
International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

Service-based Architecture for SLA Management in
Cloud Computing

Hend S. Salem
Department of Computer Science

Suez Canal University
Ismailia, Egypt

Rania Hodhod
TSYS School of Computer Science

Columbus State University
Columbus, USA

Ghada S. El-Tawel
Department of Computer Science

Suez Canal University
Ismailia, Egypt

Hany F. ElYamany
Department of Computer Science

Suez Canal University
Ismailia, Egypt

ABSTRACT
Service Level Agreements (SLAs) have proven their added value in
the modern distributed computing era. Well-established systems for
managing SLAs represent a challenging aspect in cloud comput-
ing. Certainly, proper design of such systems can save a lot of costs
that are spent in paying SLA violation penalties. A managed SLA
can be accomplished through several stages (i.e. life cycle): Def-
inition and Awareness, Negotiation, Design, Implementation, and
Monitoring and Compliance. In this work, a reliable service-based
architecture for managing the SLA life cycle in cloud computing
is proposed. The introduced architecture is composed of five main
layers: Infrastructure Layer, SLA Layer, Provider Layer, Consumer
Layer, and Security and Privacy Layer; each layer in turn consists
of multiple components that provide certain management function-
alities (e.g. violation detection and recovery). This paper focuses
on the design and implementation of the SLA layer and its com-
ponents, in addition to a monitoring system that observes the SLA
performance, detects any violations by determining a particular cal-
culated compliance value, and diagnoses and recovers from such
violations by taking the proper actions.

Keywords
Cloud Computing; Service Level Agreement(SLA); Service Level
Objectives(SLO); Quality of Service(QoS); Engineering Process;
Prioritization

1. INTRODUCTION
Cloud Service Level Agreement (SLA) is a formal agreement that
ensures the level of quality of the cloud service(s). Recently, SLAs
have become of great significance due to their added value in the
computing world. However, these SLAs have also become a contro-
versial element because cloud computing is a sensitive technology
that has been pushed in the large-scale businesses. Consequently,
there is a need to study the different aspects of SLAs in order to
reach a gainful agreement. An SLA can be expressed as a well-
structured contract that contains detailed information about the ser-
vice terms and conditions, service backing, penalties and regula-

tions, and the service level objectives (SLO) [1]. An SLO defines
one or more measurable Quality of Service (QoS) constraints [2].
Generally, there are two kinds of the SLAs [3]: the Negotiable SLA
that takes many negotiation rounds, and the off-the-shelf SLA or the
non-negotiable SLA that does not require any negotiation rounds,
however, it is just a template defined by the service provider and
is offered to the consumer. In this work the negotiable SLAs that
require many negotiation sessions are considered.
Generally, the SLA life cycle consists of five phases [4, 5]: Def-
inition and Awareness, Negotiation, Design, Implementation, and
Monitoring and Compliance. Typically, these phases should be well
managed to extract a vital and effective SLA. In our previous work,
an engineering process for the cloud SLA life cycle was intro-
duced [4]. The main objective of this engineering process was to
overcome some of the challenges that face the construction and
management of cloud SLAs. One of these challenges was the gap
between SLA definition and implementation phases where the de-
sign phase is mostly not considered in the full life cycle. Accord-
ingly, the life cycle phases from the perspective of requirements
engineering was discussed and a well-defined model for the design
phase was presented.
The key objectives of the work presented in this paper are three-
fold: (1) provide a general architecture that harmonically manages
SLAs in cloud computing. This architecture considers the full life
cycle of extracting the SLA which is discussed in [4]. (2) generate
an automatic SLA template. (3) implement a dynamic and adaptive
monitoring system. The monitoring system is responsible for ensur-
ing the validity of the SLA, detecting and recording any violation,
and taking proper actions against these violations.
The proposed architecture is composed of five interactive layers
with each layer consisting of several components. The overall tasks
of the architecture are summarized as follows: (1) Generate an ini-
tial SLA template that contains all possible parameters. (2) Estab-
lish automatic SLA Negotiation through a negotiation system. (3)
Design the SLA with the negotiated parameters. (4) Implement and
configure the final SLA. (5) Monitor the resulting SLA, detect and
diagnose violations, and take actions against these violations using
the monitoring system.

1



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

The rest of this paper is organized as follows: related work is dis-
cussed in Section 2. The proposed services-based architecture for
SLA management is presented in Section 3. The architecture imple-
mentation and simulation results are discussed in Section 4. Lastly,
Section 5 concludes the paper and shows the ongoing work.

2. RELATED WORK
Currently, there are few works done in the area of managing com-
plete SLA life cycle. A large body of work has considered one or
two phases only of the entire life cycle. Accordingly, the related
work is classified into (i) SLA lifecycle and data management, (ii)
SLA Negotiation, and (iii) SLA Monitoring. In terms of SLA life
cycle management, the work presented in [6] discussed the automa-
tion of the SLA life cycle in cloud computing. It suggested simple
solutions for SLA’s description languages, SLA attributes, and SLA
constraints. It focused on some generic approaches towards these
solutions without showing its practical impact.
There are many researches that focus on cloud SLA negotiation and
monitoring [7–10]. The research in [7] outlined a process for estab-
lishing and monitoring the SLAs in complex service based systems.
The authors proposed a framework for monitoring the SLA con-
sidering the evaluation of what the SLA offers based on historical
data. This work focused on the high-level metrics without consid-
ering the lowlevel metrics and the matching between them. In other
words, they did not consider the full life cycle for establishing the
SLA.
A framework for SLA automated negotiation is presented in [8].
This framework considered many aspects related to the negotiation
process along with decision making systems and strategies. How-
ever, the authors did not mention the various SLA parameters that
would be negotiated. Additionally, they did not provide a clear sce-
nario for parameters’ prioritization process.
On the other hand, the work in [9] introduced an automatic nego-
tiation mechanism for resource allocation where buyers and sellers
were presented by agents that negotiate with each other and any
agent can easily de-commit from the agreement at the cost of pay-
ing penalty. However, this mechanism neither considered the prior-
itization of the agreement elements nor the equilibrium strategies
for allocating resources dynamically. Moreover, it did not focus on
the negotiation objectives.
The authors in [10] proposed an architecture called (DeSVi) for
detecting SLA objectives violations through resource monitoring.
The provided architecture is able to predict the violation threats in
order to take actions before actual violations happen. The viola-
tion detection process is based on a predefined service level ob-
jectives and knowledge databases to manipulate and prevent such
violations. This work is designated to monitor a single data cen-
ter, therefore it is not suitable for monitoring cloud environments
which are mostly based on several and geographically dispersed
data centers.
The work in [11] introduced a structured analysis of the SLA com-
ponents and data management. The authors presented an SLA di-
graph model for data handling and automated SLA that relies on the
WSLA specification. The proposed digraph can be also used as a
data model for managing the SLA information. Although this work
discussed the SLA data management criteria, it did not address the
different aspects related to the data management, such as prioritiza-
tion of the SLA parameters and its importance in the management
process. Also, it represented the SLA as a digraph, but it did not
consider the negotiation and compliance phases in this digraph.
Another work [12] proposed a model for SLA management that
focused on one phase of the SLA life cycle that is the Monitoring

Phase only. The work done did not consider any other phases in the
SLA life cycle.

3. THE PROPOSED SERVICE BASED SLA
MANAGEMENT ARCHITECTURE

In order to build an automated cloud SLA management archite-
cure, it is important to consider the different aspects that are related
to cloud computing and, hence, the SLA various stages. In this pa-
per, an architecture for managing the life cycle of creating SLAs
in cloud computing is proposed. The architecture is built upon our
previous work on SLA engineering model and requirements engi-
neering [4]. This section provides a full description of the compo-
nents of the proposed SLA management architecture.

3.1 Architecture Components
As depicted in Figure 1, the proposed architecture is composed of
five basic layers: Infrastructure Layer, SLA Layer, Provider Layer,
Consumer Layer, and Security and Privacy Layer. Each layer rep-
resents a set of services and functionalities that aid to accomplish
the main task. A detailed description for each layer is provided in
the following subsections.

3.1.1 Infrastructure Layer. This layer consists of three compo-
nents:

—Metrics Registry is a data storage that records all possible cloud
SLA metrics and their values (SLOs), for more detail check [4].
Indeed, a well-defined registry is a primary key success factor for
an effective SLA management process. Wherefore, this registry
should be fast, scalable, and easy to manage in order to be more
flexible with any later customization.

—Cloud Specifications include data about the cloud architecture
(e.g. public, private, community, governmental, or hybrid cloud
computing), its characteristics, and the cloud service type (e.g.
SaaS, PaaS, IaaS, or XaaS). Also, it records the cloud computing
general rules and policies.

—Service Directory stores the required information about the
providers’ registered services.

3.1.2 Consumer Layer. This layer represents the consumer who
requests a cloud service; can be either a regular person who uses
any of the cloud services and this is in case of public cloud com-
puting, a citizen in case of governmental cloud computing, or a
specific person or organization in case of private cloud computing.
Moreover, this layer describes the various interactions between the
consumer and the other layers in the architecture.

3.1.3 Provider Layer. This layer represents the cloud service
provider, i.e. the cloud service owner who provides the different
cloud services, such as SaaS, PaaS, IaaS, or XaaS. Furthermore, it
represents all the actions and reactions of the cloud provider that
can be taken throughout the proposed architecture.

3.1.4 Security and Privacy Layer. This layer is responsible for
securing the overall system; it provides various mechanisms for
cloud security, data hiding, electronic signature to authenticate the
identity, and data encryption. Many techniques are used for secur-
ing and insuring the privacy in cloud computing. For example, the
work in [13] presented a metadata model to ensure the quality of
security service for SOA. The authors provide different levels for
describing the available variations of the authentication, authoriza-
tion and privacy features. While the authors in [14] developed a
generic privacy ontology in order to define the privacy preferences

2



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

Fig. 1: SLA Management Architecture

within a Collaborative Working Environments(CWEs) focusing on
the non-functional requirements of CWEs.
This layer is responsible for securing the overall system; it provides
various mechanisms for cloud security, data hiding, electronic sig-
nature to authenticate the identity, and data encryption. Many tech-
niques are used for securing and ensuring privacy in cloud com-
puting. For example, the work in [13] presented a metadata model
to ensure the quality of security service for SOA. The authors pro-
vide different levels for describing the available variations of the
authentication, authorization, and privacy features. While the au-
thors in [14] developed a generic privacy ontology in order to define
the privacy preferences within collaborative working Environments
(CWEs) focusing on the non-functional requirements of CWEs.

3.1.5 SLA Layer. This layer is considered to be the core layer
that clarifies the proposed architecture. It consists of six interactive
components that describe the full SLA life cycle. These compo-
nents are: SLA Template Generator, Negotiation System, Design
Service, SLA Configurator, and Monitoring System. A detailed ex-
planation for each component is described below:

(1) Template Generator
This generator is accountable for the automatic generation of
the initial SLA template from the SLA metrics registry. The
initial SLA template contains all favorable metrics based on
the cloud service(s) type. Generally, the generated template is
designed to have open sections for further customization.

(2) Filtering System
In order to save cost and time, it is advantageous to priori-
tize QoS terms before negotiating them. Accordingly, a filter-
ing system is designed in our architecture to accomplish this
need. The filtering system is accountable for prioritizing the
important SLA parameters to be negotiated based on the prede-
fined negotiation objectives. When performing prioritization,

Fig. 2: Filtering System

many different aspects/attributes to prioritize the SLA param-
eters should be taken into account [15–17]. This can include:

—Importance: It is critical to prioritize which parameters are
most important or critical to negotiate. Generally, impor-
tance is a relative aspect which depends on the perspective
of the involved parties as well as the nature of the provided
service, meaning that it has no standards.

—Penalty: It is important to prioritize parameters based on
their penalties in case of violation, i.e. parameters that are
given high penalties do have higher priority.

Many other aspects other than the above ones can be used in
the prioritization process. In addition, either one aspect or a
combination of aspects can be used.

3



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

Fig. 3: (Re)Negotiation System

Mostly, a number of various techniques can be used to perform
this prioritization process. Some of these techniques depend on
assigning priority to each parameter, and some others consider
grouping them under the priority level. Examples of the most
common techniques are described as follows [17–21]:
—Ranking: This method gives each parameter a unique rank

from 1 - n, where the most important parameter is ranked 1
and the least important parameter is ranked n.

—Prioritization Groups (Grouping): This technique groups
the parameters into different priority groups. The number
of groups is optional, however, the most common is to use
three groups. For example, critical, standard, and optional or
high, medium, and low.

—Top-x Parameters: Each party pitches its top-x parameter
where x can be any defined number, such as 5, 10 or 20
based on the number of parameters they prefer to involve
in the negotiation process. After then, the top-x parameters
from each party are combined together and the extra similar
ones are excluded. For example, assume there are involved
parties P1 and P2, the top-five parameters for P1 are n1, n3,
n2, n5, n10, and the top-five parameters for P2 are n7, n8,
n2, n1, n6. Combining these two lists together gives us the
final list of prioritized parameters: n1, n2, n3, n5, n6, n7, n8,
n10.

As illustrated in Figure 2, the filtering system consists of two
main components:
—Knowledge Base (KB): KB stores the negotiation objectives

and the prioritization general techniques.
—Decision Making System (DMS): DMS decides on which

parameters have a higher priority by matching the negotia-
tion objectives with the initial SLA elements.

(3) (Re)Negotiation System
Certainly, (re)negotiation is a significant phase to create a vital
SLA based on the negotiated parameters. It has many benefits
for both cloud providers and consumers. In this architecture,
(re)negotiation system is presented. This (re)negotiation sys-
tem consists of many components which are demonstrated in
Figure 3 as follows:
—(Re)Negotiators Agents: This includes intelligent and au-

tonomous agents that represent the (re)negotiation partici-
pants [22]; the cloud provider, consumer, and service broker
if exists.

—(Re)Negotiation Engine: This engine is responsible for the
(re)negotiation process workflows. These workflows are un-

derpinned by the (re)negotiation strategies and protocols.
Strategy is the way used to make and exchange offers and
counter offers by using various strategy functions [23]. Pro-
tocol is a set of communication rules or sequences that de-
scribe the behavior of the bargaining process. It covers how
the (re)negotiation proceeds, how many rounds will it take,
and the (re)negotiation states. The most common protocols
are British auctions, contact Net protocol, take-it-or-leave-it,
and Discrete-offer-Protocol [23,24]. Many states are defined
within the (re)negotiation session including:
Propose/initiate: This state proposes an initial offer or
counter offer by one of the involved parties.
Accept: This state accepts the case when the other party ac-
cords the offer or the counter offer.
Reject: This state rejects the case when the offer or the
counter offer is undesirable.
Cancel/Terminate: This state cancels/terminates the case
when a lack of agreement or a session timeout is occurred.
Failure: This state announces failure when any unexpected
error is occurred such as a system failure.
End: This state ends the negotiation when the bargaining is
normally finished.

—Decision Making System: This system determines the ac-
tions of the participants that can be performed during the
(re)negotiation process. It decides when to accept, reject or
exchange a counter offer, and how to evaluate offers and
counter offers. Indeed, many decision-making techniques
and heuristics are used to make the right choice. Before
starting the bargaining, it is necessary to specify the cardi-
nality of the negotiation participant: one-to-one (bilateral),
one-to-many, or many-to-many. The work presented in [25]
proposed a negotiation mechanism for flexible establish-
ment of cloud SLAs. Also, the authors in [8] presented an
automatic framework for negotiating SLAs in cloud com-
puting.

(4) SLA Design Service
This is an embedded service responsible for designing the final
SLA. It encapsulates the various activities that are used for de-
signing the SLA template. The inputs for this service are: the
negotiated SLA measurable parameters, the cloud specifica-
tions, service description, participants profiles, business poli-
cies and regulations, and conditions and penalties for exceed-
ing expectations. The essential functionality of the design ser-
vice is to portrait the overall structure of the SLA by merging
the different outputs in a tidy manner. The design service also
defines a user-friendly interface for users (providers or con-
sumers) to facilitate the various interactions. Furthermore, it
defines the structure of the SLA database. The corresponding
outputs of the design service are the specifications of each of
the SLA structure, SLA interface, and SLA database. Figure 4
depicts the ERD of the overall database. As shown in Figure 4,
the database is a relational one and the schema consists of eight
entities which are Service, Metric, Service metric, Cloudspec-
ification, Negotiation strategy, Monitoring, Violation, and Ac-
tion. The Service and Metric entities are related to each other
via the service metric entity, where one service may have mul-
tiple metrics and one metric can be involved in many services.
The cloud specification entity is related to the Service entity,
where cloud specification should have one or more services.
Monitoring and Violation entities are related to Metric entity
where the monitoring and violation data is recorded and stored
for a specific metric. The Action entity is related to the vio-

4



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

Fig. 4: SLA Database ERD

Fig. 5: Monitoring System

lation entity where each violation can be manipulated by one
action while one action can be applied for multiple violations.

(5) SLA Configurator
The SLA configurator is accountable for configuring the final
SLA template and putting it into action.

(6) Monitoring system
It plays a substantial role in proving the validity of the signed
SLA. It is designed to be reliable and self-adaptable where it
can detect violations and handle these violations by taking an
appropriate action. As shown in Figure 5, the monitoring sys-
tem is formed of four basic elements which are:
—Monitoring Data Repository: This repository stores all

monitoring data samples for each QoS metric that are taken
during the monitoring period, the recorded violation data,
and the actions taken against these violations.

—Violation Detector(Compliance Checker): The checker is
responsible for calculating the percentage of time that the
QoS is being compliant within a predefined monitoring pe-

riod (operating period). The operating period is the time in
which the SLA is monitored and, hence, the compliance per-
centage is calculated (for instance, Sunday to Thursday form
08:00 AM - 17:00 PM). This period should be specified
when defining the SLA and it can be specified on a daily,
weekly, monthly basis as the contract parties decide, also,
the different time zones are considered. The detection mech-
anism that is used to calculate the compliance percentage of
the entire SLA is summarized as follows: the compliance
percentage of each QoS metric is computed. Then, the re-
sulted value is passed to the corresponding SLO to calculate
its compliance percentage. After that, the compliance per-
centage of each SLO is passed to the SLA to calculate the
total compliance percentage of the SLA.
Many calculation methods can be used to calculate the
compliance value [4], such as average, median, sequential,
weight, best, and worst. To calculate the compliance value, it
is important to specify the operating period, the calculation
method, and QoS values(thresholds). Threshold is the target
value of the QoS metric that is defined in the SLA. The sys-
tem begins by checking the collected sample data (stored in
the monitoring repository) against the corresponding thresh-
old to determine how many values are greater/less than this
threshold. Then, a method for calculating the compliance
percentage is applied. After calculating the compliance per-
centage of each QoS metric, the compliance percentage of
the entire SLO is calculated. And finally, the compliance
percentage of the total SLA is calculated from the compli-
ance of the SLOs. For example, assume that an SLA with
response time threshold of 5 msec has been created, the data
samples taken for the response time parameter in the operat-
ing period specified from 08:00 AM - 18:00 PM are depicted
in Table 1. As shown, there are three of ten samples that are
greater than the threshold resulting in compliance percent-
age equals to 70% calculated using the average method.

—Violation Diagnosis: This component is responsible for un-
derstanding the reasons of violations. It determines which
parameters are violated and what led to these violations in
order to apply a recovery strategy. For example, assume that
the violated parameter is the processing time, then the rea-

5



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

Table 1. : Monitoring Data samples Example
Hour first second third fourth fifth sixth seventh eighth ninth tenth

Samples 5 ms 3 ms 7 ms 10 ms 1 ms 2 ms 6 ms 5 ms 4 ms 2 ms

son that caused the violation might be the number of data
centers is low or their configurations need to be enhanced.

—Actions Manager: This component is accountable for ap-
plying various actions in case of any violations based on the
violation detector results. The actions manager can take any
of the following three actions:
—Violation Recovery: Applying predefined recovery strat-

egy. A number of strategies can be used for recovering
SLA violations, two of these strategies are:
—Renegotiate: This strategy renegotiates the SLA vio-

lated parameters. A new bargaining for renegotiation
will start to overcome this violation by changing the
old value.

—Reconfigure: If the violation of a parameter happens
due to the lack of some resources, then a reconfigu-
ration process will start to troubleshoot this violation.
Recall the example of the violated processing time. The
recovery strategy here is to increase the number of data
centers, or increase the specification of the hardware
devices included in these data centers. This reconfigu-
ration process can be accomplished by applying mech-
anisms for resource allocation. One of these mecha-
nisms is proposed in [26]; it facilitates the resource al-
location considering the workload and the geograph-
ical locations of distributed data centers. Another so-
lution depends on resource allocation optimization by
using optimization algorithms such as Ant Colony [27].
In [28], an approach for autonomic resource manage-
ment was developed to master the problem of SLA vio-
lation resulting from the lack of resource management.

—Enforce Penalties: If there is no strategy for violation re-
covery or one of the existing recovery strategies is used
but a violation has been repeated, then the stated penal-
ties will be enforced by this action.

—End Contract: The end contract action triggered in the
following cases: Firstly, the supply of the services is fin-
ished. Second, multiple and critical violations have oc-
curred and there is no way to recover from these viola-
tions.

—Monitoring Reports: This action delivers reports to the
contract parties that indicate the general performance of the
SLA and illustrates the monitoring final results and what ac-
tions were taken.

Figure 6 illustrates the various activities and interactions be-
tween the components of the monitoring system. The monitor-
ing system begins by initiating a monitoring instance for each
SLA in a predefined operating period. Then stores the moni-
toring data in the data repository. After then, the stored mon-
itoring data is checked against violation through the violation
detector by computing the compliance value. When violations
are detected, the violation data is stored in the repository. Then,
the diagnosis unit starts diagnosing these violations and noti-
fies the actions manager to take the right action against them.
Thereafter, the actions manager is supposed to either recover
these violations by setting a recovery plan and apply strategy
(renegotiate or reconfigure), enforce penalties, or end the con-
tract if these violations cannot be recovered. Then, the desired

action for each violation is recorded in the data repository as
well as the monitoring system got notified by these actions. Fi-
nally, the monitoring system generates monitoring reports that
include the SLA monitoring results and the actions taken.

4. IMPLEMENTATION
This section discusses the implementation aspects of the proposed
architecture. The goals of our evaluation are: Firstly, determine the
efficiency of the proposed architecture in managing different SLAs.
Second, detect SLA violations by the monitoring system. Third,
show the different agreed actions that may be taken towards these
violations. Section 4.1 describes the simulation environment setup
and depicts the simulation results. This paper focuses on the auto-
matic generation of the SLA and the implementation of the moni-
toring system.

4.1 Experimental Environment
The cloud environment was simulated using CloudSim [29] soft-
ware. It is a toolkit for modeling and simulation of cloud com-
puting environments. It supports the modeling and simulation of
large scale cloud computing data centers and provides class de-
scription for virtual machines, users, applications, resources and
policies [30]. Table 2 depicts our basic cloud experimental testbed.
The table displays the resource specifications of the physical and
virtual machines that were used.

Table 2. : Cloud Environment Resource Specifications

Machine Type OS CPU Cores Memory Storage
Physical Machine Linux AMD 1 1 GB 30 GB
Virtual Machine Linux AMD 1 1 GB 10 GB

Table 3. : SLA Objectives Thresholds and the Monitoring Period

SLA parameter Threshold
Data Center Processing Time 5 ms

User Base Response Time 126 ms
Operating Period (Daily) 7:00 AM - 16:00 PM

Herein, Xen virtualization technology is used, a fully open source
solution for virtualization which is characterized by its high per-
formance and high speed [31, 32]. The simulated environment has
eleven user bases and five data centers geographically dispersed
in different five locations. The number of virtual machines differs
from one data center to another, the virtual cloud environment is
created by using 13 virtual machines. For each user base, an SLA
document is generated to guarantee the level of QoS for Platform-
as-a-Service (PaaS) that is provided by a cloud provider (CP).

6



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

Fig. 6: Monitoring System: Components Interactions

4.2 Simulation Results Analysis
This section presents the simulation scenarios that were used to
test the monitoring system. Table 3 shows the thresholds for the
SLA objectives for the execution and response time parameters and
the predefined operating period in which these two parameters are
monitored. Based on these predefined objectives’ thresholds, the
SLA for each user base is monitored to detect SLA violations. Fig-
ure 7 depicts the simulation results for monitoring the SLA param-
eters which were created for eleven user bases and five data centers.
Figure 7a shows the monitoring results of the processing time of the
five data centers, and Figure 7b shows the response times monitor-
ing results for all user bases. The average of the processing time and
response time for the data centers and userbases is illustrated in Fig-
ures 7c and 7d, respectively. The red line represents the threshold
value; it is obvious that no parameter exceeds the threshold values
(5 ms for processing time, 126 for response time) in average.
Another simulation scenario was used and its results are demon-
strated in Figure 8. On average, a violation is detected for the two
parameters: processing time and response time. Figure 8a shows
that two sets of processing time violations are recorded within the
operating period in two different times (10:00 AM - 13:00 PM and
15:00 PM - 16:00 PM) for five data centers in average. The figure
also shows sample breaches in the time period (18:00 PM - 22:00
PM), but these breaches are not considered as violations because
they occurred outside the defined operating time period. User re-
sponse time violations are shown in Figure 8b, these violations are
recorded in the period (11:00 AM - 13:00 PM) only, and the other
breaches cannot be taken into considerations because they were
outside the operating time period. Accordingly, the monitoring sys-

tem invoked the reconfiguration trigger to notify the provider entry
of this violation. As a result, the provider increased the number of
data centers in an attempt to overcome this violation. By operating
the monitoring simulation again after this reconfiguration, no vio-
lations were detected as shown in Figure 9. Thus, there was no need
for the provider and consumers to begin a renegotiation bargaining,
and the provider avoided the cost of paying penalties.

5. CONCLUSION AND FUTURE WORK
In this paper, an architecture for managing SLAs in cloud comput-
ing is proposed. The architecture is composed of five layers: Infras-
tructure Layer, SLA Layer, Provider Layer, Consumer Layer, and
Security and Privacy Layer. Each layer encompasses several com-
ponents and services for handling the diverse SLA management
functionalities including SLA generation, monitoring, and evalua-
tion and recovery. Also, the evaluation of the embedded monitor-
ing system inside the proposed architecture is discussed. An ex-
periment with several users was conducted through specifying and
observing some highlighted SLA parameters (i.e. execution time
and response time) for a provided PaaS in a cloud environment.
The simulation outcomes are discussed in both violations and non-
violations scenarios. The results from testing the monitoring system
show that the system is able to detect and diagnose whether or not
a violation has occurred and compute the compliance value. In ad-
dition, it can trigger proper actions to address violations based on
the causes of these violations.
In the future, an intelligent component will be added to the moni-
toring system that can predict violations and provide the necessary
actions to avoid and mitigate them. Moreover, this monitoring sys-

7



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

(a) Data Centers Processing Time (b) User Bases Response Time

(c) Average Data Centers processing time with threshold value (d) Average User Bases response time with threshold value

Fig. 7: Experimentation Results

(a) Average Data Centers processing time with violation (b) Average User Bases response time with violation

Fig. 8: Objectives Violation Scenarios

tem will be extended to be more effective and efficient through the
consideration of other complicated sets of parameters including the
trust and security items. Furthermore, a smart prioritization system
will be developed to filter the SLA parameters to be negotiated and
monitored with respect to the providers and consumers’ . Finally,

a full solution for the SLA management as-a-service including ser-
vice composition scenarios will be proposed.

8



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

(a) Average Data Centers processing time after recovery (b) Average User Bases response time after recovery

Fig. 9: SLA Parameters after Recovery

6. REFERENCES
[1] D. Serrano, S. Bouchenak, Y. Kouki, F. A. de Oliveira Jr,

T. Ledoux, J. Lejeune, J. Sopena, L. Arantes, P. Sens, Sla
guarantees for cloud services, Future Generation Computer
Systems 54 (2016) 233–246.

[2] W. Hussain, F. K. Hussain, M. Saberi, O. K. Hussain,
E. Chang, Comparing time series with machine learning-
based prediction approaches for violation management in
cloud slas, Future Generation Computer Systems 89 (2018)
464–477.

[3] N. Ghosh, S. K. Ghosh, An approach to identify and monitor
sla parameters for storage-as-a-service cloud delivery model,
in: Globecom Workshops (GC Wkshps), 2012 IEEE, IEEE,
2012, pp. 724–729.

[4] H. S. Salem, H. F. El Yamany, G. S. El-Tawel, Towards ser-
vice level agreements engineering process in cloud comput-
ing, Accepted in International Journal of Internet Manufac-
turing and Services (IJIMS), Inderscience Publishers, 2014.

[5] Ieee guide–adoption of iso/iec tr 24748-2:2011 systems and
software engineering– life cycle management– part 2: Guide
to the application of iso/iec 15288 (system life cycle pro-
cesses), IEEE Std 24748-2-2012 (2012) 1–96doi:10.1109/
IEEESTD.2012.6187665.

[6] W. A. Ghumman, Automation of the sla life cycle in cloud
computing, in: Service-Oriented Computing–ICSOC 2013
Workshops, Springer, 2014, pp. 557–562.

[7] M. Comuzzi, C. Kotsokalis, G. Spanoudakis, R. Yahyapour,
Establishing and monitoring slas in complex service based
systems, in: Web Services, 2009. ICWS 2009. IEEE Interna-
tional Conference on, IEEE, 2009, pp. 783–790.

[8] L. Wu, S. K. Garg, R. Buyya, C. Chen, S. Versteeg, Auto-
mated sla negotiation framework for cloud computing, in:
Cluster, Cloud and Grid Computing (CCGrid), 2013 13th
IEEE/ACM International Symposium on, IEEE, 2013, pp.
235–244.

[9] B. An, V. Lesser, D. Irwin, M. Zink, Automated negotiation
with decommitment for dynamic resource allocation in cloud
computing, in: Proceedings of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems: vol-

ume 1-Volume 1, International Foundation for Autonomous
Agents and Multiagent Systems, 2010, pp. 981–988.

[10] V. C. Emeakaroha, M. A. Netto, R. N. Calheiros, I. Brandic,
R. Buyya, C. A. De Rose, Towards autonomic detection of sla
violations in cloud infrastructures, Future Generation Com-
puter Systems 28 (7) (2012) 1017–1029.

[11] K. Stamou, V. Kantere, J.-H. Morin, Sla data management
criteria, in: Big Data, 2013 IEEE International Conference on,
IEEE, 2013, pp. 34–42.

[12] M. Kajko-Mattsson, C. Makridis, Outline of an sla manage-
ment model, in: IEEE Conference on Software Reengineering
and Maintenance, European Conference on Software Mainte-
nance and Reengineering, 2008, pp. 308–310.

[13] H. F. El Yamany, M. A. Capretz, D. S. Allison, Quality of
security service for web services within soa, in: Services-I,
2009 World Conference on, IEEE, 2009, pp. 653–660.

[14] D. S. Allison, A. Kamoun, M. A. Capretz, S. Tazi, K. Drira,
H. F. El Yamany, An ontology driven privacy framework
for collaborative working environments, Accepted in Inter-
national Journal Autonomous and Adaptive Communications
Systems, InderScience Publishers, 2014.

[15] IEEE Computer Society, Software Engineering Body of
Knowledge (SWEBOK V3), EUA, 2014.
URL http://www.swebok.org/

[16] M. I. Babar, M. Ramzan, S. Ghayyur, Challenges and future
trends in software requirements prioritization, in: Computer
Networks and Information Technology (ICCNIT), 2011 In-
ternational Conference on, IEEE, 2011, pp. 319–324.

[17] S. Baskaran, A survey on prioritization methodologies to pri-
oritize non functional requirements, International Journal of
Computer Science and Business Informatics 12 (1) (2014)
32–44.

[18] M. Ramzan, M. A. Jaffar, A. A. Shahid, Value based intel-
ligent requirement prioritization (virp): expert driven fuzzy
logic based prioritization technique, International Journal Of
Innovative Computing, Information And Control (ICIC) 7 (3)
(2011) 1017–1038.

[19] R. B. Svensson, T. Gorschek, B. Regnell, R. Torkar,
A. Shahrokni, R. Feldt, A. Aurum, Prioritization of quality

9

http://dx.doi.org/10.1109/IEEESTD.2012.6187665
http://dx.doi.org/10.1109/IEEESTD.2012.6187665
http://www.swebok.org/
http://www.swebok.org/
http://www.swebok.org/


International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.26, October 2020

requirements: State of practice in eleven companies, in: Re-
quirements Engineering Conference (RE), 2011 19th IEEE
International, IEEE, 2011, pp. 69–78.

[20] J. H. Allen, S. Barnum, R. Ellison, G. McGraw, N. Mead,
Software Security Engineering, Addison-Wesley Profes-
sional, 2009.

[21] A. Herrmann, M. Daneva, Requirements prioritization based
on benefit and cost prediction: an agenda for future research,
in: International Requirements Engineering, 2008. RE’08.
16th IEEE, IEEE, 2008, pp. 125–134.

[22] R. L. Gomes, E. Madeira, An automatic sla negotiation proto-
col for a future internet, in: Communications (LATINCOM),
2011 IEEE Latin-American Conference on, IEEE, 2011, pp.
1–6.

[23] E. Yaqub, P. Wieder, C. Kotsokalis, V. Mazza, L. Pasquale,
J. L. Rueda, S. G. Gómez, A. E. Chimeno, A generic platform
for conducting sla negotiations, in: Service Level Agreements
for Cloud Computing, Springer, 2011, pp. 187–206.

[24] P. Hasselmeyer, H. Mersch, B. Koller, H. Quyen, L. Schubert,
P. Wieder, Implementing an sla negotiation framework, in:
Proceedings of the eChallenges Conference (e-2007), Vol. 4,
2007, pp. 154–161.

[25] S. Son, S. C. Jun, Negotiation-based flexible sla establish-
ment with sla-driven resource allocation in cloud comput-
ing, in: Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on, IEEE, 2013,
pp. 168–171.

[26] S. Son, G. Jung, S. C. Jun, An sla-based cloud computing that
facilitates resource allocation in the distributed data centers
of a cloud provider, The Journal of Supercomputing 64 (2)
(2013) 606–637.

[27] R. Sahal, M. H. Khafagy, F. A. Omara, A survey on sla man-
agement for cloud computing and cloud-hosted big data an-
alytic applications, International Journal of Database Theory
and Application 9 (4) (2016) 107–118.

[28] S. S. Gill, I. Chana, M. Singh, R. Buyya, Chopper: an intel-
ligent qos-aware autonomic resource management approach
for cloud computing, Cluster Computing 21 (2) (2018) 1203–
1241.

[29] Cloudsim: A framework for modeling and simulation of cloud
computing infrastructures and services, accessed: 2013-02-16
(2014).
URL http://www.cloudbus.org/cloudsim/

[30] R. Kumar, G. Sahoo, Cloud computing simulation using
cloudsim, International Journal of Engineering Trends and
Technology (IJETT) 8 (2) (2014) 82–86.

[31] Xenserver: Open source virtualization, accessed: 2014-06-12
(2014).
URL http://www.xenserver.org

[32] The xen project, accessed: 2014-06-12 (2014).
URL http://www.xenproject.org/

10

http://www.cloudbus.org/cloudsim/
http://www.cloudbus.org/cloudsim/
http://www.cloudbus.org/cloudsim/
http://www.xenserver.org
http://www.xenserver.org
http://www.xenproject.org/
http://www.xenproject.org/

	Introduction
	Related Work
	The Proposed Service Based SLA Management Architecture
	Architecture Components
	Infrastructure Layer
	Consumer Layer
	Provider Layer
	Security and Privacy Layer
	SLA Layer


	Implementation
	Experimental Environment
	Simulation Results Analysis

	Conclusion and Future Work
	References

