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ABSTRACT 

Financial portfolio optimization is a difficult problem as it 

deals with many variables. Modern Portfolio Theory (MPT) is 

used for minimizing risk for a specific expected return. Many 

approaches are proposed to optimize portfolios. This paper 

proposes financial portfolio optimization using Monte Carlo 

and operation research. Results show an effective financial 

portfolio optimization. 
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1. INTRODUCTION 
A financial portfolio is just a set of allocations in variety of 

securities. Portfolio optimization is a difficult problem as it 

deals with many variables. Portfolio management uses lower 

partial risk (downside risk) [1].                      

Harry Markowitz was awarded Nobel Prize in economy for 

his invention of Modern Portfolio Theory (MPT) [2].  MPT is 

used for minimizing risk for a specific expected return or 

equivalently, maximizing portfolio expected return if the risk 

amount is specified. MPT, also known as mean-variance 

method, explains the trade-off between mean and variance. 

MPT can be formulated as [3]: 

            
 
   

 
                    (1) 

Subject to  

         
  

                                  (2) 

and  

       
 
                    (3) 

Where, N is the total number of available portfolio assets, 

    is the expected return of portfolio asset i,    is the 

covariance between portfolio assets i and j,    is the total 

desired expected return,   is the proportion of the total capital 

invested in portfolio asset i, Sharpe introduced a ratio of 

reward-to-variability [4]. It can be applied in portfolio 

optimization as shown in equation 4. 

                        S= ( 
      

  
)        (4) 

Where    is expected portfolio return,    is risk free return, 

and σp is portfolio standard deviation. 

Assuming    is zero, 

S= ( 
   

  
)        (5) 

Many approaches are proposed to optimize portfolios, such as 

multi-objective evolutionary algorithms (MOEAs) [5], integer 

programming [6], shrinking the sample covariance matrix [7], 

stochastic control [8], parameter‐ dependent semi-martingales 

[9], mean–variance [10], and fuzzy logic [11]. MPT can be 

hybridized with artificial intelligence such as harmony search 

[3] and genetic algorithm [12]. MPT can be used for 

endowment [13] and non-profit organizations [14] too. 

Recently, MPT is adopted to reduce risks in energy planning 

[15] and environmental planning [16]. 

The rest of this paper is decomposed as follows. Section 2 is 

background and Section 3 is methodology. Section 4 is 

conclusion and Section 5 is future. 

2. BACKGROUND 

2.1 Monte Carlo Simulation 
Monte Carlo simulation is used for finding the best Sharpe 

ratio. We assign a weight to each security in our portfolio in a 

random way, and then its mean and standard deviation of 

daily return are calculated.  It is a technique used to 

understand the effect of risk and uncertainty and it is used in 

many fields such as physics, engineering, statistics [17] and 

finance [18]. There are methods that motivate improved 

simulation efficiency to conduct a deeper investigation into 

properties of a model [19]. Monte Carlo methods use 

deterministic point because of random point samples are 

wasted in clustering [20]. Monte Carlo methods are known as 

particle filters and they used to compute the high-dimensional 

[21].       

2.2 Operation Research 
Referring back to our Sharpe ratio; we want to actually 

maximize it, meaning we need an optimizer that will attempt 

to minimize the negative Sharpe ratio. The SciPy library is a 

common package that offers many efficient numerical 

routines for linear algebra and optimization. SciPy shall be 

used to calculate the optimal weight allocation. 

The common method is Sequential Least Squares Program 

(SLSQP) [22]. Most financial practitioners often offer 

suboptimal solutions, so they use SLSQP because it converges 

to a local optimum near the seed. Non-negative least squares 

(NNLS) does not accept inequality constraints 

[23].Competitive financial performance based on the SLSQP 
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method is achieved better in a portfolio [24]. 

3. METHODLOGY 
The proposed algorithm is shown in Fig. 1. 

data_source = “http://finance.yahoo.com”  

start_date = 2015-03-02 

end_date  = 2020-02-28 

assets  = [‘aapl’, ‘amzn’, ‘fb’, ‘goog’ ] 

working_days_per_year = 252 

 

dataset  = data_acquisition (data_source, start_date,  

                 end_date, assets) 

 

mean_of_log_returns = mean( log (dataset ) ) ×  

                                        working_days_per_year 

covariance  = cov( log (dataset ) ) × working_days_per_year 

 

random_weights = create_random_weights( )  

norms = Rebalance_to_sum_to_1 (random_weights) 

 

Sharpe_Ratio = get_expected_return(norms) ÷ 

get_expected_volatility(norms) 

optimal_point = argmax (Sharpe_Ratio) 

efficient_frontier = Plot (Sharpe_Ratio) 

Fig 1: Proposed Algorithm 

First step is data acquisition from http://finance.yahoo.com. 

The selected companies to invest in are Amazon (AMZN), 

Apple (AAPL), Facebook (FB), and Google (GOOG). The 

stock is for the five years from 2015-03-02 to 2020-02-28, as 

shown in figure 2. The first five rows are shown in table 1. 

TABLE 1. The First 5 Rows of the Stock 

Date         aapl amzn fb goog 

2015-03-

02 
118.796295 385.660004 79.750000 569.775696 

2015-03-

03 
119.044762 384.609985 79.599998 572.069397 

2015-03-

04 
118.290138 382.720001 80.900002 571.800110 

2015-03-

05 
116.330009 387.829987 81.209999 573.754761 

2015-03-

06 
116.504845 380.089996 80.010002 566.130676 

Fig 2: Data range of acquired data 

The mean of the percentage change are 0.000787 for aapl, 

0.001425 for amzn,0.000863 for fb, and 0.000794 for goog. 

The correlation matrix is shown in Table 2. 

TABLE 2. Correlation Matrix 

 
aapl amzn fb goog 

aapl 1.000000 0.508584 0.470717 0.547329 

amzn 0.508584 1.000000 0.581652 0.632800 

fb 0.470717 0.581652 1.000000 0.609763 

goog 0.547329 0.632800 0.609763 1.000000 

Clearly, the correlation between any asset and itself is 1. The 

highest correlation is between amzn and goog. The lowest 

correlation is between aapl and fb. 

This paper will now switch over to using log returns instead 

of arithmetic returns, for many of our use cases they are 

almost the same, but most technical analyses require de-

trending/normalizing the time series and using log returns is a 

nice way to do that. 

Log returns are convenient to work with in many of the 

algorithms we will encounter. As shown in Table 3. 

TABLE 3. Log Returns 

Date aapl amzn fb goog 

2015-03-03 0.002089 -0.002726 -0.001883 0.004018 

2015-03-04 -0.006359 -0.004926 0.016200 -0.000471 

2015-03-05 -0.016709 0.013263 0.003825 0.003413 

2015-03-06 0.001502 -0.020159 -0.014887 -0.013377 
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Fig. 3 shows the histogram of log returns. The transpose of 

log returns based on statistical measures as shown in TABLE 

4. 

 

Fig 3: The histogram of log returns 

TABLE 4. Statistical Measures 

 count mean std min max 

aapl 1258 0.00066 0.015775 -0.1049 0.068052 

amzn 1258 0.00126 0.018019 -0.0814 0.132178 

fb 1258 0.00070 0.018045 -0.2102 0.144286 

goog 1258 0.00067 0.015089 -0.0801 0.148872 

 The mean of log returns multiply in 252 days are 0.166941 

for aapl, 0.317717 for amzn, 0.176489 for fb, and 0.171208 

for goog. Note that we assume that 252 days per year, which 

are the working days only. 

You will compute pairwise covariance of columns.as shown 

in TABLE 5. 

TABLE 5. Covariance of Columns 

 

aapl amzn fb goog 

aapl 0.000249 0.000145 0.000134 0.000131 

amzn 0.000145 0.000325 0.000189 0.000174 

fb 0.000134 0.000189 0.000326 0.000166 

goog 0.000131 0.000174 0.000166 0.000228 

 Multiplying covariance by days (252) is shown in TABLE 6. 

 

 

 

 

 

TABLE 6. Covariance Multiplied by 252  

We see clearly, the highest covariance between fb and itself. 

Now ,Let’s get Single Run for Some Random Allocations. 

Stocks are ['aapl', 'amzn', 'fb', 'goog'].Creating Random 

Weights such as: 

[0.51639863, 0.57066759, 0.02847423, 0.17152166] 

Rebalance to sum to 1.0 :  

[0.40122278, 0.44338777, 0.02212343, 0.13326603] 

 

Expected Portfolio Return is 0.23457 and Expected Volatility 

is 0.22533 

 

We get Sharpe Ratio by dividing expected return on expected 

volatility is 1.04101 

 

Sharpe max is 1.1116575177772319, Sharpe argmax is 2328 

and all 

Weights are 0.26188068, 0.20759516, 0.00110226 and 

0.5294219. 

 

You can plot all pervious data as shown in Fig. 4 the red dot 

for a max Sharpe ratio. 

 

Fig 4: Maximum Sharpe ratio  

Fig. 5 show the curve adding the efficient frontier. Portfolios 

under this frontier are sub-optimal. 

 
Fig 5: Adding a Frontier line 

 
aapl amzn fb goog 

aapl 0.062711 0.036644 0.033692 0.033101 

amzn 0.036644 0.081818 0.047676 0.043821 

fb 0.033692 0.047676 0.082060 0.041786 

goog 0.033101 0.043821 0.041786 0.057371 
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4. CONCLUSIONS 
This paper proposed financial portfolio optimization using 

Monte Carlo and operation research. First step is data 

acquisition from data source. The mean of log returns and 

covariance are calculated and multiplied by the working days 

per year. Then random weights are generated and normalized 

to sum to 1. Sharpe ratio is calculated by dividing the 

expected return by the expected volatility.  

The optimal point is calculated using argmax function.  

Efficient frontier is plotted where portfolios under this frontier 

are sub-optimal. Results show an effective financial portfolio 

optimization. 

5. FUTURE WORK 
A possible future direction may be trying machine learning 

methods such as artificial neural networks [24]. 
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