
International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 37, December 2020

44

Software Development Automation: An Approach to

Automate the Processes of SDLC

A.R.V. Anthony
Sri Lanka Institute of Information

Technology
Sri Lanka

G.M. Dilshan Prasad
Sri Lanka Institute of Information

Technology
Sri Lanka

S.U. Randunuge
Sri Lanka Institute of Information

Technology
Sri Lanka

S.R.A.M.P.A. Alahakoon
Sri Lanka Institute of

Information Technology
Sri Lanka

Dinuka R. Wijendra
Sri Lanka Institute of

Information Technology
Sri Lanka

Jenny Krishara
Sri Lanka Institute of

Information Technology
Sri Lanka

ABSTRACT

Software development complexity is one of the most

important factors that must be determined by clear procedures

or methods in software production. It is determined practically

by using a quantitative value, which is based into one or more

qualitative attributes. These attributes focus on how the codes’

internal and external behavior. But the software complexity

should be computed beyond, that level since the complexity

identifies the effort of determining the internal logic behind

the software. Therefore, software complexity should be

expressed as a combination of the different phrases of the

software development life cycle namely requirement analysis,

source code implementation, maintenance, testing and quality

checking as well. As a solution, the methodology of reducing

the overall software complexity by creating a software

development application has been considered, which will

automate the requirement analysis, software logic

implementation, maintenance and the testing process in the

overall software development cycle without restraining the

software complexity into one or more quality attributes.

General Terms

Deep Learning

Keywords

Natural Language Processing, Code complexity, UML

generation

1. INTRODUCTION
Businesses that revolve around software and software

development are very common in the present day. Almost

every company has their own mobile application, web sites or

internal system. People use those services to get through with

our day-to-day life, make our daily work easier. More and

more consumers of these software and services are rising and

with that more complex and competitive the businesses get.

Time it takes to develop a software, the quality of it and the

cost will play big roles for the success of these businesses.

Software development is not that simple so to achieve high

quality and low cost with low time is very hard. The proposed

system is used to make the software development process less

complex and easier for developers go through several stages

of software development life cycle. There are main four
components in this proposed system that is used to reduce the

complexity of requirement gathering, software logic

designing, locating errors and maintenance. Therefore, the

proposed system will reduce the overall complexity of

software development and help develop high quality software

with less human effort.

2. METHODOLOGY

2.1 Generating the internal logic according

to the requirements
The main purpose of this component is gathering the user

requirements and analyze them to build up a logic to move on

with the implementation by targeting the customer

requirement fulfilment. When consider about the predictions,

they can be divided in to three categories as class

identification, relationship between classes identification and

the rough prediction on time range for the development of the

software.

The Project Proposal document is the main input for this

functionality, which specifies the problem caused the

necessity for the development of the required software and the

expected benefits, outcomes by the customer’s point of view.

Since the acceptance and the rejection of this document is not

confirmative and the document does not follow any formal

language techniques or templates, a prediction based on the

data which collects from this document, a technique which is

more specific for this task must be used. So, by considering

these facts the best solution which can used to solve this

problem is Machine Learning technique. Since this is a deal

between human language and computer, the best technique

which can be used to achieve these tasks is Natural Language

Processing (NLP), which is very specific area of the Machine

Learning. Part of Speech tagging (PoS tagging) is an effective

technique available in NLP, which helps to identify the root

forms of the words in a document. In programming, there is a

special technique to identify the classes. According to that

technique there is a huge possibility for a noun to become a

class in the implementation. The same technique used for this

purpose, therefore the first step of predicting the class names

is the identifying the nouns in the functionality area of the

document. So, the methodology of that process is tagging each

word of the document by using the Pos tagging technique, and

to perform that a machine learning model is required. For this

functionality, a model is used which is implemented by using

Python and specially an open-source library which is known

as TensorFlow. First, the model is trained by using some test

word sentences and test tags, then after that the through java

front end the project proposal document passes to this model

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 37, December 2020

45

as an array of words. Then, using this tagging technique each

word in that array is tagged according to their root form, then

by analyzing those root forms the nouns in that array can be

identified as the classes in the implementation. After that

those nouns can be added to a separate array.

Arr_nouns = [word1, word2, word3, word4, ...]

Arr_words = [word_i, word_ii, word_iii, word_iv, …]

By doing this task the two arrays can be compared to identify

the indexes of the nouns in the Arr_words array then the logic

to predict the relationship between two classes can be done by

extracting the words between those specific two indexes of the

nouns. Then the time series forecasting is going to be used for

the prediction of the time range for the implementation. For

this process number of development teams and the number of

members in a team are going to be the main predictors. To

train this model a data set which consists with those predictors

are going to be used, the model builds by using the python

language. The most important thing is the time series must be

stationary all the time, in other words the mean and the

variance must constants.

First step of this process is reducing the trend, transformation

is used for this purpose. since there is some noise in the trend

it should be smoothed, moving average is used to smooth the

trend. to build the model differencing technique is used. The

technique which use for this prediction making is known as

ARIMA (Auto Regressive Integrated Moving Average) when

using this model the predictions depend on ARIMA

parameters (p,d,q) p stands for number of Auto Regressive

terms, q stands for number of Moving Average terms and d

stands for number of differences. To identify the values which

are suitable for p and q use two popular plotting techniques,

such as Auto Correlation Function (ACF) and Partial Auto

Correlation Function (PACF). Three prediction models are

going to build when using this technique, they are Auto

Regressive (AR) model, Moving Average (MA) model and

the model that shows the number of differences.

Then after building these models predicted values can be

stored as a series and convert the differences to a log scale,

then the model can plot the predicted value with the original

value.

2.2 Automation of mapping requirements

into UML diagrams
UML diagrams play an important role in the developers’ level

of understanding of the software to be developed. Client

requirements which are well understood would lead to a high-

quality final product. The success rate according to [17] is

only 28%. Understanding the requirements of the system

clearly and properly will be crucial in improving the success

rate of a software solution. Even though developing UML

diagrams is important for a software project, it is a time-

consuming procedure. According to [18], a major reason for

this process to consume a large amount of time is collection of

the requirements and mapping them into diagrams is done

manually in many software companies. High time

consumption can distract the developers from the focus of

developing code. The time to market of a software product

could be reduced due to the large amount of time spent for

creating UML diagrams for their better understanding.

Therefore, automating the procedure of generating diagrams

by analyzing the clients’ requirements could solve the

problem of high consumption of time.

Firstly, an array of class names, which is an output of the first

component is used as an input to the machine learning model.

This machine learning model analyses the class names and

understands the relationships between classes. For the

analysis, Global Vectors for Word Representation (GloVe)

[14] embeddings are used. This unsupervised learning

algorithm maps a word into a vector representation, which can

be used to measure the similarity of class names. The

mathematical concept of Cosine Similarity was used to

calculate the similarity in cosine values of the angles made by

vector representations of each word. The cosine similarity

between two vectors j and k with respect to a unit vector i can

be written by using Eq. (1), which explains the cosine

similarity is directly proportional to the angle between the two

vectors in question [1].

 (1)

By using cosine similarity, the similarity, or the closeness of

two words (class names) in the vector space can be calculated

as a quantitative value. The cosine similarity value

corresponding to each class name pair in the input array is

added to a new array with the class name pair. This output is

then feed to a Java program to generate the diagrams.

In this program, the cosine similarity value is checked against

ranges, and for each range a tag explaining the relationship

level between the classes is assigned. The input array is

altered by replacing the cosine value in the array by the tag.

The tags are “inherits”, “implements”, “composes of”,

“aggregates”, “associates” and “no relation”. The “no

relation” tag is given to relationships for the least cosine

similarity range.

Then using these tags, the program creates different diagrams

by mapping the relationships. PlantUML [2] is used for the

creation of diagrams and Graphviz [3] is used to visualize the

created diagrams. The application generates four types of

diagrams namely Class diagrams, ER diagrams, Object

diagrams and Flow diagrams. Flow diagram is a diagram,

which illustrates the flow of the software in terms of classes.

2.3 Tracking bugs using a bug tracker
The internal logic and the possible flow diagrams generated

by previous functionalities are then referred by the software

engineers to implement the source code. Before making the

product into its finalized version, the quality and its accuracy

must be ensured to increase its stability. Thus, this

functionality includes a bug tracker, which identifies the

errors and unethical programming practices that software

developers have practiced. The importance of tracking bugs is

shown in [15].

The main problem of the available bug trackers is [16], not

focusing on all the possible bugs. It is not a good user

experience if the bug tracker does not show bugs for all the

errors that developers make during the coding phrase. Some

applications do not show any error message in the error log

which can be considered as a negative performance criterion.

But, in this component it can be clearly shown that most of the

errors are identified, which are not currently identified by the

available bug trackers as shown in TABLE I.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 37, December 2020

46

TABLE I: Bugs that are focusing by the bug trackers

Bug category Whether it finds the bug or

not

Possible deadlock Yes

Unreachable code due to

constant guard

Yes

String equality with.equals() Yes

Object overriding Yes

Stream not closed on all

paths

Yes

Unused local variables Yes

Unnecessary return

statements

No

Division by zero No

Possible unexpected errors No

It can be clearly observed that unused local variables,

unnecessary return statements, division by zero and

unexpected errors are not identified by the current

applications so that more focus is given to resolve those bugs

with the concatenation of the other bugs tracking procedures

as well. The user interface has the option to browse the files

and then track the bugs by selecting the “track bugs” option.

Then it will show the bugs if any of the bugs occurred in the

browsed code. It has the ability of showing the code and the

error log of it. When selecting the error, it shows the

recommendations to the solutions so that the user can easily

fix the error. To find the bugs, it is given some conditions to

track the errors of the code. Then, it analyzes the code and

checks the condition of the similarity. If they mismatch, the

system will show errors. The following section describes how

the bugs have been discovered.

2.3.1 Multiple return statements
This error occurs when it has many return statements in a

single method. It will be detected with their brackets and the

count of the return statements. If the count is more than one,

the system will track it as an error.

2.3.2 Array storing error
This error occurs when user is trying to store incompatible

values with the datatypes of the array. It will be detected by

comparing the datatype and the passed values to the array. If

any passed value is incompatible with the datatype, the system

will track it as an error.

2.3.3 Illegal states error
This error occurs according to the order of calling the next(),

set() and remove() methods in an linked list iterator. TABLE

II shows the possible combinations and their possibility of

being an error or not.

TABLE II: Possible error combinations

Combination Error / Not an error

next(), set(), remove() Not an error

next(), remove(), set() Error

set(), next(), remove() Error

set(), remove(), next() Error

remove(), next(), set() Error

remove(), set(), next() Error

next(), set() Not an error

set(), next() Error

next(), remove() Not an error

remove(), next() Error

remove(), set() Error

set(), remove() Error

When implementing the procedure, it searches for the order of

the occurrences of the methods. For any mismatched error, it

will show an error in the error log.

2.3.4 Illegal thread states error
This error occurs when user tries to start the same thread

multiple times. Thread name and the occurrences of the start()

method for that particular thread are checked and if there are

multiple occurrences, the system will track it as an error.

2.3.5 Division by zero
This error can be occurred when there is a division by zero.

This error can be risen in two ways. One possible way is

directly divide a number by zero. The other way is assign zero

to a variable and then divide a number by that variable. When

implementing the first option, the division mark and the value

of 0 are checked. If it is found in any code, the system will

track it as an error. When implementing the second option, it

checks the variables assigned to 0 and if there is any division

occurred by using that variable. If so, it will track as an error.

2.3.6 Number formatting error
This occurs when incompatible values are passed to the parse

methods. First it checks whether there is any parse method

occurred, if so, it will check the parameter which has been

passed to the parse method. If there is any incompatible value

like a string or integer or null, it will track as an error by the

system.

2.3.7 Illegal arguments error
This error occurs when null parameter is passed as a

parameter in any method. The method structure and the

number of parameters is checked. If any parameter has set to

null, it will track as an error by the system.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 37, December 2020

47

2.4 Evaluate the Code Quality and

calculate the Code Complexity
There have been an increase in the amount of research

conducted on software development related to code quality

improvement and how code complexity calculations have

impact on the quality of the codes and the impact at

maintenance stage of software development. As the other

functionality, the system involves identifying quality issues of

codes and provide optimal fixes or recommendations to fix

those issues and provide the users the ability to use different

metrics to calculate complexity of the code.

In order to detect issues and calculate complexity system

needs to identify syntaxes and elements of the given code. For

this identification process the code element identification

component is used which is a component that was developed

for this system. In this component, code will be taken as the

input for the system and it will be analyzed line by line in

order to identify code elements. In this process all the

identified classes, variables and objects are stored temporarily

for further use of code complexity calculation and quality

analysis.

2.4.1 Complexity calculation component
There are six complexity metrics currently available for the

code complexity calculation component.

 Complexity due to Line of Codes - Used to calculate

code complexity due to the actual code lines [4] and

provides other information such as the amount of

comments and percentage of comments compared to

actual codes.

 Complexity due to Size – Used to calculate code

complexity due to usage of code elements [5] such

as identifiers, reserved words, operators, operands,

literals, and delimiters.

 Complexity due to Recursive methods – Used to

calculate code complexity due to usage of recursive

methods [6] in the code. For calculations, results of

complexity due to size is used. The size complexity

for the recursive method is doubled and added to the

total complexity due to size for this metric.

 Complexity due to Control Structures – Used to

calculate complexity due to usage of control

structures [7] in the code.

 Cyclomatic Complexity – Used to calculate the

McCabe’s Cyclomatic complexity [8]. Complexity

(M) is defined as,

 (2)

in which E is the number of edges, N is the number

of nodes and P is the number of connected

components. The standard version [9] that complies

with McCabe’s definition is used in order to

implement this metric in the developed system. In

the standard version, methods in the code has a base

complexity of 1 and for every control structure and

conditional expressions, complexity count gets

increased by 1 and boolean operators used in guard

conditions complexity count gets increased.

 Cognitive Complexity – Used to calculate the effort

needed by the human brain to comprehend its

internal logic [10] of the code. This complexity

metric covers some areas that cannot be covered by

cyclomatic complexity and have a far in-depth

analysis [11].

2.4.2 Code Quality Analysis Component
In this component by the assist of code element identification,

code quality issues are identified, and users are given the

ability to automatically apply fixes for the issues or get

recommendations in order to apply fixes manually for them.

As an additional function, quality of the code can be

predicated using the code complexity metric values of the

given code by using machine learning technology. For this, a

data set containing complexity values of codes that are having

high code quality and codes that have low quality standards

will be used to train the machine learning model through the

Random Forest [12] supervised algorithm [13].

3. RESULTS AND DISCUSSION

3.1 Logic generation
This covers the class identification and the relationships

between classes, which covers more of the logic

implementation. As the result, it provides the list of classes

and the relationship between them as a separate string arrays

by analyzing the data gathered by the project proposal

document. There is another outcome from this component,

which is predicted by the TSLM, it is a rough prediction on

the time range which will take part for the whole

implementation. Although the logic implementation is not all

about the classes and their relationships, there are some

several areas that need to be considered such as the methods,

access modifiers and other parameters. There is a limitation of

the time forecasting method because of the practical issues

with the data gathering regarding on the standardization

methods in different organizations. The specialty of the

outcomes of this component is the classes, which describe the

scope and the structure of a software and the logical diagrams

that helps to build up the software. Identification of these

basic components of the beginning would exactly reduce the

human errors, which can be occurred while analyzing the

project proposal as well as within the software

implementation process, thus, occurs to have a reliable and

accurate software.

3.2 UML diagram generation
The logical diagrams generated using this system are very

dependent on the text embedding used for the identification of

the relationships between classes. The relationships are

identified based on the vector representations given for the

words in the GloVe [14] text embeddings and the available

dimensions. The possible diagrams generated by the proposed

system are shown in Fig. 1, Fig. 2 and Fig. 3.

The best possible relationships according to the text

embedding are mapped in the diagrams. The generated

diagrams can vary according to the embedding that is used for

the vector representations. Furthermore, the relationships in

the diagrams are based on semantic similarity of words.

An embedding could be trained for this sole purpose by

representing words of specific relationship types as vectors at

close proximities in the vector space. This type of a

specialized embedding could improve the accuracy and the

flexibility of the generated diagrams. This functionality has

been implemented using pre-trained GloVe [14] embedding

due to the time limitation. Three of the diagrams generated in

this component are conventional, but the flow diagram is a

new concept, which illustrates the flow of the internal logic in

the perspective class. It demonstrates what classes assist the

selected class to achieve its tasks in the software.

The functionality of automatically generating diagrams could

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 37, December 2020

48

be very beneficial for the developers at software companies.

The automatic generation of diagrams would take away the

burden drawing diagrams and enable them to concentrate on

developing high quality code.

3.3 Tracking bugs in the code
The proposed bug tracker would identify more than ten errors

that the current bug trackers do not identify. Then, it will be

merged with a current available bug tracker to identify all

possible errors that can be detected from the software. The

proposed bug tacker has the ability of browsing a java file and

then detect the bugs by selecting the track bugs button as

shown in Fig. 4. The error log will show available. The

recommendation to correct the bug will be showed when

selecting the error.

3.4 Code Quality Evaluation and Code

Complexity Calculation
The proposed component can identify code elements properly

and sort them accordingly to the use of quality analysis and

complexity calculations. Although there are minor issues due

to the different types of syntaxes used different users, the

functionality evaluates the quality and perform the complexity

calculations as expected as shown in Fig. 5.

Although there is a limit of fixes that can be automatically

fixed in the code without the supervision of developer, the

issues within the limit that can be fixed automatically can be

done reliably. To improve the scale of quality issues that can

be identified, this component can be merged with reliable

existing system if needed. Overall, both components are very

beneficial for the developers in order to manage and maintain

quality of the code in the long run.

Fig. 1 Class Diagram

Fig. 2 ER Diagram (Generic)

Fig. 3 Object Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 37, December 2020

49

Fig. 4 Basic UI of the Bug Tracker

Fig. 5 Calculation result of code complexity

With the generated UML diagrams and the identified logic, the

system is implemented by the developers. Debugging code

consumes a major portion time of the implementation phase in

SDLC. The bug tracker in the proposed system, which was

developed with the motivation of increasing the efficiency and

reducing time consumed for the debugging process was tested

for its performance by using 30 different source codes. The bug

tracker identified all the errors in the source codes with 100%

accuracy. The suggestions provided by the bug tracker cuts

down 60% of the total time, in locating the bug and debugging.

With the suggestions provided by the bug tracker the developer

will only have to make the suggested change in the code to fix

the error. The time saved from the suggestions by the bug

tracker increases the efficiency of the software development.

The code complexity analysis and code quality analysis of this

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 37, December 2020

50

study was tested for the performance using the same source

codes used for the bug tracker. Similar to the bug tracker, the

code quality suggestions and the complexity calculations were

made with 100% accuracy. The suggestions provided to fix code

quality issues assist the developers in improving the source code

with high efficiency. This again results in the increased

efficiency and reduced time spent for the software development

lifecycle.

Fig. 6 compares the time taken for the completion of phases of

the SDLC in the normal context, where most of the work is done

manually against the time taken for the completion of the same

phases when the proposed system is used to automate the

processes in the SDLC phases. The chart was created based on

the data found in [19] and the times taken to complete the same

tasks using the system proposed by this study. For completion of

requirement analysis and designing, the traditional approach

takes at least 14 days according to [19], but the time taken for

the completion of identifying the logic and generating UML

diagrams is only 1 day when the proposed system is used.

Fig. 6 Performance of the proposed system

4. CONCLUSION
When studying on how to improve overall software

development, it became clear that there are plenty of tools used

for many purposes in software development throughout the

software developments phases. But most of these tools are

mostly focused on one or two of tasks in the software

development phases. The proposed system by this research

focuses on most of the software development phase in order to

make the software development process less complex and more

efficient. With the proposed system, all the phases like

requirement gathering, designing UML diagrams, detecting

errors and improving code quality are automated. So, probability

of occurring errors is less with the use of this system. And this

saves lot of time and money because, all the processes are

automated. There are also some limitations of the system that

have been identified. The system is currently limited to only java

language when it comes to bug tracking, complexity calculations

and code issues detections. Also, there are limitations when

providing automatic fixes to code issues as it might go against

the logic built by the developers. So furthermore, research

should be done on in these areas to improve the system. Finally,

it is possible to conclude that the system is successful in making

the software development process more efficient, less complex

and helps greatly to automate the software development process.

5. ACKNOWLEDGMENT
We wish to thank our research supervisor Ms. Dinuka R.

Wijendra, Department of Information Technology of Sri

Institute of Information Technology for her keen interest,

inspiring guidance, and encouragement with our work,

throughout the research.

6. REFERENCES
[1] Cosine Similarity-

https://www.machinelearningplus.com/nlp/cosine-

similarity/

[2] PlantUML – Library to generate diagram. Retrieved June,

30, 2020 from https://plantuml.com/starting

[3] GraphViz – graph visualising software. Retrieved June 30,

2020 from http://www.graphviz.org/.

[4] Non-commenting source statements. Retrieved July, 31,

2020, from

https://pmd.github.io/latest/pmd_java_metrics_index.html#

non-commenting-source-statements-ncss

[5] Ryan Stansifer, Basics of the Java Language. In Notes

about the Java Programming Language. Retrieved July, 27,

2020, from

https://cs.fit.edu/~ryan/java/language/basics.html

[6] Recursion. In Wikipedia. Retrieved July, 27, 2020, from

https://en.wikipedia.org/wiki/Recursion_(computer_science

)

[7] Control Structures. In Wikipedia. Retrieved July, 27, 2020,

from https://en.wikiversity.org/wiki/Control_structures

[8] McCabe (December 1976). "A Complexity Measure". IEEE

Transactions on Software Engineering (4): 308–320.

doi:10.1109/tse.1976.233837.

[9] Java code metrics - Cyclomatic Complexity (CYCLO).

Retrieved July, 31, 2020, from

https://pmd.github.io/latest/pmd_java_metrics_index.html#

McCabe76

[10] G. A. Campbell, "Cognitive Complexity — An Overview

and Evaluation," 2018 IEEE/ACM International

Conference on Technical Debt (TechDebt), Gothenburg,

2018, pp. 57-58.K. Elissa, “Title of paper if known,”

unpublished.

[11] Danny Verpoort, Insights in Cyclomatic and Cognitive

Complexity in Your Application

https://medium.com/takeaway-tech/insights-in-cyclomatic-

and-cognitive-complexity-in-your-application-

58922ae59e80

[12] Random Forest. In Wikipedia. Retrieved July, 27, 2020,

from https://en.wikipedia.org/wiki/Random_forest

[13] Supervised Learning. In Wikipedia. Retrieved July, 27,

2020, from

https://en.wikipedia.org/wiki/Supervised_learning

[14] Jeffrey Pennington, Richard Socher, and Christopher D.

Manning. 2014. GloVe: Global Vectors for Word

Representation.

[15] Singh, Sandeep. "Analysis of bug tracking

tools." International Journal of Scientific & Engineering

Research 4, no. 7 (2013): 134.

[16] Marko, Trajkov, and Smiljkovic Aleksandar. "A Survey of

Bug Tracking Tools: Presentation, Analysis and

Trends." aleksland. com/wp-

content/uploads/2011/01/Survey. pdf (2011).

[17] Muqeem, M., & Beg, M. R. (2014, July). Validation of

0

5

10

15

20

Requirement Analysis and
Designing

Debugging the system and
measuring the code quality

Time taken to complete the
SDLC phaces

Average time taken in the industry Proposed solution

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 37, December 2020

51

requirement elicitation framework using finite state

machine. In 2014 International Conference on Control,

Instrumentation, Communication and Computational

Technologies (ICCICCT) (pp. 1210-1216). IEEE.

[18] More, P., & Phalnikar, R. (2012). Generating UML

diagrams from natural language specifications.

International Journal of Applied Information Systems,

Foundation of Computer Science, 1(8), 19-23.

[19] Average time to develop a custome software. Accessed on

September 01, 2019 from https://soltech.net/how-long-

does-it-take-to-build-custom-software/

IJCATM : www.ijcaonline.org

