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ABSTRACT
The multiplicity of cloud service providers and the wide variety of
resources types and regions makes selecting services a challenging
task, which becomes even more complex when considering differ-
ent cloud deployment models to meet the applications’ specifics
that will use these resources. For this, among the criteria used in
selecting cloud resources, the cost is rated one of the most essen-
tial. Given this, this paper presents a cloud service broker’s design
and implementation for resource selection, taking into account dif-
ferent options, including the variation of cloud service providers,
regions, and cloud deployment models. The proposed tool is based
on other contributions that are also described in this work: 1) the de-
sign and construction of an ontology with concepts on the represen-
tation of computing resources, with associated reasoning processes;
and 2) an on-premises infrastructure cost estimation strategy using
a Total Cost of Ownership analysis. A qualitative evaluation con-
sidering productivity and accuracy is also presented, demonstrat-
ing the advantages of the proposed tool over other existing options.

General Terms
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Keywords
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1. INTRODUCTION
Nowadays, the use of Cloud Computing environments to serve in-
frastructure needs is a widely adopted strategy. Estimates indicate
that 2/3 of Infrastructure as a Service (IaaS) spend goes toward
compute [28]. In this scenario, cloud service discovery, i.e., the
process of finding a Cloud Service Provider (CSP) who can best
satisfy a consumer’s needs, is carried out with cost optimization as
one of the main focuses. However, the adoption of a single deploy-
ment option for this task is a limiting strategy. As an example, for
some applications, the location of deployment is not important. For
instance, in training neural network models, the geo-distribution of
datacenters can be exploited as a strategy for allocating computa-
tional power at a lower cost. Furthermore, using another deploy-
ment model can also be an interesting strategy because, for specific
scenarios, it can be more economically advantageous to create its

own infrastructure instead of adopting public cloud environments.
Other scenarios may require an on-premises solution such as those
where legal constraints prevent public clouds.
Cloud service discovery taking only public clouds is already a chal-
lenging task since the market for cloud services is overwhelmed
with a high number of heterogeneous cloud offerings, derived from
the number of CSPs and the multiple regions in which they act. In
addition to the wide variety of equivalent services, there is also the
fact that each CSP adopts a specific nomenclature on the services it
offers, given that due to commercial competition, there is no initia-
tive on the part of them to create standardization [4]. Consequently,
equivalent cloud services can be represented by different expres-
sions depending on the provider, leaving the customer with the task
of distinguishing and associating one service to another, using their
specifications and descriptions. The use of general-purpose search
tools is not an effective strategy to deal with this challenge as they
are based only on the use of keywords and match between terms.
The entire semantic and domain spectrum of the query is lost when
weighing and selecting the results. Furthermore, considering that
each CSP may expose their unique Application Program Interface
(API), designing and developing an application to be deployed on
a specific CSP does little to mitigate the development efforts to de-
ploy the application on the cloud [11].
The use of Cloud Service Broker (CSB) solutions are commonly
proposed as the most promising alternative in cloud service discov-
ery [11, 13]. A CSB can be defined as a service that acts on behalf
of a client to provide resources, including automatic resource pro-
visioning across multiple clouds [13]. The use of a CSB makes it
possible to deal with heterogeneity aspects. However, most exist-
ing solutions focus more on a wider range of functional and non-
functional aspects [7, 33] rather than economical. Though, what
makes a CSB eminent among others is a mechanism for optimiz-
ing customer value for money. Besides, some of these solutions do
not offer enough abstraction to handle multiple CSPs [23] or are
specific to the public cloud, not allowing analysis with other de-
ployment models.
In view of that, this paper describes a CSB tool for cloud service
discovery targeting cost reduction of computing resources on using
different deployment options. The tool allows exploring the multi-
plicity of resource types and region of deployment. To this end, an
ontology is proposed that aims to standardize terms related to in-
frastructure and, thus, address the highlighted semantic problems.
Also, the tool allows the analysis of different deployment models
by relying on an on-premises cost estimation strategy based on the
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Total Cost of Ownership (TCO) analysis. The purpose of this CSB
is not to optimize cloud service discovery at runtime, but rather
to offer a tool that supports the search for resources with a given
hardware configuration. Another goal is to offer a component that
can be used in the construction of more complex solutions. Exper-
iments demonstrate that the proposed tool offers a higher level of
productivity and accuracy than existing alternatives, allowing more
significant results in less time.
The remaining of this paper is organized as follows. Related work
is discussed in Section 2. Section 3 presents the proposed ontology
while the methodology for estimating on-premises infrastructure
cost is discussed in Section 4. Based on these contributions, the
tool architecture is presented in Section 5. The implementation of a
prototype of the architecture is described in Section 6, and its qual-
itative evaluation, through an experiment, is discussed in Section 7.
Final remarks are presented in Section 8.

2. RELATED WORK
The foundations necessary for developing the solution proposed
here are also dealt with in other work, but generally with differ-
ent goals. More precisely, the analysis of the cost of clouds through
TCO and the use of ontologies to represent cloud environments are
the object of study in several works, among which can be cited, re-
spectively, [7, 14, 22, 29] and [9, 17, 18]. However, concerning the
first subject, TCO analysis has the sole objective of evaluating en-
vironments on-premises, without considering other cloud deploy-
ment models or multiple CSPs. Besides, the ontologies’ proposi-
tion aims mainly to allow interoperability between CSPs without
having cost optimization as a focus.
Among the work that most resemble the proposal presented here,
Wang et al. [32] proposed the brokerage service to minimize the
cost by exploiting different pricing offers of IaaS clouds to get max-
imum benefits from various offers. These resources are served to
cloud customers as per their demands at a reduced cost. However,
the approach is a dynamic solution to which, not in all cases, ser-
vice cost can be reduced.
A semantic matchmaking algorithm was proposed by Modica and
Tomarchio [21] to search cloud services that best meet the customer
requirements. Experimental results show that semantic technolo-
gies can enhance the performance of supply-demand matchmaking.
Nevertheless, cost optimization is not the main goal.
STRATOS [24] provides automated decision making for resource
acquisition between different CSPs based on two steps: determin-
ing the number of resources required, and determining where to
place the resources. One of the broker’s goals is optimizing costs,
which is expressed by taking the prices charged for different ser-
vices into consideration. However, this optimization is performed
by ignoring geographic datacenter placement.
Similarly, various cloud service discovery tools have been devel-
oped in the industry, such as Cloudorado Cloud Server Compari-
son [8] and RankCloudz [25]. However, these tools do not support
multiple deployment models. Moreover, the RankCloudz selection
process requires customers to determine the importance of a set of
attributes, only for comparing CSPs and not performing cloud ser-
vice discovery. In this same category, some CSPs themselves offer
tools that assist in this task targeting cost optimization, with on-
premises cost analysis. Examples are AWS Pricing Calculator [3],
Azure TCO Calculator [20], and Google Pricing Calculator [12].
However, queries only consider resources from the provider itself.
Despite the similarities with some existing solutions, the tool pro-
posed here aims to fill some gaps in these approaches’ consultation
process. The main outcome is that it allows a more precise analysis

of the cost of resources when considering multiple CSPs, regions,
and deployment models. With this, it is expected that the proposed
tool allows us to offer more accurate insights into the costs related
to the allocation of IaaS.

3. DRIVING AN UNIFIED IAAS NOMENCLATURE
Little has been done to tackle interoperability challenges in cloud
computing environments. This is evidenced by the sparse adoption
of mapping and translation libraries to abstract away differences be-
tween CSPs. Also, many frameworks assume that they will adopt
a common API to collaborate to satisfy customer’s requirements.
In reality, the cloud market has demonstrated its resistance to al-
lowing customers to move between competitors freely, and the vast
majority of the literature assumes that data published by CSPs is
comparable [11]. Further, some approaches assume that the CSPs
will adopt standard offering descriptions (e.g., Open Cloud Com-
puting Interface (OCCI) [10]), which is also unrealistic. The most
promising solution widely discussed in the literature is the use of
ontologies to handle these limitations.
As a first step in building an ontology-based solution, the main
contributions related to compute services with a focus on cost op-
timization were analyzed. To this end, the analysis relies on the
studies of Tankelevicienea and Damaseviciusb [30], where an eval-
uation framework was presented to be used during the process of
building ontologies. On top of that, an assessment was carried out
based on the following criteria:

— (I) Completeness: how well the ontology captures the domain
knowledge.

— (II) Consistency: how free of contradictories and overlaps is the
ontology.

— (III) Conciseness: how free of unnecessary and redundant in-
formation or details is the ontology.

— (IV) Preciseness: ontology’s richness level.
— (V) Clarity: how well the ontology is clear and understandable

for domain knowledge experts.

In the process, the contributions presented by Al-Sayed et al. [1]
are reevaluated and extended. The evaluation had as scope only the
aspects related to the goals of the proposed CSB so that other fea-
tures of the ontologies are disregarded. Table 1 presents the taken
solutions, as well as the satisfaction of the established criteria.
As shown in the Table 1, despite the wide applicability of the exist-
ing ontologies, the abstraction proposed by them is not suitable to
adequately represent computing resources. Especially when con-
sidering the completeness criterion, only the mOSAIC and Han
and Sim ontologies represent hardware components in the neces-
sary granularity to develop the proposed CSB. Another important
criterion, preciseness, is not adequately addressed. In reality, con-
sidering the target problem, no ontology completely meets all the
criteria. Therefore, a new ontology is proposed, named Cloud In-
frastructure Service Ontology (CISO), in order to overcome the
limitations identified in the existing solutions.
The CISO has been developed in the Ontology Web Language
(OWL) language by using Protégé 5.51. As shown in Fig. 1, its
structure includes classes that represent the highest level concepts
such as Communication as a Service (CaaS), Compute Resource,
etc. The meaning of each class is intuitive and can be extracted from
the figure itself. It is important to notice that the ontology includes

1https://protege.stanford.edu/
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Table 1. Ontologies and evaluation criteria
Ontology (I) (II) (III) (IV) (V)
IBM [6] X X

NIST [15] X X
Alfazi et al. [2] X
Lenk et al. [16] X X X
mOSAIC [22] X X

CL-Ontology [7] X X
Tahamtan et al. [29] X
Han and Sim [14] X X X X

Fig. 1. Structure of the CISO ontology.

Fig. 2. Example of using CISO ontology to describe VM specification
from AWS.

the main elements necessary for allocating computing resources,
which were not adequately present in the analyzed ontologies.
To illustrate, a brief example is shown where the CISO ontology
is used to describe VM specification from AWS. First of all, In-
stance Type has been defined as individual of Virtual Machine and
Region as Location’s individual. The hardware properties are rep-
resented as individuals of the modeled classes, such as vCPU from
Core, for instance. In Fig. 2, the individuals and the relationships
are depicted.

4. ESTIMATING ON-PREMISES DEPLOYMENT
COST

For the infrastructure cost estimate to be complete, it must also con-
sider allocating resources using other deployment models which
may be the case for an infrastructure on-premises. To this end, the
Total Cost of Ownership (TCO) analysis technique is applied. This
technique is generally used as a means of addressing the real costs
attributing to owning and managing an IT infrastructure in busi-
ness. A novel methodology to obtain this estimate is proposed,
since the main existing strategies present particular assumptions,

making it difficult to use in the scenario. Furthermore, although
some CSPs offer tools for estimating TCO, they are skewed to priv-
ilege results in their environments.
The proposed TCO estimation methodology is based on Li et
al. [17] and Cui et al. [9]. These two approaches complement each
other since the first offers a broad methodology for resources in
a datacenter, while the second is more focused on estimating the
power cost in this environment. The following describes each of
the components in the proposed methodology.

Amortization or depreciation of the cloud. The construction and
maintenance of a datacenter require resources such as servers, cool-
ing equipment, among others. These resources have specific de-
preciation rates making the cost of different metrics items can not
be put together directly or comparatively fairly. To overcome this
problem, a component is defined: amortization, which constitutes a
monthly cost rate.
Typically, real estate is depreciated over periods of 10 years, and
other items like server and facilities are depreciated over three
years [26]. A cost amortization rate parameter is proposed, Arp,
which can be applied to both one time purchases (server cost, fa-
cility cost, etc.) and operational expenses (power cost, cooling cost,
etc.). The amount is calculated by Equation 1 considering the amor-
tization period in hours (Ap) with a depreciation rate of 5%.

Arp =
1.05× time

Ap

(1)

Server cost. For simplicity, it is adopted equipment with the same
configuration. Each h physical server is characterized by the tu-
ple {ch, rh, bh, sh}, where ch is the number of CPU cores, rh is
the amount of RAM, bh is the amount of bandwidth (BW), and sh
is the amount of storage. RAM, BW, and storage are measured in
gigabytes (GB), gigabits per second (Gb/p), and gigabytes (GB),
respectively. A fraction of server resources is allocated to VMs to
fulfill the cloud customer demands. Usually, multiple VMs can be
deployed on a single server. Each VM is characterized by a tu-
ple with the same attributes as the description of a physical server.
Thus, given n VMs with the same configuration, the number of
physical servers, Ns, is calculated according to the Equation 2.

Ns = n×max
{⌈

cVM

ch

⌉
,

⌈
rVM

rh

⌉
,

⌈
bVM

bh

⌉
,

⌈
sVM

sh

⌉}
(2)

The server cost,Cs, is estimated usingNs, the cost of each physical
server (Cps), and the amortization cost, using the Equation 3.

Cs = Ns × Cps ×Arp(time) (3)

Network cost. The network cost is related to the number of
switches, Network Interface Cards (NIC), and cables used to con-
nect physical servers to the network. However, due to the negligible
price compared to other equipment, cabling cost is neglected.
We initially calculate the number of switches (Nswitch), using Equa-
tion 4, based on the number of physical servers (Ns), the number
of NIC per virtualized server (NNIC), the number of ports per NIC
(NpNIC ), and the port number of a network switch (Nport).

Nswitch = NNIC ×NpNIC ×
Ns

Nport
(4)
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Thus, the network cost, Cnet, considers the switch number and the
price of each switch (Ps) according to Equation 5.

Cnet = Nswitch × Ps ×Arp(time) (5)

Software cost. In addition to physical equipment, cost associated
with the required software licenses is included. For this purpose,
software is split into three categories:

— Type I: Operating Systems and any other software being li-
censed by suit;

— Type II: VM software, and any other software that is licensed
by the processor number;

— Type III: management software, which is licensed by the pro-
cessor number.

Thus, considering the number of licenses of each type (N∗), their
cost (C∗), and a subscription factor (percentage of unit price that
yield annual fee), S∗, software cost, Csw, is estimated according to
the Equation 6.

(6)Csw =(Co×So×Noslic+Css×Ss×Nslic+Cm×Sm×Nmlic)

×Arp(time)

Support and maintenance cost. The support and maintenance cost
(Csm) involves software distribution and update, asset manage-
ment, troubleshooting, server configuration, threat protection, and
others. Its calculation is based on the number of administrators re-
sponsible for support and maintenance (Nlabor), the average time
spent on unit system under utilization (Tuse), the time spent on all
the idle systems (Tidle), and the rating number of salary averages
(Rsalary), using the Equation 7.

Csm = Nlabor × (Tuse ×Ns + Tidle)×Rsalary (7)

Power cost. The power cost involves the consumption in kWh
of the servers, cooling, network switches, and lighting, with the
servers responsible for most of this consumption since they use up
to 80% of peak power even at 20% utilization [31]. The Equation 8
estlabishes the power cost (Cpw), where Ce-kwh is the electricity
cost per kWh, PUE represents the total power utilization efficiency
which is calculated using the analytical model provided in [9].

Cpw = Ce-kwh ×
ωs + ωn

1000
× time× PUE (8)

Cooling cost. The cooling cost (Ccool) tends to account for 30% of
the total power cost of a datacentre [31]. To estimate it, a parameter
λ is applied, which represents how much that the cooling equip-
ment consumes power for every 1W of heat dissipation in the dat-
acenter. The other variables considered are β, Airflow Redundancy
Constant (redundant airflow required to cool datacenter), and ε, Hu-
midification Constant (redundant airflow to account for the burden
of humidification). The calculation is performed according to the
Equation 9.

Ccool = λ× (1 + β)× Ce-kwh × time
ε

(9)

Facilities cost. The cost of facilities (Cfac) comprises the ex-
penses necessary for the execution of the equipment. It is calcu-
lated according to the Equation 10 and includes the number of racks
(Nrack) and the cost of facilities per rack (Cfp).

Cfac = Nrack × Cfp ×Arp(time) (10)

Immovable cost. To estimate this component it is necessary to cal-
culate the space taken up by all the racks under utilization (Uspace),
given by Equation 11, where Nft2 is the number of square feet per
rack, and φspace is the percent of space taken by racks in all (<1).

Uspace =
Nft2 ×Nrack

φspace
(11)

Immovable cost (Cimm) is then calculated by the Equation 5, being
Cft2 the cost per square foot to build the datacenter.

Cimm = Cft2 × Uspace ×Arp(time) (12)

Cloud’s total cost. In the cloud’s total cost, the total sum of all
components is estimated as in Equation 13.

Ctotal = Cs +Cnet +Csw +Csm +Cpw +Ccool +Cfac +Cimm

(13)

Using the proposed methodology, it is possible to estimate the total
cost of implementing resources considering an on-premises infras-
tructure. This strategy was used in the construction of the CSB that
will be presented in the next section.

5. TOOL ARCHITECTURE
The proposed ontology for cloud IaaS description, and the pro-
posed strategy for on-premises cost estimation, establish the basis
of the proposed tool. Although the proposed ontology allows the
representation of multiple IaaS, the scope is set Virtual Machines
(VM). Its architecture is illustrated in Fig. 3.
The interaction with the user is performed through the component
named Query processing engine. Through it the user describes the
required resources, which include hardware characteristics and the
number of requested VMs. The description is provided using log-
ical and relational operators, which makes it possible to meet a
broader set of requirements. Based on this description, the com-
ponent generates the query in an internal language passed on to
the Result aggregator component which is responsible for consol-
idating the results obtained based on the different cloud deploy-
ment models. Currently, the tool only considers public cloud and
on-premises environments, but the architecture was designed to al-
low its future expansion to use other deployment models. The cost
evaluation considering the two currently supported models is per-
formed based on the generated query, through the components Pub-
lic cloud model analyzer and Private cloud model analyzer.
The component Private cloud model analyzer performs the cost
evaluation for an infrastructure on-premises based on the proposed
TCO estimation strategy. On the other hand, due to the CSPs multi-
plicity and heterogeneity, cost evaluation in public cloud is a chal-
lenger. Because of this, the component in charge of this task uses
two auxiliary components. The first one, named Search agent,
is responsible for discovering resource information in the differ-
ent supported CSPs. This task is performed in a specific way for
each provider, through cloud provider adapters. The Cloud infor-
mation retrieval agent aggregates the results provided by these
adapters, which stores them in a database named Cloud service of-
fers. Matching terms and establishing a common nomenclature is
the second component’s responsibility, named Knowledge agent.
Its main sub-component, Cloud service reasoning agent, uses the
proposed ontology to reason about the relationships among cloud
services. To do so, it uses the Rating agent component, which
helps to identify inconsistencies and selection in the case of equiv-
alent results. The semantic results are kept in the Domain knowl-
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Fig. 3. Proposed tool architecture.

edge repository database, which can be updated in the face of new
queries.

6. TOOL IMPLEMENTATION
To demonstrate the proposed tool, a prototype of the architec-
ture presented in the previous section was developed. The proto-
type is a web application implemented in Python using the Django
framework2. The source code of the tool is available at https://
github.com/GeovRodri/tco-multicloud. The details of the
implementation are described following.
The CISO ontology’s implementation, the main element of the
Knowledge agent component, is based on the Resource Description
Framework (RDF) specifications, part of a W3C specification fam-
ily. The RDF/XML format was adopted using properties from the
Ontology Web Language (OWL) [19], through the Owlready2 li-
brary3, which performs the queries and returns the equivalent terms
for each provider.
Regarding the Search agent component, since only a limited set of
cloud providers offer service description APIs, web scraping tech-
niques were used to extract information about resources. This al-
ternative has the advantage of allowing the inclusion of any cloud
provider in the tool. The tool’s current prototype allows data from
AWS, Microsoft Azure, Google, Alibaba Cloud, and Oracle. These
providers were used because Gartner reported them as the main
ones in its last report Magic Quadrant for Cloud Infrastructure as
a Service [5]. In the prototype, only the on-demand pricing model
was considered.
One of the challenges in implementing the Search agent component
is related to the frequency with which the cloud providers adapters
make queries. The most suitable solution would a real-time query
to avoid using outdated information. However, this proved to be
unfeasible due to the latency to get the results. By measuring the
total time of data extraction, it was possible to identify a latency
of 2.44 ± 0.18 hours with a confidence interval of 95%. This no-
table latency is mainly due to the data extraction performed with
web scraping and huge volume of transmitted data. Even with the
solution’s improvement through parallel queries, the latency would
still be high to be performed in real-time. Another observed feature
was the variation frequency of resource description data. To demon-
strate it, it was carried out data collection regarding VM offers and

2https://www.djangoproject.com
3https://pypi.org/project/Owlready2

cost. Each VM offer concerns the description of the VM type (hard-
ware characteristics), associated operating system, and region of
availability. The data were collected twice a day in two different pe-
riods during an interval of 126 days (04/29/2020 to 09/02/2020). A
single CSP, Microsoft Azure, showed daily variation in VM offers
number and/or costs, without, however, presenting two variations
on the same day. For the other CSPs, the variation in offer number
and cost occurs at intervals greater than one day, as can be seen in
Fig. 4. In this figure, the dates for which offers number and costs
have been kept constant are omitted. Given that, it is possible to
state that a daily query of resource description data is acceptable to
keep the resource model updated.

7. QUALITATIVE EVALUATION
This section describes an experimental evaluation of the tool
through a qualitative analysis that aims at evaluating users’ pro-
ductivity, in terms of the time required to query VM types, and
accuracy, in terms of the accuracy of the results.

Experiment design. We compare the proposed tool against some
other three similar CSBs: AWS Pricing Calculator [3], Azure TCO
Calculator [20], and Cloudorado Cloud Server Comparison [8].
The selection of the first two alternatives is because they performed
TCO analysis in conjunction with VM types querying, while the
third one was chosen because it allows querying in multiple CSPs.
It is adopted a controlled experiment strategy where participants
are given a VM specification with hardware characteristics. A sin-
gle specification was used per participant, aiming they use the tools
held within reasonable experimental time and also to evaluate the
accuracy of the tool when considering different queries. This ex-
periment design is leveraged to evaluate the interaction of the users
with the proposed tool. The analysis of this interaction enables
identifying advantages and limits of it and improvements that can
be introduced.
The experiment procedure lasts for a maximum of two hours per
participant. All participants used the same powerful PC.
The setting of the VM specifications used in the experiment was
designed to reflect real scenario queries. For this, it was adopted the
resource requirements of applications that are typically deployed in
the cloud. For simplicity, only CPU, RAM, and storage are used as
hardware attributes.
Based on [27], a Pareto efficiency criterion was adopted using
as preference criteria compute efficiency, measured as “compute
ECU4/$- hr”, memory efficiency, measured as “memory GB/$-hr”,
and storage efficiency, measured as “storage GB/$-hr”. As a result,
different hardware specifications were established, ranging from 1
CPU core, 1GB memory, no storage, to 32 CPU core, 64GB mem-
ory, 1TB storage.
Each participant should consult the assigned VM configuration on
the four tools. In addition to the search results, they should collect
the time taken to obtain the results. At the end of the experiment,
the participant fills a questionnaire about their experience in cloud
computing concepts, cloud service selection, TCO analysis, and re-
source selection modeling languages and tools. Also, each partici-
pant is asked to provide feedback on the proposed tool’s usability
and productivity and things to improve.

4An Elastic Compute Unit (ECU) is a normalized unit of CPU integer pro-
cessing power available in an AWS instance. According to AWS, one EC2
Elastic Compute Unit provides the equivalent CPU capacity of a 1.0-1.2
GHz 2007 Opteron or 2007 Xeon processor.
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Before the experiment starts, participants are introduced to rele-
vant cloud computing, VM types, and cloud-based pricing con-
cepts. They are also introduced to the experiment guidelines with a
brief explanation of expected tasks (4-5 minutes). During the exper-
iment, additional guidance is provided to any participant requiring
assistance for following the experiment guidelines, but no guidance
was provided about interacting with the tools.
Participants were recruited from Bachelor of Information Systems’
students at the Federal Institute of Goiás, Brazil. An incentive for
participation was offered in the form of extra points at the course’s
grade. Overall, 24 participants with varying expertise levels in pro-
gramming and cloud systems were recruited. These were broken
down as 17 with no knowledge about cloud computing, 6 with ba-
sic knowledge, and just 1 with practice knowledge. Further, 10 of
them self-reported high knowledge about TCO analysis and 14 no
knowledge. None of the participants have used the tools before.

Productivity results. The productivity of participants is evaluated
by calculating the time spent to get results. This time is collected
individually for each tool and includes the period spent specifying
the VM configuration assigned to the participant. Figure 5 presents
the box-plot of the distributions of the time spent by participants
in the experiment. What can be clearly seen in this figure is that
the proposed tool allows the resource search to be carried out eas-
ily, regardless of the participant. While the other tools have a time
distribution with high variation, including the presence of outliers,
for the proposed tool, the variation is small, with a maximum of 2
minutes to complete the search.

Table 2. Accuracy of service selection using the analyzed tools.
Tool Precision Recall F -meas.
AWS Pricing Calculator 0.375 0.001 0.001
Azure TCO Calculator 0.625 0.001 0.002
Cloudorado Cloud Server Comp. 1 0.019 0.037
Proposed tool 1 0.986 0.993

Accuracy results. The accuracy of the selection is evaluated by cal-
culating precision, recall, and F -Measure score considering the
results returned by each tool, concerning the satisfaction of the
queries carried out. For a given query, the Precision P is the pro-
portion of the relevant VM types retrieved to all the retrieved VM
types and is mathematically expressed as the Equation 14.

P =
|relevant VM types ∩ retrieved VM types|

|retrieved VM types|
(14)

Similarly the RecallR is the proportion of relevant VM types which
have been retrieved to all the relevant VM types and is mathemati-
cally expressed as the Equation 15.

R =
|relevant VM types ∩ retrieved VM types|

|all relevant VM types|
(15)

Finally, it is computed the F -measure score, which is the harmonic
sum of P and R which gives the accuracy of the tool and is de-
scribed as the Equation 16.

F = 2 ∗ |precision ∗ recall|
|precision + recall|

(16)

As a relevant cloud service, were counted all types of VMs that
precisely matched the specified queries. Some types returned by
the AWS Pricing Calculator and Azure TCO Calculator tools have
been classified as irrelevant because they do not match the hard-
ware configuration specified in the query. It is also important to
note that in addition to the CSPs supported in the proposed tool,
the results of other CSPs (10 in total) supported in the Cloudorado
Cloud Server Comparison tool were also included. The results us-
ing the considered metrics are presented in Table 2.
As can be seen in Table 2, as it relies on a single provider, the
first two tools have very low accuracy. Another reason for this is
that most of the results returned were classified as irrelevant. On
the other hand, the Cloudorado Cloud Server Comparison tool has
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Fig. 6. Participant feedback on tool characteristics.
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Fig. 7. Participant feedback on tool adoption.

maximum accuracy, but the recall and F -measure are low, even
relying on more CSPs. This is because a single result is returned per
provider. In contrast, the proposed tool returns all types that satisfy
the search. This results in a remarkably better level of accuracy than
the other tools.

Exit interview responses. After the completion of search in the an-
alyzed tools, the participants were interviewed in order to survey
their experience of using them. They were asked to answer six
questions, five of which aimed to assess tools characteristics and
one to assess tool adoption.
In the first four questions, participants were asked to indicate which
tool best meets four quality criteria. The criteria, as well as the re-
sults, are shown in Fig. 6. For presenting a broader set of features,
the AWS Pricing Calculator tool was designated as the best in three
of the criteria. However, the proposed tool held the second position
in two of them, and for the usability criterion, it was designated as
the best. There is a need to improve the ability of the proposed tool
to assist in decision making. This is mainly because the report pro-
vides only the search results without indicating more information
about the provided resources.
In the fifth question, participants were asked to designate which
tool or strategy they would use if they needed to find the lowest
cost to allocate a given VM on the cloud. The result is shown in
Fig. 7. Although the proposed tool was not designated as the best in
the previous questions, it was pointed out as the one adopted by the
majority (28%) of the participants, making AWS Pricing Calcula-
tor the second option. Interestingly, a large part of the participants
(20%) chose not to use any of the tools directly, but to perform
the search on general-purpose search tools, probably due to their
greater familiarity with this strategy.
The participants were asked to present in open format reviews and
suggestions about the proposed tool. In general, the reviews were
positive, suggesting that the proposed tool has an intuitive inter-
face, being simple, clear, and high usability. As negative aspects,
the participants highlighted the lack of detail in the information re-
turned. For example, they pointed out the need to explicitly explain

the monetary and time unit and which CSPs are querying in the
search. Participants also indicated that the tool does not fully assist
the resource selection process because important features, such as
cost projection over time, are not offered.

Experimental validity. As is common with experimental case study
designs, external validity (i.e., the ability to generalize the results)
is naturally impaired to an extent in order to attain higher internal
validity (i.e., validating the cause-effect inference). However, since
one of the main goals is to facilitate resource selection by users
without prior knowledge, and since the searches were carried out
using various VM configurations, it is possible to state that the re-
sults indicate the proposed tool’s quality. However, there are some
validity threats, such as the fact that the participants themselves
collect time without using automated tools. Also, qualitative indi-
cators can be questionable due to the participants’ inexperience,
which can be reinforced by the fact that many reject all the tools.

8. FINAL REMARKS
This paper presented a cloud service broker’s design and imple-
mentation, whose goal is to provide a cost-optimized tool to search
computing resources considering different cloud deployment mod-
els and multiple cloud service providers. The findings from an ex-
perimental case study suggest that the tool’s raised level of usability
and performance results in significant improvements in search pro-
ductivity and accuracy in service selection. As future work, it is
suggested the inclusion of new CSPs in the proposed tool and the
implementation of new billing mechanisms and cloud deployment
models. On top of that, a more in-depth analysis of the outcomes
obtained with the tool should also be performed. Another outcome
is putting the cost analysis tool in the practice of the customer’s
cloud environments and try to draw guideline rules from the analy-
sis for realizing cloud practices with high economic efficiency.
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