
International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 28, October 2020

22

Comparative Analysis of Comparison and Non

Comparison based Sorting Algorithms

Adolf Fenyi
Sefwi Wiawso College of Education
P. O. Box 94, Sefwi Wiawso, Ghana

Michael Fosu
Cape Coast Technical University

Cape Coast
P. O. Box DL 50, Cape Coast,

Ghana

Bright Appiah
Presbyterian College of Education
P. O.Box 27, Akropong Akuapem,

Ghana

ABSTRACT
Sorting is one of the most important task in many computer

applications. Efficiency becomes a big problem when the

sorting involves a large amounts of data. There are a lot of

sorting algorithms with different implementations. Some of

them sort data by comparison while others don’t. The main

aim of this thesis is to evaluate the comparison and non-

comparison based algorithms in terms of execution time and

memory consumption. Five main algorithms were selected for

evaluation. Out of these five, three were comparison based

algorithms (quick, bubble and merge) while the remaining

two were non-comparison based (radix and counting). After

conducting an experiment using array of different data sizes

(ranging from 1000 to 35000), it was realized that the

comparison based algorithms were less efficient than the non-

comparison ones. Among the comparison algorithms, bubble

sort had the highest time complexity due to the swapping

nature of the algorithm. It never stops execution until the

largest element is bubbled to the right of the array in every

iteration. Despite this disadvantage, it was realized that it is

memory efficient since it does not create new memory in

every iteration. It relies on a single memory for the swapping

array operation. The quick sort algorithm uses a reasonable

amount of time to execute, but has a poor memory utilization

due to the creation of numerous sub arrays to complete the

sorting process. Among the comparison based algorithms,

merge sort was far better than both quick and bubble. On the

average, merge sort utilized 32.261 seconds to sort all the

arrays used in the experiment while quick and bubble utilized

41.05 and 165.11 seconds respectively. The merge algorithm

recorded an average memory consumption of 5.5MB for all

the experiment while quick and bubble recorded 650.792MB

and 4.54MB respectively. Even though the merge sort is

better than both quick and bubble, it cannot be compared to

the non-comparison based algorithms since they perform far

better than the comparison based ones. When the two groups

were evaluated against execution time, the comparison based

algorithms recorded an average score of 476.757 seconds

while the non-comparison obtained 17.849 seconds. With

respect to the memory utilization, the non-comparison based

algorithms obtained 27.12MB while the comparison ones

obtained 1321.681MB. This clearly reveals the efficiency of

the non-comparison based algorithms over the comparison

ones in terms of execution time and memory utilization.

General Terms

Algorithms, sorting, comparison, arrays and data structures

Keywords
Bubble, Quick, Merge, Counting, Radix and Time

Complexity

1. INTRODUCTION
In computer Science, sorting is very important in many

applications as far as locating and searching for a an important

data is concerned. Sorting is therefore the process of

rearranging the data in a list into a specific order. This order

could be lexicographical or numeric. It arranges integers into

either ascending or descending order and strings into

alphabetical order. Searching a sorted list or array takes less

time as compared to unsorted list [1]. Several researchers have

analyze the complexity and propose a number of good sorting

algorithms. These research have solved a lot of problems in

computer science[2]. However, every sorting algorithm comes

with its advantages and disadvantages. For example, Quick

sort is better for sorting a large amount of data while Bubble

sort is better for small data size. The performance of every

sorting algorithm depends on the computer (main memory and

hard drive) and the size of the data being sorted[3]. Therefore

to evaluate the performance of sorting algorithms, there is the

need to consider the execution time and space complexity of

the algorithms[4]. Because sorting algorithms are popular in

Computer Science, some of it contexts are well known in

algorithm concepts. Examples include divide and conquer,

randomized algorithms and data structures. The efficiency of

most of the sorting algorithms is either O(nlogn) or O()

1.1 Objectives
The objective of this paper is to evaluate the various types of

sorting algorithms(comparison and non-comparison) based on

their time and space complexities.

1.2 Limitations
This research could not analyze all the various types of sorting

algorithms due to their number. It therefore considered only

the major and well known algorithms. The researcher could

not also conduct test on arrays (large arrays) with sizes greater

than 40000 bytes, due to insufficient memory on the

computer.

2. LITERATURE REVIEW
This section describes the various types of sorting algorithms.

Each algorithm is defined and explained with their advantages

and disadvantages. It present two main types which are

comparison and non-comparison based algorithms. The

comparison based algorithm works by comparing the element

in the array with one another while the non-comparison sorts

the elements by not comparing but by other approaches[5].

The comparison based algorithms that are considered in this

study are quick, bubble and merge sorts, while the non-

comparison are radix and counting.

2.1 Quick sort
Quick sort has been declared as the fastest sorting algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 28, October 2020

23

as compared to other complicated ones. This algorithm is

better than Merge since it does not need extra memory space

for sorting. This makes it applicable in real time applications

that require extremely large datasets. It utilizes divide and

conquer approach for dealing with problems. It operates by

fetching elements from unsorted array which is called pivot

and divide the array into two sub arrays. It then reconstruct

one of the arrays with the elements larger than the pivot while

the other array is reconstructed with elements smaller than the

pivot. This operation is recursively repeated for both sub

arrays. The algorithm selects either the rightmost or leftmost

element as the pivot. This selection was adopted in the early

version of the algorithm and it creates worst case behavior for

array that has already been sorted. However, the problem was

solved by randomly selecting a pivot and computing the

median of first, middle and last elements. It works efficiently

in a virtual memory environment. Quick sort is fast and

efficient algorithm for large data sets. It is however inefficient

for array that has already been sorted and contains the same

elements. It also has high space complexity since it uses

additional space for recursive function calls[6].

2.2 Bubble Sort
This algorithm[2] is said to be the slowest but simple. It works

by comparing the array elements with their neighbours and

rearranges them if they are unsorted. The algorithm continues

this rearrangement operation until it discovers that all the

elements in the array are sorted. This process slows down the

algorithm when the input size increases. It is said to be

inefficient for large volume of data. The advantage of this

algorithm is that it is simple and easy to implement.

2.3 Merge Sort
This algorithm adopts the divide and conquer approach to

solve problems[7]. It operates by dividing a given array into

many sub arrays until each one contains only one element. It

then merges the sub arrays into a single sorted array. This

algorithm is considered to be stable since it preserves order of

elements with equal key. This algorithm requires more

memory than other complicated sorting algorithms. Due to it

recursive nature, it is not recommended for smaller arrays. It

is also difficult to implement.

2.4 Radix sort
This works without comparing any element in an array, and is

therefore considered as a linear sorting algorithm[8]. It

operates by sorting array elements with keys. The keys are

mostly denoted by integers. It works by rearranging each

value in the input element. It can begin with the least

significant digit until it get to the most significant digit. It is

considered as a stable algorithm since it preserves the order of

elements with equal keys. The two main implementation of

radix sort are Least Significant Digit (LSD) and Most

Significant Digit (MSD). The LSD method works by sorting

the array based on the least significant value until the most

significant value is reached while the MSD starts with the

most significant value to the least value. The efficiency of

Radix does not depend on the size and type of the input

elements being sorted. It is very difficult to implement and

also consumes a lot of memory.

2.5 Counting
This algorithm[9] is considered to have linear running time

complexity since it is an integer sorting algorithm. It also

operates based on keys that ranges from zero to the size of the

input array. It operates by counting the occurrences of the

array element and storing this information into another array

(B). It then applies arithmetic operations on array B to

determine the position of each value in the complete sorted

array. It also preserves the order of array elements with equal

keys. One of the advantages of this algorithm is that it can be

used as a subroutine to another algorithm since it uses key

values as indexes into an array. This algorithm is not good for

strings and large arrays[10].

3. METHODOLOGY
In this section, the study will implement the various

comparison and non-comparison based sorting algorithms in

PHP programming language. A laptop machine with speed 2.7

GHz and memory of 8GB was used to evaluate the various

algorithms with respect to time and memory complexities.

The microtime function which accepts Boolean value was

used to determine the execution time while

memory_get_peak_usage() was used to determine the

memory consumption of the various algorithms. The pseudo

codes of Quick[11], Bubble[12], Merge[13], Radix[14] and

counting[15] algorithms were studied and implemented in

PHP programming language.

The results are shown in the next section of this paper.

4. RESULT ANALYSIS AND

DISCUSSIONS
In this section, the study will evaluate the various algorithms

based on time (seconds) and memory (MB) complexities. It

will be bad to use any sorting algorithm without looking at it

efficiency. Efficiency deals with memory, CPU, network and

disk usage. The time complexity of an algorithm depends on

the number of basic operations it performs. The study will

evaluate the running time and memory consumption of an

unsorted array whose size ranges from 1000 to 35000. The

elements in this array will be sorted by the various algorithms.

The study will also implement the big O notation which does

not depend on any machine’s architecture to determine the

complexities. The three main cases that would be examined

are best, average and worst cases. The best case is defined by

the fastest amount of time required by the algorithm to solve a

given problem. For example, the amount of time required to

sort an array that has already been sorted. The average case is

the average amount of time the algorithm needs to solve a

problem. This could be done by running the algorithm several

times over many input sizes and computing the average. The

worst case is the maximum amount of time the algorithm

needs to solve a problem. For example, this could be the time

to sort an array that is sorted in a reverse order.

Table 1: Evaluating the running time of the various

algorithms in seconds

No. of

elements

Quick Bubble Merge Radix Counting

1000 0.0684 0.334 0.073 0.307 0.001

5000 1.448 8.517 1.318 1.606 0.005

10000 6.343 34.912 5.516 3.219 0.007

20000 32.029 144.865 28.239 7.084 0.009

30000 83.186 332.707 64.896 10.775 0.02

35000 122.96 469.331 93.527 12.630 0.034

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 28, October 2020

24

Fig. 1: Graphical representation of the running time of the

algorithms against the data size

Table 2: Evaluating the time complexities using Big O

notation

Algorithm Best Average Worst

Quick O(n log n) O(n log n) O(n2)

Bubble O(n2) O(n2) O(n2)

Merge O(n log n) O(n log n) O(n log n)

Radix
O(n ·

) O(n ·

) O(n ·

)

Counting O(n +) O(n +) O(n +)

Where n is the input size, k is the key size and s is the chunk

size

Table 3: Evaluating the memory consumption of the

various algorithms in megabytes

No. of

elements

Quick Bubble Merge Radix Counting

1000 2.252 0.811 0.817 0.817 0.812

5000 39.209 1.843 1.880 1.849 1.843

10000 150.465 2.636 3.400 2.615 2.637

20000 590.155 6.343 6.467 6.349 6.343

30000 1323.736 7.139 9.329 7.012 7.141

35000 1798.934 8.492 11.135 8.330 8.492

Fig. 2: Graphical representation of the memory

consumption of the algorithms against the data size

5. CONCLUSION
In this research, several experiments were carried out to test

the performance of the various sorting algorithms with respect

to time and memory complexities. The experiments revealed

that non-comparison based algorithms are more recommended

than the comparison based ones in terms of running time. For

example, an average running time of 17.849 seconds was

obtained for the non-comparison based algorithms against

476.757 seconds for the comparison ones. The high time

complexity recorded in the comparison based algorithms is

due to the number of swapping of the individual elements in

the array. As the size of the array grows, more swapping is

needed to sort the elements, thereby increasing the execution

time. For example, the bubble sort algorithm that recorded the

highest execution time will never stop its iteration until the

highest number in the array bubbles to the right. It was also

realized from the experiment that for small array (1000

elements array), the performance of all the algorithms were

almost the same. However, a significant change is seen in the

comparison based algorithms when the array size becomes

very large. With respect to the memory consumption of the

algorithms, it was realized that the non-comparison based

algorithms utilize less memory than the comparison based

ones. For example, an average memory of 27.12 MB was used

by the non-comparison based algorithms against 1321.681MB

for the comparison ones. This clearly indicate the poor

performance of the comparison based algorithms in terms of

memory consumption. It was also realized from the

experiment that quick sort algorithm which is part of the

comparison based ones utilized the largest memory capacity.

This problem is due to the recursive nature of the algorithm

where pivot is generated for each sub array, before its

elements are being swapped. This operation utilizes enormous

amount of memory. Even though bubble sort had the highest

time complexity from the experiment, it was also seen that the

algorithm had a small memory consumption because the

swapping operation occurs within a single array and does not

require allocation of any new memory from the operating

system.

It is therefore clear from the experiment that the non-

comparison based algorithms are more efficient than the

comparison based ones in terms of time and space

complexities.

6. REFERENCES
[1] M.S. Garai Canaan.C and M. Daya. Popular sorting

algorithms. World Applied Programming, 1:62{71, April

2011.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 28, October 2020

25

[2] A.D. Mishra and D. Garg. Selection of Best Sorting

Algorithm. International Journal of Intelligent

Processing, 2(2):363{368, July-December 2008.

[3] Pankaj Sareen. Comparison of sorting Algorithms (on the

basis of average case). IJARCSSE, 3:522{532, March

2013.

[4] Donald E.Knuth. The Art of Computer Programming

Second Edition, volume 3. ADDISON-WESLEY, 1998.

[5] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein. Introduction to Algorithms.

The MIT Press, 2009.

[6] Omar khan Durrani, Shreelakshmi V, Sushma Shetty,

and Vinutha D C. Analysis and determination of

asymptotic behavior range for popular sorting

algorithms. Special Issue of International Journal of

Computer Science Informatics (IJCSI),

ISSN(PRINT):2231-5292, Vol-2, Issue-1,2.

[7] Coenrad Bron. Merge sort algorithm [m1] (algorithm

426). Commununication , ACM, 15(5):357, 1972.

[8] Harold H Seward. Information sorting in the application

of electronic digital computers to business operations.

Master’s thesis, M.I.T, 1954.

[9] Clifford A. Shaffer. A Practical Introduction to Data

Structures and Algorithm Analysis Third Edition.

Prentice Hall, April 2009.

[10] D. L. Shell. A high-speed sorting procedure. Commun.

ACM, 2(7):30{32, July 1959.

[11] B.L Teague, The Quick sort implementation in PHP,

accessed 13th January 2020, https://medium.com/the-

protean-journal/the-quicksort-algorithm-implemented-in-

php

[12] J. M Shaffer, Bubble Sort Algorithm in PHP, accessed

20th July 2020, https://eresdev.com/bubble-sort-

algorithm-in-php

[13] Codexpedia, Merge sort Implementation in PHP,

accessed 7th June 2020,

https://www.codexpedia.com/php/merge-sort-example-

in-php/

[14] K.T Toida, PHP Program - Radix Sort, accessed 15th

June 2020,

https://www.alphacodingskills.com/php/pages/php-

program-for-radix-sort.php.

[15] I. Wegener, PHP Program - Counting Sort, accessed

10th May 2020,

https://www.alphacodingskills.com/php/pages/php-

program-for-counting-sort.php

IJCATM : www.ijcaonline.org

https://eresdev.com/bubble-sort-algorithm-in-php
https://eresdev.com/bubble-sort-algorithm-in-php

