers (Rer) from (0) to (9 × 105), 

Grashof number (Gr) from (7 × 104) to (3 × 109) and Prandtl 

numbers (Pr) from (0.024) to (217). For  (Pr ) between 4 to 

214 and (Rer) below (5 × 104) the average Nusselt number  

(Nuav) for cooling as well as heating was found to be in 

reasonably good agreement with the results of a theoretical 

analysis based on a solution of the boundary layer equations 

in which the boundary layer thickness around the sphere was 

assumed to be uniform. 

Banks [17] has used his earlier result of the laminar velocity 

distribution in the boundary layer equations for the flow 

arising from a rotating sphere in a fluid at rest by using these 

results, the thermal boundary layer characteristics for 

uniformly heated sphere. Dorfman and Mironova [18] have 

solved analytically the thermal boundary layer at rotating 

axisymmetric surface problem by Dorodnisyn’s 

transformation for the case of a compressible gas, the velocity 

of which is a linear function of temperature. The profile of 

temperature and components of the velocity vector were 

presented in a series form expanded over parameters 

describing the sphere of the meridional surface when their 

results are integrated over the entire sphere surface. 

The problems of heat transfer at high Peclet numbers (Pe) 

from a sphere freely rotating in a simple shear field was dealt 

by Acrivos [19] who considered theoretically the case of 

small shear Reynolds numbers. He showed that there are 

many respects similar to that of heat transfer past freely 

rotating cylinder, which was solved by Frankel and Acrivos 

[20]. An approximate method of solution was developed by 

taking the advantage of the close analogy between the two 

cases and gave an asymptotic Nusselt number for Peclet 

number Pe → ∞ is 9 (i.e. 4.5 times its value for pure 

conduction). Eastop [21] added some experimental result for 

the case when a sphere rotating in a plane at right angles to 

the following air. Results were also given for a sphere rotating 

in stationary air. A series of tests was undertaken for a sphere 

in still air, for Grashof number of (6.5 × 105) and an infinite 

Reynolds numbers. 

For the heat transfer problem in a linear flow at Reynolds 

number Re<<1, Poe and Acrivos [22] developed an 

asymptotic solution to the convection problem for very large 

Peclet number (Pe), for an infinity large heated cylinder and 

small heated sphere. In the case of uniform flow, where the 

streamlines emanate from upstream infinity, the transport of 

heat takes place, both by conduction and convention. At high 

Peclet numbers, heat transfer rates from particle to a 

surrounding fluid depend primarily on the structure of the 

flow near the heated particle, i.e. they depend on whether the 

stream lines near the particle are open or closed. 

Now, for the mass transfer case, the average and local mass 

transfer coefficient for a rotating sphere in an axial stream 

were studied by Furuta et-al[23] and measured by an 

electrochemical method over a range of rotational Reynolds 

number (Rer) from (103) to (5 × 104) and four kinds of stream 

Reynolds number (Re∞). Fifteen isolated electrodes were used 

to obtain the local mass transfer rate. The convective diffusion 

equation for laminar boundary layer on the sphere was 

isolated by the light hill transformation on the basis of 

numerically calculated shear stress distribution by the 

calculated average Sherwood number  ( Shav ). 

Furuta et-al[24] also calculated the local and average mass 

transfer coefficient from a rotating sphere and measured 

electrochemical method when the angle (β) between the axis 

of rotation and the direction of the uniform stream were both 

(45o) and (90o). For measurements of the local mass transfer 

rates, circular isolated electrodes of (2 mm) diameter were 

used, and the time averaged values and the variations of the 

local mass transfer rates were obtained by processing the 

signal from each isolated electrode during some revolutions. 

Moreover, on the basis of measurements of average mass 
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transfer coefficients, new empirical equations were obtained 

with which they have been correlated well for β = 0o, 45o and 

90o. 

2. ANALYSIS OF HEAT TRANSFER 

FROM A ROTATING SPHERE IN AN 

AXIAL FLOW 
Consider steady, laminar, non-dissipative, constant property 

and incompressible boundary layer flow around a rotating 

sphere place in a uniform axial stream with its axis of rotation 

parallel to the free stream velocity. The rotating sphere has 

two heating cases, either a uniform wall temperature, or a 

uniform surface heat flux. 

Let x, y and z be a non-rotating orthogonal curvilinear 

coordinate system with corresponding velocity components u, 

v and w. If (r) is the radial distance from a surface element to 

the axis of symmetry, as shown in Fig. (1), the governing 

boundary layer equations are given by: 

The continuity equation is 
 

  
      

 

  
                                                                    -- (1) 

The x, y momentum equations are: 
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And the energy equation is: 

 
  

  
  

  

  
  

   

                                                                      -- (4) 

For the x, y momentum equations, the effect of the viscose 

dissipation is neglected, to the two terms refers to there are 

omitted.  Now, the solution of heat transfer coefficient for the 

above equations will be discussed according to the sphere 

heating conditions 

2.1 Uniform Wall Temperature (UWT) 
This is the case of a rotating sphere in an axial flow with 

temperature heating condition. Here the boundary conditions 

are: 

 

                          

                                                  -- (5) 

  

Where: 

Ue (x): Is the velocity of mainstream at the edge of the 

boundary layer. 

Ω  : The angular velocity of the rotating sphere, which is 

assumed to be constant  

Tw  and Ta: The wall and ambient temperatures respectively 

and are constant. 

To solve the set of partial differential equations (1), (2), (3) 

and (4), we introduce a stream function ψ (x, y) defined by 
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Such that , the continuity equation (Eq.(1)) is identically 

satisfied. The (x,y) coordinate system is transformed into the 

dimensionless (ξ,η ) system, using the advantage of   Lee et-al 

[4], will be: 
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The stream function is defined as: 

            
  

   
 
   

                                              -- (9) 

Using equations (7), (8) and (9), equation (6) becomes 
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u(x,y) , v(x,y) , w(x,y) and T(x,y)are transformed into 

dimensionless functions f  , g  and θ  as follows: 

And 

                                                                 -- (12) 

Now, the wedge parameter (Λ) is defined by: 

  
  

  
 
   

  
                                                                       -- (13) 

The temperature distribution for this case is: 

        
     

      
                                                            -- (14) 

Using the above transformations, the momentum and energy 

equations (2), (3) and (4) with the boundary conditions Eq. (5)  

may be written as: 
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 With the boundary conditions: 

                                        

                                                            -- (18) 

Noting that the primes denote differentiation with respect to   

( η) and  

 
          

        
     

 

  

 
        

  
   

 

Is called the Jacobian. For the sphere, these are some 

parameters we may need: 
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The rotation parameter     
  

 
  

  

  
 
 
 

Following Chao and Fagbenle [25], we write expressions for 

f, g and θ in the form of Merk's series as: 
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Substituting equations (20) – (22) into equations (15) – (17) 

and collection terms free of (dΛ/dξ) and then terms common 

to (2ξ (dΛ/dξ )), (4ξ2 (d2Λ/dξ2 ) ) etc., one obtains a sequence 

of coupled ordinary differential equations. For the zero order 

term: 
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With 

          
                   

        

  
                         

                                 -- (26) 

For the first and higher order terms: 
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With 
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Defining the local frictional coefficient in the stream wise 

direction by: 
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After transformation, we get: 
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Now, the local Nusselt number for (UWT) case after 

transformation is: 
   

   

 
  
 

  

 
 

  

  
     

  
      

         
  

  
  
       

   
   

   
  
                                                              -- (37) 

2.2 Uniform surface heat flux (UHF) 
This is the case of a rotating sphere with a uniform surface 

heat flux heating condition. In this case, the boundary 

conditions are: 

                     
  

  
 
   

         

                                                 -- (38)       

The transformations are the same as in section (2.1) (i.e UWT 

case) except in equation (14) which will be now replaced by: 

                      

 
                    -- (39) 

Now, the local Nusselt number for (UHF) case after 

transformations: 

                            
  

  
           

   
   

   
          

  

                                                       -- (40) 

The calculation of the surface characteristics begins with an 

evaluation of the stream wise coordinate (ξ) and the wedge 

parameter (Λ) and its derivatives, their values are: 

                                                              -- (41) 
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3. NUMERICAL ANALYSIS 
The differential equation for fi, gi and θi’s (i = 0, 1 and 2) 

were solved using central finite difference method. Data for 

nine values of (Λ) ranging from (0.5) to (0.1), and three 

values of Pr (0.7, 1.0 and 10) were considered. High accuracy 

is required of the basic function f0 since the higher order 

functions in the series are sensitive to its variation. The 

selection of the integration step size depends on the precision 

of the numerical results desired, the number of terms used, 

and the computational time allowed. After several trials, we 

found that the integration step size is:  h = Δη = 0.01. The 

iteration was to continue until the following conditions are 

met: 
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Where (ηꝏ) denotes the largest value of (η). The largest value 

of (η) was taken as (8), because the computed second wall 

derivative f0’’ (Λ, 0) exhibited no changes up to the fifth 

significant digits when the computation was repeated with ηꝏ 

>8. 

 

4. ANALYSIS AND SOLUTION OF 

HEAT TRANSFER FROM A ROTATING 

SPHERE IN STILL FLUID 
An analytical solution for this case is derived by taking an 

advantage from the work of Zaturska  and Banks [26], who 

gave the following velocity profile for the rotating sphere in a 

fluid at rest, or quiescent flow 
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Where:   a:  Radius of the sphere. 

              Ω: The angular velocity of the sphere. 

The above velocity field is valid for Re∞ ˂ 10 

The energy equation in spherical coordinates is: 
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Due to the above conditions, the first two terms vanishes, then 

assuming that:  r ≈ a,   then 
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                                                          -- (47) 

Substitution of Eq.(45) into Eq. (47) gives: 

  

  
 

 

 

   

   
                                                                      -- (48) 

The solution of the above equation for the constant wall 

temperature and a non-zero initial temperature is shown by 

Carslaw and Jeager [27] 

            
 

  
  

 
 
                                              -- (49) 

Where: 

C: Constant to be determined 

The boundary conditions for this case are: 

                 and                                      -- (50) 

            
 

  
  

 
 
                                                          -- (51) 

This equation indicates the temperature profile for the case of 

the rotating sphere in a fluid at rest, and to get the Nusselt 

number we have to transform the temperature profile to 

Nusselt number. 
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This equation was taken from Meyers [28], without any other 

details. To see details one can see the reference. 

And 

 
  

  
 
   

   
 

   
 
   

                                                  -- (53) 

Now, equation (53) will be presented in Nu, Rer and Pr: 

   
 

   
 
        

 
 
   

                                                       -- (54) 

The above equation indicated the local Nusselt number   (i.e. 

Nu (φ)). Now, to find the average Nusselt number (Nuav) 

     
 

           
 

 
                                       -- 

(55) 

The above equation is the average Nusselt number for the 

rotating sphere in a fluid at rest. 

                             
                              -- (56) 

 

5. ANALYSIS of MASS TRANSFER 
The corresponding problem in mass transfer can be stated in 

an analogous method to the previously discussed heat transfer 

from a rotating sphere for the two cases, in an axial flow and 

in still flow, particularly when viscous heating is ignored in 

the latter. We need only to replace temperature by 

concentration, the thermal boundary layer by concentration 

boundary layer, the Nusselt number by Sherwood number and 

the Prandtl number by Schmidt number 

5.1 Rotating sphere in an axial flow 
The mass transfer rate from a rotating sphere in an axial flow 

can be gained by the analogous method which led to the same 

of heat transfer result, then the local mass transfer for Eq. (37) 

is: 
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And Eq. (39) will be: 

      
    

  

 
 

  

  
     

  
              

  

  
        

   
   

   
            

  

                                              -- (58) 

5.2 Rotating sphere in a still fluid 
The mass transfer rate can be given by taking the analogy 

between heat and mass transfer, and the expression will 

become the following: 

               
                                                -- (59) 

 

6. RESULTS AND DISCUSSIONS 

6.1 Introduction 
For the Rotating sphere in an axial flow results, Lee et-al [4] 

and Palekar [8] works have approximately the same equations 

obtained in the present work, Eq. (37) 

for the (UWT) case, Eq.(40) for the (UHF) case and the 

present work friction factor (Cf) Eq.(36), but they have got 

different results for the f, g and θ’s values. While for the 

Rotating sphere in still fluid situation the results of Kreith et-

al [16] work, Banks [17] work, Dorfman and Mironova [18] 

work and Eastop [21] work were used as a previous work to 

compare with. .Each one of these equations was compared 

with the present work in Eq. (46), according to present work 

conditions. 

For the mass transfer case, a very limited work was found 

dealing with mass transfer from a rotating sphere. Therefore 

our comparison in the present investigation will be with the 

experimental and analytical investigations   carried out by 

Furuta et-al [23]. Furuta et-al [23] presents experimental and 

analytical results for a rotating sphere in an axial fluid flow 

while present an analytical result for the case of a rotating 

sphere in a sill fluid. The comparison with Furuta et-al [24] 

was for the uniform wall temperature rotating sphere heating 

condition only. 

6.2 Heat transfer for a rotating sphere 
6.2.1 in an axial flow 
Equations were derived to present the predicated heat transfer 

coefficient and the predicted friction factor for two cases of 

heating conditions: uniform wall temperature (UWT) and 

uniform heat flux (UHF). Expressions were obtained using 

Merk’s numerical method and these expressions give Nusselt 

number in terms of Reynolds number, as in Eq. (37) for UWT 

heating condition and in Eq.(40) for UHF heating condition 

while local friction coefficient expression in term of Reynolds 

number for the average Nusselt number, presented in  Eq.(36) 

for the both heating cases. 

The variation of the (Nux/Re∞
1/2) with the wedge parameter 

(Λ), for different (Pr) number and for B parameter equal to 1 

is depicted in Fig. (2)  to Fig.(4). Fig. (2) presents the 

variation for UWT heating condition and it depicted an 

improvement in local heat coefficients as the (Nux/ Re∞
1/2) 

value increases with the increasing of (Λ),  and Pr. The local 

heat transfer coefficient suffers a slight reduction for the UHF 

heating condition as that shown in Fig. (3) as it depicts the 

variation of (Nux/Re∞
1/2)  value with same range of wedge (Λ) 

and same range of Pr number  used in Fig.(2). The 

comparison between two different heating conditions on the 

local heat transfer process is shown in Fig. (4) as it presents 

the variation of  (Nux/Re∞
1/2) values, obtained by dividing the 

results of  UWT heating condition to the results of  (UHF) 

heating condition, with the wedge parameter (Λ). The figure 

exhibits a trend similar to that obtained in Fig. (2). The B 
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parameter shows a very insignificant effect on the heat 

transfer results as its values changed from 1 to 10. 

Fig.(5) shows the variation of the friction coefficient (Cf) 

values with the wedge parameter (Λ), for different β 

parameter (β = 1, 4 and 10), obtained from Eq. (36). Cf results 

exhibit independency on Pr number and the results reveal a 

clear escalation in Cf value with B parameter and the variation 

almost has a Maxwell distribution with (Λ) parameter. 

The comparison of present work with the previous work, 

presented as the variation of   (Nux/Re∞
1/2) with wedge 

parameter for same Pr number and β parameter, is plotted in 

the Fig.(6) and Fig.(7). The comparison for the UWT heating 

situation with Lee et-al [4] and Palekar [8]  shown in Fig.(6) 

exhibits approximately  good agreement  between present 

work and Lee et al  work for whole (Λ) range with while 

present work exhibits approximately a good agreement with 

Palekar work  only in the  wedge parameter (Λ) range 

between 0.25 to 0.5. 

The comparison for the UHF heating situation with Palekar 

[8] shown in Fig. (7) reveals that the present work has a 

similar trend obtained by Palekar but the rate of local heat 

transfer change in the present investigation with wedge 

parameter (Λ) is higher than the rate obtained by Palekar[8]. 

For β parameter = 1, Fig. (8) shows the comparison of friction 

factor (Cf) (obtained from equ.36) with the wedge parameter 

(Λ), for the present work with Lee et-al [4] and Palekar [8] 

work. This figure reveals a good agreement between present 

works with previous works. 

6.2.2 In a still fluid 
In this section an analytical solution results presented for still 

(quiescent) flow over a rotating sphere with constant wall 

temperature heating condition. Fig. (9) shows the variation of 

(Nuav) with a high range of Rer for different (Pr) number. This 

variation is presented in equation (55). The result reveals 

clearly that the heat transfer coefficient improved as Reynolds 

and Pr number increasing as the  (Nuav) increases with the 

increasing of (Rer) and (Pr) numbers. 

Fig. (10) shows a comparison between the present 

investigation (according to present Eq. (55)) and previous 

works presented by kreith et-al[16], Banks [17], Dorfman, and 

Mironova [17] and Estop [20] depicted as the variation of the 

(Nuav) with high range of Rer, for Pr is equal to 0.7 (i.e. air). 

The present result shows a good agreement with the previous 

works.  As (Nuav) value increases with the increasing of Rer 

numbers. The present result fell in the middle of the previous 

available similar work as present result  (Eq.(55)) higher than 

Banks[17] result and Dorfman, and Mironova [18] result and 

lower than kieth et-al.[19] result and Estop [21]  result. The 

Present result (Equ. (55)) was compared with Kreith et. al.[16] 

result in the form of variation of (Nuav) with wide range of 

Rer,. , and for the Pr number is equal to (10 and 100) is shown 

in Fig. (11). The comparison exhibits a good agreement for 

the low Pr number for a whole range of  Rer up to 105, while a 

poor agreement for high Pr number for   Rer higher than  104 . 

6.3 Mass transfer calculations from a rotating 

sphere 
The heat transfer analogy was applied here to obtain the mass 

transfer equations from the heat transfer equations for the 

same cases and conditions. Therefore we will just replace the 

parameters of heat to mass and these are: Rer and Re∞ will be 

the same, while Prandtl number (Pr) will be Schmidt number 

(Sc) and Nusselt number (Nu) will be Sherwood number (Sh). 

This note made to get the attention for the equations. 

6.3.1 In an axial flow 
In Fig. (12) the variation of the (Shav -1) with Reynolds 

number for Schmidt number is (0.7), and for different (β) 

parameter is (1, 4 and 10) .is depicted. The figure exhibits a 

sharp increase in mass transfer rate at low Reynolds number 

then the rate of increment gradually decreases at high 

Reynolds number. Also mass transfer shows a slightly 

increasing with increase of B parameter. The comparison 

between present result and Furuta et-al [23] experimental and 

analytical results is presented as the variation of      (shav -1) 

with Reynolds number is presented in Fig.(13) and Fig. (14). 

For Schmidt number equal to (0.7) and β parameter equal to 1. 

Fig. (13) exhibits a good agreement between present 

analytical result and     Furuta et-al[23]   analytical result and 

both far from Furuta et-al[23] experimental result.  Fig. (14) 

shows the comparison for Schmidt number  equal to 10 and β 

parameter equal to 10 and it exhibits a complete agreement 

between present result with experimental and analytical result 

presented by Furuta et-al [23]. 

6.3.2 In Still Fluid 
The analogy between the heat and the mass transfer is applied 

to obtain the mass transfer coefficients for rotating sphere in a 

still fluid which was presented in Eq. (59). Fig. (15) shows the 

variation of (Shav/Sc1/2) with Rer, for wide range of Rer 

numbers, and reveals mass transfer increasing with the 

increasing of Rer   

7. CONCLUSIONS 
In general the following conclusions are drawn from the 

present study: 

A new equation was obtained analytically for the heat transfer 

from a rotating sphere in still fluid and the derived theoretical 

results were compared with the available experimental and 

theoretical results. The ratio (Nux/ Re∞
1/2) increased slightly 

with the increasing of the wedge parameter (Λ), and rapidly 

with the increasing of Prandtl number (Pr). The ratio of the 

local Nusselt number to Reynolds number (Nux/ Re∞
1/2) for 

(UWT/UHF) in an axial flow increasing as the wedge 

parameter (Λ) and as Prandtl number (Pr) increased, while 

was slightly affected by the rotation parameter (β). The 

friction factor (Cf) is increasing with the increase of the 

rotation parameter (β), for the  rotating sphere in an axial 

flow. The average Nusselt number increases rapidly with the 

increasing of Prandtl number and slightly increases with the 

rotation Reynolds number Rer for the heat transfer from a 

rotating sphere in sill fluid. The heat transfer of the rotating 

sphere in an axial flow for (UHF) heating condition is greater 

than the (UWT) heating condition for the same (β) parameter 

and (Pr). The ratio of (Nux/Re∞
1/2) is increased with the 

increasing of wedge parameter (Λ).and Prandtl number (Pr). 

The ratio of (Shx/Re∞
1/2) is increased slightly with the 

increasing of wedge parameter (Λ) and rapidly with the 

increasing of Schmidt number for the axial flow. The average 

Sherwood number (Shav) for the still fluid is increased with 

the increasing of Schmidt number (Sc) and rotational 

Reynolds number (Rer). 
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Fig.(1) The geometry of the case 
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Fig.(2) Variation of (Nux/Reꝏ
1/2) with wedge parameter (Λ), for  

(UWT) case, different Prandtl number and (B)parameter equal to 1. 
 

 

 

                                                 
 Fig.(3)  Variation of (Nux/Reꝏ

1/2) with wedge parameter (Λ), for   

(UHT) case, different Prandtl number and (B) parameter equal to 1 
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Fig.(4) Variation of (Nux/Reꝏ

1/2) with wedge parameter (Λ),  for 

the cases ratio (UWT ) to (UHT) , for different Prandtl number 

and (B) parameter equal to 1 

 

 

 

 

 

 

 

 

    

 

 

                                            
Fig. (5) Variation of the friction factor Cf with wedge    parameter (Λ), 

for different (B) parameter values.   
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Fig.(6) Comparison of the present result  with Lee et. al. and Palekar 

results, for Pr = 1 , B = 1,and  (UWT) case. 

 

 
 

 

                                                 
Fig. (7) Comparison of the present result with Palekar result, for 

(Pr) = 1.0, B = 1, and (UHF) case. 
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Fig. (8) Comparison of the present result with Lee et-al. and Palekar 

results, for the friction factor   with B = 1 
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 Fig. (9) Variation of Nusselt number with Rotational 

Reynolds number, for different Pr values 
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Fig. (10) Comparison of the present result with the results of Banks, 

Dorfman, Eastop and Kreith et. al. for (Pr) = 0.7  
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Fig. (11) Comparison of the present result with Kreith et-al.  

result, for (Pr) = 10 and 100.  
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 Fig. (12) Variation of (Shav –1) with Reynold number, for    

different (B) parameter and for  Sc = 0.7 
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Fig. (13) Comparison of the mass transfer present result with Furuta’s 

experimental and theoretical results, for Sc = 0.7 and for (B=1) 
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                                          Re                         x105                                    
Fig. (14) Comparison of the present result with Furuta [22] 

experimental and theoretical results, for Sc = 10 and B = 10. 

                                               

Rer                  x105                                                                                          

Fig.(15) Variation of (Shx/Sc1/2 ) with a wide range of Reynolds No. 

 

Nomenclature 
The symbols used have the following meanings, unless 

otherwise stated in the text. 

a Radius of sphere                                    (m) 

k Thermal conductivity                          (W/m. oC) 

Q Total heat transfer rate from sphere   (W) 

q               Heat flux                                                (W/m2) 

r Radius of body at x                          (m) 

S Surface area of sphere                    (m) 

T Temperature                                     (oC) 

U Free stream velocity                 (m/sec) 

u Velocity component in the x direction (m/sec) 

Ue(x) Velocity of the main stream at the edge of the  

                boundary layer                                 (m/sec) 

v Velocity component in the y direction (m/sec) 

w Velocity component in the rotating  

                direction                                                 (m/sec) 

x Coordinate measured along surface 

                from front   stagnation point                     (m) 

y Coordinate measured normal to x     (m) 

         Dimensionless symbols 
B Rotation parameter, defined in Eq. (19) 

C Constant, defined in Eq.(49) 

Cf Friction factor, define in Eq. (35) 

f Dimensionless stream function,  Eq.(9) 

g Dimensionless rotating velocity, defined in  

                Eq. (12) and gravitational acceleration 

                in Grashof number 

Gr Grashof number   

Nu Nusselt number 

Pr Prandtl number   

Rer Rotational Reynolds number   

Re∞ Reynolds number   

Sc Schmidt number 

Sh Sherwood number 

Ta Taylor number   

Pe Peclet number (Re.Pr) 

         Greek symbols 
Ω Angular velocity                            (1/sec) 

α Thermal diffusivity             (m2/sec) 

β The angel between the direction of  

                flow and the axis of rotation in            (rad)       

                and  expansion coefficient used in 

                Grashof No.                                         (1/oK) 

ρ Density                                             (kg/ m3) 

μ Kinematics viscosity           (Kg/m.sec). 

υ Kinetic viscosity                              (m2/sec). 

θ Dimensionless temperature,       Eq. (14) 

η Dimensionless y coordinate,      Eq (8) 

ξ Dimensionless x coordinate,      Eq (7) 

φ Stream function, defined in        Eq (9) 

Λ Wedge parameter, defined in      Eq(13) 

        Subscript 
0 Zero order differential equation  

1 First order differential equation 

2 Second order differential equation 

a The wall temperature of sphere, for the still   

                fluid case 

av Average 

r Rotation 

w The wall temperature of sphere, for the axial  

                 flow case 

x  local 

∞  Infinite ambient, free stream 

        Superscript 

  َ   First derivative 

    َ   Second derivative 

      َ   Third derivative 
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