
International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 25, October 2020

8

Software Test Automation with Robot Framework

Joshua T. Walker
Georgia Tech Research Institute (GTRI)

Georgia Institute of Technology
Atlanta, Georgia, USA

ABSTRACT

Automated testing allows for releases to be quickly verified

and regression tested multiple times over a product’s

development period, providing a level of quality assurance

unmatched by a purely manual process. This article discusses

the driving objectives, implementation strategy, and general

overview of a test automation framework created using the

open source project Robot Framework as its test automation

core. The framework described in this article has been used to

provide test automation capabilities to both Graphical User

Interface (GUI) based Windows applications and embedded

systems. In addition to an overview of the developed

framework, this article also provides the results of automated

testing for multiple releases and a discussion of selected

lessons learned from its creation and maintenance.

General Terms

Automated Testing, Software Testing, Test Automation, Test

Engineering.

Keywords

Robot Framework, Test Automation Framework, Test

Automation Strategy, Test Execution.

1. INTRODUCTION
Automated testing refers to the use of software and/or

machinery to perform evaluation of a produced item without a

human performing the actions necessary to stimulate the item

[1]. Generally, automated testing is preplanned by a human

using a scripting language or framework to set up scenarios

with which to exercise the functionality covered by the

requirements [2]. The tester uses their knowledge of the

system to define inputs and expected outputs to be covered by

the automation code [3]. The automation framework executes

the test scenarios and provides detailed feedback as to the

results of the testing [4]. It takes the procedures that would be

performed by a human via manual means and executes them

automatically through the use of specific equipment or

applications, requiring the creation of test scripts to take the

place of manual test procedures [5].

The incorporation of automated testing on a project can

produce several benefits. Test documentation organization can

improve due to an increase in maintainability of the test

procedures and better management of test procedures [6].

Quality of the system under test may improve due to increased

confidence of the product, reduction of human errors during

test execution, and the ability to perform much more test

executions than could be possible with a manual-only

approach [7]. Finally, it provides opportunities by allowing

new types of testing that were impossible to perform manually

and it allows for more dedicated exhaustive testing of the

most important components [8].

With the rise of iterative development methodologies coming

out of the ideas presented by Rapid Application Development

in the early 1990s and the Agile Manifesto of the early 2000s,

automated testing has continually been a key component of

rapid product development [9]. Essential to support an

incremental development process, it allows for releases to be

quickly verified and regression tested multiple times over the

product’s development period and can provide a level of

quality assurance unmatched by a purely manual process [10].

This article discusses the driving objectives, implementation

strategy, and general overview of a test automation

framework created using the open source project Robot

Framework as its test automation core. The framework

described in this article has been used to provide test

automation capabilities to both GUI-based Windows

applications and embedded systems.

2. PATH TO TEST AUTOMATION
The decision to implement automated testing on a project can

be multi-faceted, requiring a number of aspects to be

considered. It may not always be the best testing approach and

depends on a variety of factors such as project scope,

development timelines, required test coverage, and cost [11].

For this project specifically, the main driver was the need to

reduce test execution times significantly in order to support

the transition to an Agile development process and to shorten

the overall release schedule for the system. The system under

test, an embedded airborne Electronic Warfare Management

System (EWMS), could take up to 18 weeks to perform a full

regression test manually. Its supporting Windows-based

simulation, monitoring, and file creation tool suite could take

up to an additional 20 weeks of manual testing for a full

regression test. As updates to this system were usually

released on a 6 to 12-month timeline, these regression test

durations were prohibitive to the continued development of

features and quick deployment to the field.

The path to test automation for this project was an arduous

one. For the first several years, there was little support for its

pursuit, due to the size of the system and the existence of a

high-quality manual test suite. While the typical recurring

budgets for the project were relatively high, the costs to start

building automated testing infrastructure were still too high to

justify. Taking time to officially build in this capability would

prevent the development of necessary features that had to be

released quickly.

Because of this, test automation was pursued as a side project

targeting one of the system’s file creation tools. This tool was

a data entry application with a large number of configurable

settings for the main system, resulting in a text-based file that

would be loaded onto the embedded system for a specific

scenario. The large amount of options in the tool resulted in

its manual test procedures numbering approximately 2,200

pages, requiring six weeks of testing time to execute. This

system was targeted first for automation because of the

simplicity of its environment; it was a single software

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 25, October 2020

9

application with no additional software or hardware

interfaces. It could be executed in a virtual environment,

making easy use of parallel testing and continuous integration

tools [12].

The development of test automation capabilities for this

project started initially as an experiment in 2013 with a team

primarily composed of engineering student workers. This

helped keep initial costs low while providing a worthwhile

student project that created many opportunities for learning.

This initial version, while somewhat successful, was not

developed to be sustainable, leading to a largely unorganized

codebase that was scrapped and rebuilt multiple times along

the way. Over the next three years, the effort suffered a

number of self-imposed issues from less than ideal coding

practices and implementation strategies. Regardless, the

automation project produced several significant test execution

time savings and provided evidence for the value of a test

automation capability.

Due to this evidence, the author secured internal funding in

2016 to start development of an official test automation

framework. Using the knowledge gained through the various

false starts over the previous several years, an initial design

was developed that centered around the use of Robot

Framework, along with an initial set of guiding objectives and

an implementation strategy for the targeted system. This

prework was necessary to build a proper foundation that

would guide the creation of a sustainable automated testing

capability.

2.1 Objectives
The initial set of objectives for the test automation framework

is provided below.

1-Develop an automation capability that mimics the real-time

actions of manual testing performed by a test engineer.

2-Provide a framework that can coordinate the actions of

multiple machines.

3-Develop an automation capability that can control the

actions of a machine while the display is locked.

4-Create a maintainable framework that can be easily updated

for future versions of the software under test given normal

time constraints.

5-Create a sustainable architecture that can be updated and

expanded without affecting existing automation capabilities.

6-Provide an adaptable automation capability for future

expansion into other in-house applications.

7-Promote understandability of test cases and automation

libraries by utilizing standard structures, standard naming

conventions, and natural language.

8-Minimize the need for significant coding experience for

automated test case developers.

2.2 Strategy
The strategy employed when implementing test automation

was to utilize as much existing functionality and components

as possible in order to:

1-Minimize costs.

2-Limit the impact to the system under test.

3-Maintain the ability to execute existing manual testing.

4-Provide an easier transition to automated testing.

5-Provide automated testing capabilities faster.

These goals provided for the establishment of an automated

test framework that supported the system under test without

the need to change its development path or schedule. The

approach focused on providing automation capabilities

through the existing suite of support tools that were used to

interact with the system. These tools were used manually

through a GUI by the test team to provide simulation and

monitoring of the system’s execution environment. The initial

approach was to create automation libraries that could control

and monitor these tools via their respective GUIs, which

would mimic the exact actions of a test engineer performing a

manual test.

While this approach succeeded at providing test automation

capabilities while adhering to the goals provided above, it was

not the most impactful approach. However, other initial

approaches would have been too costly or could have affected

the development of the system. These observed inefficiencies

combined with the difficulties of implementing test

automation on a project as complex and established as the

system under test necessitated a long-term automation

strategy that would eventually result in an optimized test

automation solution.

This led to the concept of a phased approach to test

automation, which is described below.

Phase 0: No test automation implemented.

Phase 1: Develop GUI-based test automation capabilities for

new system features being developed for the next release.

Create test cases for new features in the new automated

format.

Phase 2: Develop GUI-based test automation capabilities for

existing manual test cases. Reassess existing test cases for

adherence to requirements, applicability, length, complexity,

etc. Convert manual test cases into the new automated format,

making any necessary improvement steps based on the

previous assessment.

Phase 3: Develop headless test automation capabilities for

existing automated test cases, to remove the latency involved

with commanding a GUI to perform an action. Convert

existing GUI-based automated test cases into headless

automated test cases.

Phase 4: Develop lower-level test harnesses that can talk

directly to software components within the system, providing

the ability to perform testing on each component in isolation

from the rest of the system. Develop automation capabilities

to stimulate and monitor lower-level components. Create

headless test cases that target component-level functionality.

Phase 5: Introduce high-level commands that provide more

capability to the tester (e.g., move threat 1 to location 5 within

20 minutes using route 2, maintain aircraft altitude and fly in a

circle with radius of 10 miles), allowing more natural and

realistic test scenarios in a lab environment.

It should be noted that these phases are not necessarily

completed sequentially; some could be worked concurrently,

while some could be skipped altogether. For example,

currently for this system, a mixture of Phase 0 through Phase

4 has been implemented, depending on the component. This

specific system may never need test automation capability at

Phase 5, but it has been discussed as a future option.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 25, October 2020

10

3. FRAMEWORK OVERVIEW
The following section will provide an overview of the test

automation framework that was created. First, a discussion of

Robot Framework is necessary to understand the core

automation capability. Next, the basic architecture of the

framework is described. Finally, an example test case is

provided with commentary to show a test case from the end

user’s perspective.

3.1 Robot Framework
Robot Framework is a Python-based automation project that

provides the infrastructure for developing a test automation

capability, including the translation of code to user-defined

actions, automatic test execution, and results reporting [13]. It

allows automated tests to be written in simple English to

support their easy creation and understanding. The basic idea

of Robot Framework is to define libraries that include

functions for performing necessary actions required by the test

case and then call them from the high-level test case using a

simple English keyword or phrase.

3.1.1 Example 1
To illustrate how Robot Framework works, a simple test case

named “notepad_save_file.robot” is defined in Figure 1

below.

Fig 1: Simple Robot Framework Example

The test case above verifies Notepad’s ability to save a file

with a specific line of text. Items in blue are referred to as

keywords, while items in red are referred to as keyword

inputs. The code to execute the keywords is stored in the

library “notepad.py,” which is called at the beginning of the

test case. As can be seen above, the power of Robot

Framework comes with being able to define the functionality

of a keyword once and use it multiple times within a test case

[14]. This is even more apparent with keywords such as “Add

Text” in the above example, as the keyword input can be any

string, depending on the restrictions of the implemented

function.

To execute the test case, a tester would only need to run the

command “robot notepad_save_file.robot” from a command

prompt, assuming Robot Framework is installed and the user

has navigated to the correct directory. Robot Framework

would the output the results of the test case within the same

directory in a variety of formats for later review.

3.1.2 Example 2
Keyword text can also be expanded and modified to give a

more natural feel to the automation language within test cases.

For example, consider the following keyword in Figure 2.

Fig 2: Keyword Usage

The entire line in Figure 2 is considered a keyword with three

keyword inputs. For ease of comprehension, keyword inputs

are now required to be surrounded by square brackets. This is

customizable in the definition of the keyword, which can be

seen below in Figure 3.

Fig 3: Keyword Definition

The keyword refers to the “Select Combobox Item” method

defined elsewhere, which takes three inputs. Robot

Framework is able to interface with almost any language or

automation tool to provide more powerful automation

capabilities. In this case, the Windows UI automation

language AutoIt, translated to a Python module PyAutoIt, was

used to provide UI interaction capabilities. The code to

perform this action of selecting an option within a combobox

can be seen in Figure 4 below.

Fig 4: Keyword Function

The method above accepts the parameters passed from the

keyword usage through the keyword definition to the final

method. It uses the passed values to identify the actual names

associated with those values as stored in the code by looking

them up in a JavaScript Object Notation (JSON) file that

associates aliased labels (i.e., the word/phrase that the test

engineer wants the specific item to be known by) with the

def select_combobox_item(self, json_title,

control_name, item_to_be_found):

 window_title =

self.json_parser.get_window_title(json_title)

 control_id =

self.json_parser.get_control_id_with_type(json_title,

control_name, ‘combobox’)

 previously_selected_item = “”

 while (True):

 currently_selected_item =

baseline.autoit_control_get_text(self, window_title,

control_id)

 print(currently_selected_item)

 if currently_selected_item) = = item_to_be_found:

 return True

 elif currently_selected_item = =

previously_selected_item:

 assert False, “Selection [“ + item_to_be_found

+ “] could not be found in the [“ + control_name + “]

combobox”

 else:

 previously_selected_item =

baseline.autoit_control_get_text(self, window_title,

control_id)

 baseline.autoit_control_send(self, window_title,

control_id, “{DOWN}”)

Select the [${option}] option in the [${control}] combobox

within the [${window}] window

 Select Combobox Item ${window} ${control} {$option}

Select the [Miles] option in the [Units] combobox within the

[Distance Converter] window

Library notepad.py

Test 1 – Save File

 Open Notepad

 Add Text my added text

 Save File As myNote.txt

 Close Notepad

 Open Notepad

 Open File myNote.txt

 Verify Text my added text

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 25, October 2020

11

code-based name (i.e., the name that the developer used for

the specific object). An example of a JSON table to perform

this aliasing can be seen in Figure 5 below.

Fig 5: JSON Combobox Label Association

The main purpose of the JSON file is to:

1-Maintain a list of supported objects outside of the code to

interact with them.

2-Allow aliasing so that the final test procedures are not

reliant on standardized control names to make sense to an

external representative.

3-Define an object type to use in the event of a collision of

preferred name (e.g., a textbox and combobox that use the

same label property).

3.2 Basic Architecture
A basic architectural view of the test automation framework

can be seen in Figure 6 below.

Fig 6: Basic Architecture

Starting at the bottom of the diagram, to create a Test

Automation Capability targeting a specific application or

system, Robot Libraries are written to interface with the

system under test. These libraries contain functions that define

methods for interacting with the system. In the Robot

Framework Keywords file, the methods from the Robot

Libraries are mapped to commands that will be visible to the

test engineer to use for building test cases in the Robot Test

Case file. This essentially means that an automated test case

(a .robot file) is a sequence of pre-defined keywords written in

natural language that reads like a set of manual test steps. This

allows the test case to be executed manually for debugging

purposes or if for some reason the automated capability

breaks, and it allows the automated test case to be easily

translated to a more presentable form for delivery to a

customer.

The test automation framework is fundamentally a collection

of custom developed automation libraries that control

interaction with the system, keyword definitions that provide

the standardized interaction language used by test engineers,

and Robot Framework that provides the management of those

connected pieces. Additionally, several usability features such

as syntax highlighting, automatic keyword completion have

been incorporated to make the creation of test cases faster and

more user-friendly.

3.3 Example Test Case
Figure 7 is an example automated test case, shown as a

screenshot from Visual Studio Code using the custom

highlighting scheme developed for the test automation

framework. Specific sections of the test case are described

here to provide an overview of the organization and flow of a

typical test case.

3.3.1 Settings Section (Lines 1-5)
The Settings section is used to declare keyword libraries that

are expected to be used in this test case. The test automation

framework architecture encapsulates keyword libraries by

function or component for easier management. In this section,

the test engineer imports the libraries that include keywords

they need to perform the actions of the test case.

3.3.2 Variables Section (Lines 7-10)
The Variables section provides the ability to declare groups to

be used later in the test case. Currently, the only use of this is

to group requirements traced to this test case and aircraft

platforms that are applicable for this test case. These labels

are used to make it easier to identify these items quickly.

3.3.3 Test Cases Section (Lines 12-51)
The Test Cases section contains the body of the test procedure

that will be executed. Subsections are further discussed below.

3.3.3.1 Title (Line 13)
The title of the test case is declared after the Test Cases

section header. In this example, a global test case number, its

specific name, and the platform this test case uses (Plat_1)

during the execution of the test case are listed.

3.3.3.2 Tags (Line 14)
Tags are a feature of Robot Framework that allow test cases to

be queried/executed based on custom phrases that are

included in the test case. For example, a test engineer could

target the entire test suite and command all test cases that

include the tag “Requirement-01” to be executed. Robot

Framework is able to identify which test cases those are and

execute them.

In this specific example, the variables previously defined are

also tagged so that a query can be run based on requirements,

functionality, or platform applicability.

3.3.3.3 Comments (Lines 15; 19)
Comments are allowed with the framework in order to

provide explanatory text for a specific section of test steps.

Comments are not executable and are ignored when running a

test case.

“Units”: {

 “type”: “combobox”,

 “control”: “[NAME:_UnitCombo]”

},

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 25, October 2020

12

1 *** Settings ***
2 Library Dialogs
3 Library C:/Test_Automation_Framework/system_controller/system_controller
4 Library C:/Test_Automation_Framework/sys_mon/sys_mon
5 Library C:/Test_Automation_Framework/sys_sim/sys_sim
6
7 *** Variables ***
8 @{REQUIREMENTS} SS-320_1 SS-320_2 SS-320_3
9
10 @{APPLICABILITY} Plat_1 Plat_2 Plat_3
11
12 *** Test Cases ***
13 [SS_0010] Scenario Selection Plat_1
14 [tags] @{REQUIREMENTS} @{APPLICABILITY} System MD4 Scenario Selection
15 #System Simulator Setup
16 Open the System Simulator application and open the [Plat_1 No Errors.sim] Simulator file
17 Press the Start button within the Control Panel window
18
19 #System Monitor Setup
20 Open the System Monitor application and open the [Standard Messages.mon] Monitor file
21 Load the [Common Release (Plat_1 with Config_2)] protocol files
22 Press the Play button within the System Monitor window
23
24 Set up the test case with the [General Config Plat_1] configuration
25
26 Navigate to the [Training] menu
27 Press the [Down] button on the Controller
28 Press the key under [TRN] on the Controller
29
30 This begins the verification for requirement: SS-320_1
31 Verify the [bottom] line of the system display contains [SCN1]
32 Verify the [bottom] line of the system display contains [SCN2]
33 Verify the [bottom] line of the system display contains [SCN3]
34 This completes the verification for requirement: SS-320_1
35
36 Press the key under [SCN1] on the Controller
37 Wait for [SCN:SCENARIO1] to appear on the system display
38
39 This begins the verification for requirement: SS-320_2
40 Verify the [top] line of the system display contains [SCN:SCENARIO1]
41 This completes the verification for requirement: SS-320_2
42
43 Press the key under [OFF] on the Controller
44 Wait for [SCN:OFF] to appear on the system display
45
46 This begins the verification for requirement: SS-320_3
47 Verify the [top] line of the system display contains [SCN:OFF]
48 This completes the verification for requirement: SS-320_3
49
50 Press the Step button within the Control Panel window and verify the new sequence is [Test End.seq]
51 [TEARDOWN] Tear down the test case and log recorded errors

Fig 7: Example Test Case

3.3.3.4 Setup (Line 24)
This line is a custom keyword that sets up a test case for the

system under test after being provided a configuration. There

are many actions rolled into this singular keyword that

prepare the system under test for user input, such as loading

the system hardware, verifying that configuration loaded

correctly, and clearing the catalog of errors. Configurations

are defined by test engineers in a separate file that the test

automation framework can read. This keyword also prints the

details of the specific configuration used for this execution of

the test case for future reference.

3.3.3.5 Actions (Lines 16-17, 20-22, 26-28, 36-37,

43-44, 50)
These lines are typical actions that would be defined in a

manual test case as steps that a user should perform.

3.3.3.6 Requirements Declarations (Lines 30, 34,

39, 41, 46, 48)
While requirements are traced to the test case using the Tags

section, more specificity is often required by the customer or

project. The test automation framework provides a method for

defining the specific steps that satisfy requirements through

defining where the verification of the requirement begins and

ends.

3.3.3.7 Expected Results (Lines 31-33, 40, 47)
Expected results are defined using a keyword that begins with

the word, “Verify.” This was purposely defined when building

the test automation framework so that expected results would

be evident throughout the test case. Syntax highlighting is also

used to draw attention to these lines.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 25, October 2020

13

3.3.3.8 Teardown (Line 51)
The teardown keyword is used here to prepare the system

hardware for the execution of the next test case. Errors that

occurred are logged in the test results and the environment is

cleaned to reduce any variability that may affect the results of

future test cases.

4. RESULTS
The test automation framework described herein has been

used successfully during the formal test execution of the

targeted system for two releases, as well as two releases of the

data entry support tool described previously. The results of the

automation effort for these releases are summarized in Table 1

below and further described in the following subsections.

Table 1. Test Automation Results

Release
Percent

Automated

Time

Saved

Money

Saved

Tool Release 1 95% 6 weeks $60K

Tool Release 2 95% 7 weeks $70K

System Release 1 23% 3 weeks $15K

System Release 2 38% 6 weeks $30K

4.1 Data Entry Tool Release 1
The data entry tool was the first application targeted by the

test automation framework, due to its limited interactions with

other components. During the first release, 95% of the manual

test procedures were automated, equating to more than 2,200

pages and six weeks of execution time. The entire suite of

manual and automated test cases for the final release was able

to be executed in two days. Typically, the manual test

procedures were run twice during a release effort, once for a

dry run and once for a formal test. Factoring that time in, the

test automation framework saved approximately $60,000 of

customer funds due to test execution costs. This initial use of

the test automation framework significantly reduced the

overall cost of developing the tool.

4.2 Data Entry Tool Release 2
The second release of the data entry tool was similar to the

first, in that 95% of the test procedures remained automated

even with additional functionality being added. With the

additions, running the testing manually would have taken

approximately seven weeks, but the entire test was still able to

be accomplished within two days. The approximate cost

savings for this effort equated to roughly $70,000, increasing

the value of the test automation framework on this effort.

4.3 System Release 1
As the embedded system is significantly more complicated

than the data entry tool, the transition to automated testing is

still ongoing, even after two years of a functional test

automation solution. This is partly because feature

development of the system was not stopped to implement this

transition and partly due to the reworking of test cases to

better support automation. Due to the phased approach

limiting impact to the system under test, the transition was

less impactful than it could have been or will be in the future.

During the first year of the test automation effort, the

development team created automation infrastructure to

support approximately 84% of the functionality of the system

under test. The test team was able to create 76 automated test

cases, which equated to approximately 23% of the entire

expected test suite. This percentage of completed testing

saved approximately three weeks of manual execution time,

equating to a cost savings of approximately $15,000 per test

run. While this initial cost savings was smaller than on the

data entry tool, it was still a major step towards increasing the

efficiency of the test effort for the system.

4.4 System Release 2
During the second year of the test automation effort, the

development team increased the automation infrastructure to

support approximately 90% of the functionality of the system

under test. The test team was able to create 166 test cases,

which equated to approximately 38% of the entire expected

test suite. This percentage of completed testing saved

approximately six weeks of manual execution time, equating

to a cost savings of approximately $30,000 per test run.

During development of this release, the savings due to test

automation was doubled in one year.

4.5 Qualitative Results
Several qualitative results were discovered during this

process. A selection of key discussion topics is provided

below.

4.5.1 Team Morale
The field of software engineering can be subject to a high

level of burnout, due to a variety of factors [15]. For a test

engineer, running the same set of regression tests manually

over and over again can become tedious, especially if that

effort takes significant time in comparison to other, more

creative or skill-intensive tasks. Test automation can reduce

this burnout, as it removes some of the monotonous aspects of

the job of a test engineer. In place of the time usually spent on

regression testing, it may provide the potential for more

exploratory testing to be performed, which has been found to

identify more defects that scripted testing [16].

4.5.2 Test Quality
The quality of the test procedures increased, due to improved

flow and organization, increased maintainability, and reduced

variability between approaches. When the actions that can be

performed are controlled through the use of automated

keywords, the test cases become more standardized, leading to

a greater level of understanding. As with the development of

software, different test engineers may take different

approaches while still solving the problem, but the variations

of how this can be accomplished are easier to comprehend.

5. CONCLUSION
The creation of an automated testing framework can be a

valuable, but also costly, venture that should be carefully

considered before pursuing. It can provide considerable

reductions in test execution times, but the benefits must be

weighed against the costs involved. The implementation of

test automation described in this article provided significant

time and cost savings, allowing more efficient use of customer

funds.

5.1 Selected Lessons Learned
Several lessons were learned throughout the creation of this

test automation framework. A selection of key topics is

described below.

5.1.1 Treat Test Automation as a Product
Even if it is never intended to be delivered to an external

customer, the developed automation code and the

accompanying test procedures that use it should be treated

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 25, October 2020

14

like a real, releasable product. It should be designed and

documented well, conforming to standard practices and

procedures. This leads to a higher level of maintainability,

which is a common issue with the longevity of test automation

infrastructure [17]. Treating the test procedures as code also

allows for the use of development tools, which can be an

exceptional aid to productivity.

5.1.2 Start Small and Advertise Results
Management, customers, and other stakeholders that control

project funding can be hard to convince that test automation is

worth the effort, especially if a set of manual procedures

already exist that work as expected. If it truly makes sense for

the project and would provide value, find a way to incorporate

automation somewhere along the process in a small way as an

example of future potential [18]. Use that as evidence for the

value that can be created by transitioning to an automated

world.

5.1.3 Automate Functionality That Makes Sense
Not everything should be automated; sometimes test cases are

too difficult or just too small to make sense [19]. Sometimes

an automated approach does not always result in the most

efficient method of testing [20]. Discretion and experience

should be used to identify when functionality should be tested

automatically.

5.1.4 Standardize the Approach
Put significant effort into the automation language being

created. Standardizing the approach to the keywords that will

be visible to the end users is an important part of providing

value. If a test engineer trying to use the test automation

framework has trouble identifying what functionality is

available, it can impact productivity and result in confusion.

5.2 Future Expectations
Based on the last two years of results so far and by

implementing future automation phases, it is expected that

within two to four more release cycles, the execution of the

test procedures for the system will be reduced to less than one

week. This type of reduction, from an original timeline of 18

weeks, shows the potential improvement that developing an

automated testing capability can provide.

6. REFERENCES
[1] Engel, A. (2010). Verification, validation and testing of

engineered systems. John Wiley & Sons.

[2] Taipale, O., Kasurinen, J., Karhu, K., & Smolander, K.

(2011). Trade-off between automated and manual

software testing. International Journal of System

Assurance Engineering and Management, 2(2), 114-125.

https://doi.org/10.1007/s13198-011-0065-6

[3] Fewster, M., & Graham, D. (1999). Software test

automation. Addison-Wesley.

[4] Lewis, W. E. (2017). Software testing and continuous

quality improvement. CRC press.

[5] Pan, J. (1999). Software testing. Dependable embedded

systems, 5.

[6] Rankin, C. (2002). The software testing automation

framework. IBM Systems Journal, 41(1), 126-139.

https://doi.org/10.1147/sj.411.0126

[7] Methong, S. (2012). Model-based automated GUI testing

for Android web application frameworks. 2nd

International Conference on Biotechnology and

Environment Management, Singapore, 106-110.

[8] Kasurinen, J., Taipale, O., & Smolander, K. (2010).

Software test automation in practice: empirical

observations. Advances in Software Engineering, 2010.

[9] Dustin, E., Rashka, J., & Paul, J. (1999). Automated

software testing: Introduction, management, and

performance. Addison-Wesley Professional.

[10] Dustin, E., Garrett, T., & Gauf, B. (2009). Implementing

automated software testing: How to save time and lower

costs while raising quality. Pearson Education.

[11] Ramler, R., & Wolfmaier, K. (2006). Economic

perspectives in test automation: Balancing automated and

manual testing with opportunity cost. Proceedings of the

2006 international workshop on automation of software

test, 85-91. https://doi.org/10.1145/1138929.1138946

[12] Dösinger, S., Mordinyi, R., & Biffl, S. (2012).

Communicating continuous integration servers for

increasing effectiveness of automated testing. 2012

Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, Essen,

374-377. https://doi.org/10.1145/2351676.2351751

[13] Bisht, S. (2013). Robot framework test automation. Packt

Publishing Ltd.

[14] Stresnjak, S., & Hocenski, Z. (2011). Usage of robot

framework in automation of functional test regression.

Proceedings of the 6th International Conference on

Software Engineering Advances, 30-34.

[15] Sonnentag, S., Brodbeck, F. C., Heinbokel, T., & Stolte,

W. (1994). Stressor‐ burnout relationship in software

development teams. Journal of occupational and

organizational psychology, 67(4), 327-341.

https://doi.org/10.1111/j.2044-8325.1994.tb00571.x

[16] Shah, S. M. A., Torchiano, M., Vetrò, A., & Morisio, M.

(2013). Exploratory testing as a source of technical

debt. IT Professional, 16(3), 44-51.

https://doi.org/10.1109/MITP.2013.21

[17] Martin, D., Rooksby, J., Rouncefield, M., &

Sommerville, I. (2007). Good organisational reasons for

bad software testing: An ethnographic study of testing in

a small software company. 29th International

Conference on Software Engineering, 602-611.

https://doi.org/10.1109/ICSE.2007.1

[18] Berner, S., Weber, R., & Keller, R. K. (2005).

Observations and lessons learned from automated

testing. Proceedings of the 27th International

Conference on Software Engineering, 571-579.

https://doi.org/10.1145/1062455.1062556

[19] Sabev, P., & Grigorova, K. (2015). Manual to automated

testing: An effort-based approach for determining the

priority of software test automation. International

Journal of Computer, Electrical, Automation, Control

and Information Engineering, 9(12), 2456-2462.

[20] Karhu, K., Repo, T., Taipale, O., & Smolander, K.

(2009). Empirical observations on software testing

automation. 2009 International Conference on Software

Testing Verification and Validation 201-209.

https://doi.org/10.1109/ICST.2009.16

IJCATM : www.ijcaonline.org

