
International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 39, December 2020

33

Predicting DDoS Anomaly Patterns in SDN Controller

using Hidden Markov Model

Abdul-wadud Alhasan
Nanjing University of Science and Technology

200 Xiaolingwei, Nanjing
Jiangsu, PR. China

Sonjie Wei
Nanjing University of Science and Technology

200 Xiaolingwei, Nanjing
Jiangsu, PR. China

ABSTRACT

The introduction of Software Defined Networking (SDN) as a

panacea to the global demand for a more secure and highly

dependable internet infrastructure has also brought along

security issues. The adoption of OpenFlow Protocol (OFP) by

SDN as the way of communication between controllers and

switches, has not only brought about easy and direct

manipulation of data for enhanced packet forwarding policies,

but also renders the network vulnerable to security issues

(DDoS attacks) since the OpenFlow (OF) switch has to ask

the controller to install new rules for any new incoming

packet.

In this work, the capability of SDN in handling security

threats that arise from the above vulnerability is proven. This

work seeks to design and implement a DDoS detection model

that uses Hidden Markov Model (HMM) for detecting

abnormal traffic (OpenFlow flooding attacks) directed

towards the SDN controller aimed at destabilizing the flow of

normal network traffic among users in a software-defined

networking environment.

The experiment achieved an accuracy of 94.3% in

classifying network traffic with 5.7% false positive rate. The

feasibility of this approach is proven by building a test

scenario to simulate the approach with POX controller and

OpenFlow switches.

General Terms

Software Defined Networking (SDN), Anomaly Detection,

Distributed Denial of Service (DDoS), Network Security

Keywords

OpenFlow, Mininet, OpenFlow (OF), SDN, Hidden Markov

Model (HMM)

1. INTRODUCTION
Innovative internet ideas are increasingly the interest of

today`s world due to the rise in technological demands. As a

result, the need for an equally innovative internet security

architecture has become the focus for researchers. Software

Defined networking (SDN) is one of the few areas that has

proven to be the future of networking since it is dynamic and

programmable due to the separation of its control and data

plane. This makes application of security approaches more

convenient as compared to traditional networks where

networking devices are vertically integrated hence, reducing

network configuration flexibility, policy enforcement and

evolution of the network. SDN enhances network utilization

and management, ensuring availability and security as well as

promoting evolution whiles maintaining performance with the

use of a well-defined application programming interface

(API)[1], [2]. OpenFlow is the most notable API in the world

of SDN today since it is the first and widely used standardized

protocol which defines the way of communication between

controllers and switches. OpenFlow adopts the concept of

flows to determine traffic flow based on a per-flow basis

through network devices[3]. This allows for direct

manipulation of data in order to enhance policies for packet

forwarding, unlike current traditional networks. In a typical

SDN environment, the controller manages a set of flow tables

in an OF switch. These flow tables contain flow entries made

up of counters and match fields as well as a set of actions to

apply to matching packets.

This separation however, is also subject to vulnerability issues

with the central control logic prone to failure due to attacks

from malicious users. One of such vulnerabilities that has

been prominent is Distributed Denial of Service (DDoS)

attacks[4]. In SDN, DDoS attacks occur as a result of a

malicious user sending numerous numbers of anomalous

packets with different header fields which are forwarded by

the OpenFlow switch to the controller for further actions since

no matching rules are found. Hence, the controller uses much

resources that prevents it from answering requests from

legitimate users. Also, once an attacker successfully

compromises an SDN switch, flow table modification

becomes easy for an attacker to change rules to attack the

whole network [5]. The above issues as well as several threat

vectors identified by [6] warrants the need for constant

improvements in the security of SDN. With numerous

literature on SDN and its security aspects including but not

limited to the works of [7]–[11], there is still the need for

improvements in enhancing SDN security.

The rise of machine learning in network anomaly detection

has also paved a way for the development and improvement

of anomaly detection systems. Therefore, in this paper, an

attempt is made to identify anomalous flow patterns by

observing the behavior of packet flow in a software defined

network and using the characteristics of this behavior to

design a system for detection of distributed denial of service

(DDoS) attacks aimed at the SDN controller. Hidden Markov

model[12] is applied to predict the state of the network. This

detection model will help in identifying effective techniques

to handle these attacks.

Specifically, this study:

1. Seeks to show the effects DDOS attacks have on SDN by

employing a few threat vectors identified by [6] i.e., forged

traffic flows and vulnerabilities in controller communication.

2. Uses a Software Defined Network (SDN) to achieve

complete control of network traffic for intrusion detection and

utilize OpenFlow’s message mechanism to increase the

flexibility of the detection period.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 39, December 2020

34

3. Proposes an anomaly detection model using hidden Markov

model (HMM) to define a variety of states with double

stochastic processes of hidden states and observed states to

improve the true positives and reduce the false positives.

2. SYSTEM DESIGN AND MECHANISM
In this chapter, an in-depth description of the system design

and mechanism process is given. As depicted in figure 1, the

detection scheme consists of three phases which will be

discussed in detail in the preceding chapters: Data collection,

Data preprocessing/Feature Selection, and Data modelling

with HMM.

Figure 1 System Design Process

2.1 Data Collection
Data is obtained by deploying an SDN network where the

controller is connected to the switches that serve as points of

data collection.

The proposed system uses a Flow_Statistics_collector that

records the flow information in an active flow table in the

controller which consists all current active flows in the

network. Table 1 shows the structure of the

Flow_Statistics_collector. For better performance, the

statistics collector is only responsible for gathering data and

merging port and flow statistics into a single list and stored in

a CSV file.

Data statistics are gathered from controlled switches that are

authenticated by the controller (POX) by generating IDs for

each switch. This allows for exchange of packets between

hosts connected to each switch. Since the headers of each

packet arriving at the switch is matched against flow entries of

the switches flow table, statistics of flow entries are updated

in the case of a successful match. However, if no flow entry

(in the switch’s Flow Table) matches the packet’s header, our

application proactively uses OpenFlow to install a Flow Entry

that instructs the controlled switches to forward all traffic to

the controller. In its turn, the controller may add, according to

the defined policy, a new flow entry to the Flow Table of

every switch as required for policy enforcement by using

FlowMod control message. Thus, the traffic generated by all

hosts connected to a given OF switch will populate the Flow

Table of said switch.

 Figure 2 Data Collection System

Table 1 How Flow information is stored in

Flow_Statistics_Collector

Flow Counter

flow1

i. Packet count

ii. Total bytes
iii. Duration

Two main fields are contained in Table 1: flow and counter

with the counter further divided into Packet_Count,

Total_Bytes and Duration field. When the controller performs

the actions explained earlier after the arrival of an incoming

packet, the new information is added to the list of active

flows(flow1) by our Flow_Statistics_collector in the flow

field. The controller then installs the associated rules as a flow

entry in the flow table of the switch via FlowMod message.

Figure 2 depicts the nature of our data collection module.

The collection of flow entries from an OpenFlow switch is

performed at predetermined time intervals by the controller.

From this collection important features are extracted to

classify traffic as normal or as an attack. As the collector

gathers samples from all OF switches authenticated by POX,

the switch ID is used to help the classifier module pinpoint in

which OF switches DDoS flooding attacks were detected.

2.2 Data preprocessing
Preprocessing converts network traffic into a series of

observations, where each observation is represented as a

feature vector. Observations are optionally labeled with its

class, such as “normal” or “anomalous”. These feature vectors

are then suitable as input to HMM algorithm. The algorithm is

able to generalize from these labelled data(observations),

hence allowing future observations to be automatically

classified.

Collected data usually contain redundant, noisy and different

scales of feature values which presents challenges that are

critical to data modelling. In order to fix these challenges, data

are treated to scale by calculating the standard scores for each

feature. The standard score xi, of a data feature x is given by:

 2-1

Where represents the standard deviation and the

distribution mean value for . the issues of high variability

and scaling effect is removed and reduced in standardized

features since they have approximately zero mean and unit

standard deviation.

2.3 Feature Selection
Several features of dataset have been identified by several

authors for developing an intrusion detection and evaluation

system. However, the most effective and significant features

need to be extracted in order to build a suitable detection

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 39, December 2020

35

algorithm with high detection accuracy. Reducing the feature

set to a smaller set of features and selecting the significant

features will improve the computation time, obtain higher

accurate detection rates and minimize the effect of noise when

training occurs. Since our work is focusing on OpenFlow

flooding attacks, we consider the most obvious features with

reference to the works of[7], [10].

In this method, the feature set includes 6 different features

whose data are extracted and stored in a CSV file format.

These features include:

1. Average number of packets per flow (APf): In order to

increase an attack’s efficiency during an OpenFlow

flooding attack, source IP spoofing is usually employed

by generating a limited number of flows with small

number of packets, this creates a difficulty in tracing the

attack source. Considering that normal traffic usually

contains a much larger number of packets, we calculate

the median value. Based on the number of packets per

flow, flows are ordered in ascending order prior to

calculating the median value. This computation is done

using equation 3-2, where K is the number of packets per

flow and n is the sequence of flows, thus, k(1),

k(2),…,k(n) represents the sequence of packets.

 2-2

2. Average number of bytes per flow (ABf): This can also

be computed as a median value using equation 3-2 with

K now representing the number of bytes. This number of

bytes can be obtained from the flow stats in the

OpenFlow switch.

3. Growth rate of different Ports (GDP): Just like IP

spoofing, ports can also be generated randomly during

attacks. Thus, the growth rate of different ports can be

computed using equation 3-3.

 2-3

4. Growth rate of flows (Gof): when a flood attack starts,

there can be a quick rise in the number of flows. This can

be seen through programming the OpenFlow switch to

record the flow of every packet in the flow table. To

compute this growth, we use equation 3-4.

 2-4

5. Percentage of Pair-flows (PPf): In order for flows (flow1

and flow2) to be considered pair-flows, they should meet

the following conditions, flows that do not meet the

following conditions are called single-flows:

 SrcIP(flow1) = DstIP(flow2)

 DstIP(flow1) = SrcIP(flow2)

 Both flows must have the same

communication protocol.

The attacker’s use of fake IPs results in an increase in single-

flows hence the decrease in percentage of pair-flows can be an

indication of attack in the SDN environment. This feature

helps determine the number of pair-flows occurring in a flow

stream over a certain interval. We use equation 3-5 to

compute the percentage of pair-flows.

 2-5

6. Average of Duration per flow (ADf): The duration of

time a flow spends in a flow table decreases the number

of false positives during packet exchange (small number)

between applications. In order to measure the duration of

time a flow spends in a flow table; we also employ the

use of median value. Equation 3-2 is used for this

computation with X now representing the duration of

flow in the switch and n the number of flows.

2.4 Data modelling with HMM
In this section, we explain how we employed the Hidden

Markov Model in our data modelling.

Traditional HMM specifies five entities in the model property:

the set of states’ the observation set , the initial

probability state , transition probabilities and the

observation probability B. For the purpose of this project, we

define 6 entities as follows:

 where:

S represents the number of different states assumed to be in

the system. Each individual state is represented by .

In this work, we use the following 4 classes as states:

Normal(N): indicates that there is no case of malicious

activity in the system.

TCP flood(T): Indicated that there is a TCP flooding attack

occurring in the system.

ICMP flood(I): indicates that there is an occurrence of ICMP

flooding attack.

UDP flood(U): indicates the occurrence of UDP attacks.

Each state is represented by the following characters hence:

 .

The security state of a network changes over time, and the

sequence of state from time 1 to is denoted by
 , where . The Markov Model used for our

HMM is a first order model. That is, the state transition

probabilities only depend on the previous state. Figure 3

shows the topology of the transition states of our HMM model

from one state to another. and represent the

states of our HMM model. The connecting link in the figure

indicates the state transition probability for each state.

Figure 3 HMM model topology of transition states

V denotes the set of all possible feature observations,

generally expressed as . The observation

feature set in our work includes 6 different features as

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 39, December 2020

36

explained in section 3.3; Average number of packets per flow

(APf): Average number of bytes per flow (ABf): Change rate

of source ports (Gof): Growth of Single-flows (GSf):

Percentage of Pair-flows (PPf): Average of Duration per flow

(ADf). M is the number of distinct feature observations per

state which corresponds to the physical output of the modeled

state. Thus, = 12 since each feature has two values which

can be normal or abnormal. For better illustration of the

various attack features

 { , , , }.

 indicates a normal status whiles indicates an

abnormal status. The observation value sequence is
 , where represents

the observed feature set at certain time. Each observed feature

set consists of 6 feature values,

 . A is a matrix which

represents the state transition probability matrix usually

represented as:

 2-6

where, qt is the state at time (set of all possible

states). The state transition probability describes the

probability of transitions between the states of the models

where each model represents the probability of the

network state changing to the state at time , given

that it is in the state at time . Parameter B defines the

observation symbol probability matrix as;

 ,
 2-7

The Observation Probability Matrix B describes the

probability of observing a network feature value given that the

network is in a certain state. Each entry represents the

probability of observing in a network status at a time .

And the initial state probability vector as

defined in the equation below.

 , where, 2-8

The decision whether the TCP, ICMP or UDP packet type is

normal or an attack is based on the combined features and

their values, these feature values represent observations that

can be taken as observation sequences and classified with the

right observation symbol numbers. Hence to reduce

dimensionality of the model and improve performance, we

treat all features and their values separately. The actual values

of the selected features as well as the discrete observation

symbol of the corresponding values in our session are shown

in Table 3.

Table 2 Actual Values and Discrete Observation Symbol

values of the Features

Features Value 1 Value 2

Average number of packets per flow 9 4

Average number of bytes per flow 534 248

Change rate of source ports 0 0

Growth of Single-flows 0 0

Percentage of Pair-flows 0 0

Average of Duration per flow 1308 2945

Observation Symbol number 1 2

From Table 3.3, it can be seen that the above-described values

have adapted as observation sequence of

 and which correspond to the

observation symbols for each sequence. Thus, after these

values are classified with their observation symbol numbers,

the observation sequences qualify for classification of an

instance with type normal or attack and divided into two

types: (1) a known observation sequence extracted from the

training dataset and used for training model, and (2) an

unknown observation sequence extracted from the test dataset

and used for evaluating trained model.

Once the observation sequences of type normal or an attack

are generated, the next step is to set up the HMM parameters

for training and testing model as explained in the next section.

2.4.1 Parameter Estimation and Training
In this section, the use of HMM’s to learn the typical

behaviors in the SDN network environment is discussed. In

order to train a model, we first need to get the hidden state

space π, the observed state , and the initial probability

matrix .

We use Baum-Welch algorithm to train (observed value

sequence) and (corresponding state sequence), and for

parameter estimation of the values . This

algorithm calculates the parameters by initializing a model

and updating the model into a better one until the quantity of

the model cannot be improved further. The Baum-Welch

algorithm contains two steps:

i- E-step (Expected step) where the expected state

occupancy count and the expected state transition

count from the initial transition and emission

probabilities are computed.

ii- M-step (maximization step): In this step, the expected

state occupancy count γ and the expected state transition

count are used to recompute new and

probabilities.

Given , the expected number of times that you are in a state

 , at a time , the probability that you transition from state ,
to state , and , , the steps of Baum-Welch algorithm

applied are shown in Algorithm 1 where , represent

different status in status set , and is calculated by

equation 3-9.

 2-9

Algorithm 1 Baum-welch Algorithm

Input: Observed value sequence O = {O1, O2, ..., OT}

Output: the parameters of the Hidden Markov Model:

 = π, A, B;

Step 1: Initialization

 for n = 0, select πi
(0), aij

(0), bj
(0) to obtain the initial model

ʎ(0) = (π(0), A(0), B(0))

Step 2: Iterative calculation

 for n = 1,2, …,

 Update aij:

 Update bj:

;

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 39, December 2020

37

 Set πi:

Step 3: Termination. Obtain the parameters value where

 ʎ= π, A, B =
.

Two types of models are considered in this approach: Model

for normal HMM λ1 and model for Attack HMM λ2. Each

model is assigned to each distinguishable state with initial

values of , and carried out to be uniformly distributed

so that the local maximum becomes the global maximum. The

initial values of , , and for each session in our model are

initialized to be the same for both HMM for "normal" and

HMM for an "attack" model. The corresponding initial values

of and parameter which correspond to the initial state

probability distribution and state transition probability

distribution respectively are illustrated in Table 4 and 5.

Table 3 Initial State distribution (Parameter ‘π’ of HMM)

States Initial State Distribution Value

1 0.000582

2 0.261901

3 0.089831

4 0.375827

Table 4 State transition probability distribution

(Parameter ‘A’ of HMM)

States 1 2 3 4

1 0.1455 0.1061 0.2719 0.2496

2 0.0679 0.3353 0.2774 0.2004

3 0.0191 0.1165 0.4647 0.1878

4 0.6308 0.2843 0.0760 .0030

The Baum-Welch algorithm is applied to re-estimate the

HMM parameters to get a new set of parameters until a point

is reached where the sample likelihood is locally maximal.

For updating and re-estimating the HMM parameters once

they are initialized, we use and the probability

generated by the training process of Baum-Welch algorithm to

get the optimality criterion which maximizes the expected

number of correct individual states. is the probability of

status Si at time t, as shown in equation 3-10.

 2-10

The following steps were employed in the re-estimation stage

of the training algorithm:

i- Re – estimating initial state distribution values

 2-11

ii- Re – estimating state transition probability distribution

 2-12

iii- Re – estimating observation symbol probability

distribution

 2-13

We continue the process of re-estimation until we cannot

reach the desired limiting point. At the end of the training

phase, we generate one model for the trained values of the

HMM parameters and as depicted in Tables 6, 7, and 8

below.

Table 5 Trained values of Parameter ‘A’ of HMM

States 1 2 3 4

1 0.2458 0.1249 0.3470 1.5571

2 0.0066 0.01015 0.9816 0.2005

3 0.0191 0.0951 0.5727 0.2117

4 0.7104 0.3854 0.1670 0.1084

Table 6 Trained values of Parameter ‘B’ of HMM

States 1 2 3 4

1 0.3156 0.2164 0.1714 0.0394

2 0.0679 0.4355 0.2774 0.2005

3 0.0191 0.1165 0.4648 0.1878

4 0.6308 0.2844 0.0760 0.0029

Table 7 Trained Initial State distribution (Parameter ‘π’

of HMM)

States Initial State Distribution Value

1 0.15610

2 0.38650

3 0.09963

4 0.48582

2.4.2 Model Evaluation
The issue of calculating the probability of the unknown

observation sequence where the model of type

normal or attack and the observation sequences
 and of type normal or attack are given

already, can be solved using Forward algorithm and

Backward algorithm. The process is described in a and b

below:

a- Forward procedure: The forward variable

 , , indicates the

probability of the partial observation sequence

 , and the state at time , given

the model λ. The stages in the forward procedure is given

in the equations below:

i- Forward variable value initialization

 2-14

 where 1≤ i ≤ N

ii- Induction

 2-15

where 1≤ t ≤ T – 1; 1 ≤ j ≤ N

iii- Termination

 2-16

Thus, is the sum of all the values.

b- Backward procedure: Backward variable refers to

the probability of the partial observation sequence from

 to the end, given state Si at time t and the model

λ. the main steps involved in Backward Procedure are

described using the equations below.

i- Initialization

 2-17

ii- Induction step

 2-18

 where

2.4.3 Risk assessment
 Each of the states in the system is associated with a risk

vector C which indicates the potential consequences of the

state in question. After obtaining the probability , as well

as the risk vector , we calculate the

total risk value Rt at time t using the following equation;

 2-19

where is the probability that the system is in security

state at time , is the number of security states, and

 is the risk value associated with state .

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 39, December 2020

38

2.4.4 Anomaly Detection
We employed the Viterbi algorithm for our attack detection.

This algorithm is used in finding the most likely sequence of

hidden states as a result of unobserved sequence events. As a

dynamic programming algorithm, it can be used to solve

HMM issues thus, making it fit for predicting the state of the

network in our work.

In this work, we employ the following process in applying

Viterbi algorithm where δt(i) is defined as a maximum

probability among all the paths (x1, x2, ..., xt) in status i at time

t, as denoted in the equations below.

 2-20

The recursion formula of δ is as Eq.

2-21

 is the – node in , as shown below;

 =

 2-22

Viterbi algorithm recursively calculates δt(i) and then trace

back to obtain the optimal path, using the observed value

sequence to predict the status sequence

 , where , is the status

value at time corresponding to the observed sequence. The

process is summarized in algorithm 2.

Algorithm 2 Viterbi Algorithm

Input: HMM: π, A, B

Observed sequence: O = {O1, O2, …, Ot}:

Output: Optimal path: X⃰ = {x⃰1, x⃰2, …xt ⃰};

1: Begin δt(i)= πibi(o1) and ψ1(i) = 0, I =1, 2, …N;

2: for t = 2; t ≤ T: t + + do:

3: δt(i) = max [δt-1(j)aji]bi(ot), i = 1,2, …, N

 1≤j≤N

4: ψ1(i) = arg max[δt-1(j)aji], i = 1,2, …, N

 1≤j≤N

5: end for P ⃰ = max δt(i), iT ⃰= arg max[δT(i)]

 1≤j≤N 1≤j≤N

6: for t = T-1: t > 0, t - - do:

7: x⃰t = ψt+1(xt+1)

8: end for.

3. IMPLEMENTATION AND

EVALUATION
In this study, POX controller will be used to implement our

detection module. It contains several in-built components that

can be invoked to control various functionalities in the

network.

One of the components that is vital to our work is the

 . It

serves as a good example of using POX`s packet library in

examining and constructing ARP requests and replies.

For the virtual testbed in this experiment, we will be using

Mininet network emulator installed on VMWARE emulated

machine running on a computer equipped with Ubuntu Linux

OS and an Intel Core i5-5200U @2.20GHz resources all

available to the virtual machine. Mininet simulated networks

run real Linux network applications and provides Linux

kernel and networking stack for further development (real-

world testing, performance evaluation, and deployment).

Scapy was used to generate both attack and normal traffic

during this test. The code for generating random

source IP addresses and host IP addresses is in Python.

Our model includes a tree-type network of depth two with

three OpenFlow virtual switches (OVS) and 8 hosts with

separate IP addresses all connected with a virtual Ethernet

cable. The OpenFlow switches are configured to connect to

our remote POX controller (running l3_learning module) as

depicted in figure 4.

Our simulation consists of varying attack parameters for our

DDoS attack as well as different types of legitimate traffic.

The traffic generated during tests is a composition of several

different protocols: 85% is TCP, 10% is UDP, and 5% of

ICMP (ping). After successfully setting up our network

topology and running a successful ping command to test

connectivity between hosts, we start our detection module on

the controller alongside a l3_learning using;
 . Normal

traffic is run using . Attack

traffic is run with the command .

From figure 4, hosts 1, 2 and 4 are the attackers launching

TCP, ICMP and UDP attack traffic respectively directed

towards the controller whiles the remaining hosts represent

normal hosts.

Figure 4 Tree-Type Network Topology Setup

Due to the use of flow-based information for classification of

traffic patterns, we set the interval of detection loop to 10

seconds for approximately 1,100 seconds, hence every switch

is programmed to obtain flow tables every 10 seconds for

feature selection and exported into a CSV format file.

Timestamp and duration of each flow was used to sort out

flow. Thus 1,000 flow tables were considered at 1,100

different times. During time 151 to 300, we simulated TCP

flooding; during time 451 to 650, ICMP attacks were

launched; UDP attacks were from time 801 to 950; other

remaining time periods had no attacks (i.e. normal status). The

6 features as specified in section 3.3 were extracted by

analyzing the flow tables.

A total of 3000 flows were generated; 2000 flows were

collected during the interval of attack whiles 1000 were

collected during normal traffic. We used 2100 for training and

900 for testing. In Table 4.1 we present the types of attacks

launched for the training and testing phases, along with their

respective estimated number of generated flows.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 39, December 2020

39

Table 8 Attack traffic used for training and testing

Attack

types

Training Testing

TCP/SYN 1720 455

UDP 380 300

ICMP 100 145

An example on the various values of one feature at different

times is depicted in Figure 5 and 6. We selected two features

as a potential attack indicator to determine their values at

different times as depicted below. Average number of packets

per flow (APf) and percentage of pair-flows (PPF) were

considered most likely to influence the decision of whether a

traffic flow is normal or an attack.

Figure 5 APf of normal and attack traffic

Figure 5 shows the average number of packets per flow (APf)

in OpenFlow flooding attack. It can be observed that, there is

a rise in the variation of number of packets during normal

packets sessions from 40 to 65 which occurred during times 1

to 150, 301 to 450, 651 to 800 and 951 to 1100 whiles

flooding attacks occurred between times 151 and 300, 451 and

times 650 as well as 801 and 950 with a decrease in packet

number between 5 to 0 per flow. This decrease in packet

number increases the speed of sending numerous packets and

also aids in better distinguishing of feature values.

Figure 6 PPF of normal and abnormal traffic

As depicted in Figure 6, PPF is near 0 during attack times 151

to 300, 451 to 650 and 801 to 950 whiles PPF of normal

traffic falls between 30 to 60 at times 1 to 150, 301 to 450,

651 to 800 and 951 to 1100.

In order to adopt the features into our training model, we set

two values {0,1} for each feature, 1 represents a normal

feature value and 0 represents an abnormal value, from our 6

features, we can deduce that the HMM model has 12 possible

feature observations.

All the observation sequence values were tagged as normal

and abnormal after which they were trained to obtain the

parameters π, A, B using the Baum-Welch Algorithm as

depicted in section 3.3 earlier. The probability at different

times were also obtained as shown in Figure 7. The times 1-7

at the x-axis represents the time periods 1-150, 151-300, 301-

450, 451-650, 651-800, 801-950, 951-1100 respectively. Each

bar on the graph denotes the average probability of being in a

certain state at 150 different times. It can be observed that the

probabilities of SDN in a normal state N is much higher at

times 1-150, 301-450, 651-800, 951-1100. Whiles TCP attack

is at time 151 to 300, the probability of state T is higher;

ICMP attack is at time 451-650, hence, a higher probability of

state I; UDP attack at time 801-950 thus a higher probability

of state U.

Figure 7 Average probability of being in a state i at

various time periods

To get the total risk value, corresponding to the status set {N,

T, I, U}, the risk vector is defined as C = {0,20,60,80}. This is

done according to the damages and threats of state on the

entire network with 0 indicating that there is no risk when the

network is in a normal state, and 20 to 80 indicates that the

SDN network is under attack under the remaining states

which is large enough to set status C with the maximum risk

value. The average risk values from time 0 to 1100 are

depicted in Figure 8. Since there are different attacks in the

network, the risk value changes with regards to the risk

vector, thus the higher the risk values, the higher there is a

security risk in the network. The times 1-7 at the x-axis

represents the time periods 1-150, 151-300, 301-450, 451-

650, 651-800, 801-950, 951-1100 respectively.

Figure 8 Average risk values at various time periods

From the Figure 8, it can be observed that the risk values

conform with the values we set previously with TCP attack

having the highest value of 60.013, UDP attack comes second

with a value of 59.501 and ICMP has a value of 59.401.

Normal values are stable around 29.

3.1 Evaluation
In this section, we depict our results based on different

evaluation measures under two broad categories (Accuracy

and Efficiency). The measures are shown in a 2d-axis diagram

in Figure 9. Various labels are used in our evaluation method

and these labels are True Positive (TP): The number of attacks

instances classified as attacks, True Negative (TN): The

number of non-attacks instances classified as non-attacks,

False Negative (FN): The number of attacks instances

classified as non-attacks and False Positive (FP): The number

of non-attacks instances classified as attacks.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 39, December 2020

40

We also used a subset of the KDD Cup 1999 intrusion

detection data set prepared to further evaluate our model. The

attack launched in our own simulation is constant rate attack,

we choose the constant rate TCP attack samples in KDD Cup

data. We employed the Weka (Waikato Environment for

Knowledge Analysis) [13] tool for this evaluation.

3.1.1 Accuracy
To evaluate the performance of our proposed model in terms

of correctness, we calculate its accuracy. Accuracy measures

the detection, failure rates as well as the number of false

alarms produced by the system. In this work accuracy is

measured by using the Viterbi algorithm to generate a likely

state sequence and compare it to the known state sequence to

get TP, FP, FN, and TN. This form of evaluation helps

determine how correctly our model is in classifying and

predicting the class label of attack and normal. Our

experiment achieved an accuracy of 94.3% with 5.7% false

positive rate. In order to access the accuracy of our model, we

considered the following measures:

i. Sensitivity and Specificity: Sensitivity is the ratio of

the total number of detected true positive that are

correctly identified as attack to total number of positive

instances. Specificity is the ratio between TN and

(FP+TN). The Sensitivity and Specificity can be

calculated by using the following equations

respectively:

 3-1

 3-2

ii. Precision, Recall and F-measure: Precision is defined as

the fraction of retrieved objects (e.g., documents) that

are relevant to a given query, Recall is the fraction of

the objects that are relevant to a given query or search

request and are correctly retrieved. F-measure is

calculated by combining precision and recall into a

simple metric. Figure 10 depicts the sensitivity and

specificity as well as the Precision, Recall and F-

measure of our model on SDN generated data and KDD

Cup dataset.

Figure 9 Accuracy of proposed model on SDN data and

KDD Cup data

i. Confusion matrixes: A confusion matrix can be used to

show the overall performance of an Intrusion Detection

System. The confusion matrix can be used in the case of

n class problems, where n = number of problems. Table

10 shows the results of our experiment.

Table 9 Confusion matrix of proposed model

 Detected

 Actual

Benign

Attacks

Benign TP = 43 FP = 6

Attacks FN = 1 FN = 50
ii. Receiver operating characteristic (ROC) curve: The

Receiver Operating Characteristics (ROC) is used in

this work for representing the relation between True

Positive Rate (TPR) and False Positive Rate (FPR) for

the different attack rates tested on our detection model.

As depicted in the figures below, x-axis represents TPR

which is the fraction of attack traffic correctly as attack

traffic whereas y-axis represents FPR which is the

fraction of normal traffic incorrectly predicted as attack

traffic. Figure shows the ROC Curve of our model and

figure shows the ROC Curve of one session of KDD

Cup dataset used. From these figures, the curves are

closer to both the Y-axis and the point (0, 1) which

implies that low false positives were obtained.

Figure 10 ROC Curve from SDN generated Data

Figure 11 ROC Curve from one session of KDD Cup data

3.1.2 Performance
With the use of flow-based information within a given time

interval for collection of samples every 10 seconds and

classification of traffic patterns, the issue of minimal effect on

the controller in terms of resource usage needs to be

examined, remarkable overhead reduction of our detection

mechanism something we considered during or design.

In view of this, we compare the CPU time for extraction of

features by our system to other DDoS attack detection

approaches in SDN.

Table 10 Detection of feature extraction overhead

The results from Table 11 shows that our system is much

faster that KDD 99 based method but almost same as the

method employed by Braga et al [7].

In chapter 4 of our work, we demonstrated how our proposed

mechanism can be implemented and evaluated it in terms of

accuracy and performance. We demonstrated that our

mechanism extracts significant features with low overhead as

compared to other methods. Our model demonstrated 94.3 %

accuracy and 5.7% false positive rate with minimum overhead

as compared with other methods. Finally, we showed that the

flexibility and programmable nature in Software Defined

Networking that makes it the new norm for networking in

today’s world.

4. CONCLUSION
This work presented a mechanism for Distributed Denial of

Service anomaly detection of the controller in Software

 Our

method

Braga et

al

KDD99 based

method

No. of features 6 6 9

CPU times 156 154 237

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No. 39, December 2020

41

Defined networking environment. The mechanism employed

Hidden Markov Model technique for anomaly detection.

An in-depth description of the methodology design and

mechanism and how this model can handle DDoS attacks in

SDN was given in chapter 2: employing the

Flow_Statistics_Collector for data collection, Baum-Welch

algorithm for training and Viterbi algorithm for anomaly

detection just to mention a few.

Chapter 3 demonstrated how the proposed mechanism can be

implemented and evaluated it in terms of accuracy and

performance. We demonstrated that our mechanism extracts

significant features with low overhead as compared to other

methods. Our model demonstrated 94.3 % accuracy and 5.7%

false positive rate with minimum overhead as compared with

other methods. Finally, we showed that the flexibility and

programmable nature in Software Defined Networking that

makes it the new norm for networking in today’s world.

Since machine learning techniques are becoming relevant in

anomaly detection [14], [15], it`s principles running alongside

SDN will make network security vulnerability issues much

easier to handle and improve. Therefore, for our future work,

we will attempt to identify and mitigate anomalous flow

patterns, by applying hybrid machine learning methods on

results obtained from backtracking attack traffic generated and

designing a highly effective mitigation technique at the cost of

low resource usage and a rigorous dataset to handle threats

5. ACKNOWLEDGMENTS
I would like to thank my supervisor Sonjie Wei for the

guidance, numerous and helpful discussion throughout this

research.

6. REFERENCES
[1] F. Mattern and C. Floerkemeier, “From the internet of

computers to the internet of things,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in

Bioinformatics), 2010, vol. 6462 LNCS, pp. 242–259,

doi: 10.1007/978-3-642-17226-7_15.

[2] Z. Wan, “Cloud Computing infrastructure for latency

sensitive applications,” in International Conference on

Communication Technology Proceedings, ICCT, 2010,

pp. 1399–1402, doi: 10.1109/ICCT.2010.5689022.

[3] D. K. Bhattacharyya and J. K. Kalita, Network Anomaly

Detection. 2013.

[4] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined

networking (SDN) and distributed denial of service

(DDOS) attacks in cloud computing environments: A

survey, some research issues, and challenges,” IEEE

Communications Surveys and Tutorials, vol. 18, no. 1.

Institute of Electrical and Electronics Engineers Inc., pp.

602–622, Jan. 01, 2016, doi:

10.1109/COMST.2015.2487361.

[5] M. Suh, S. H. Park, B. Lee, and S. Yang, “Building

firewall over the software-defined network controller,” in

International Conference on Advanced Communication

Technology, ICACT, 2014, pp. 744–748, doi:

10.1109/ICACT.2014.6779061.

[6] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards

secure and dependable software-defined networks,” in

HotSDN 2013 - Proceedings of the 2013 ACM

SIGCOMM Workshop on Hot Topics in Software

Defined Networking, 2013, pp. 55–60, doi:

10.1145/2491185.2491199.

[7] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS

flooding attack detection using NOX/OpenFlow,” in

Proceedings - Conference on Local Computer Networks,

LCN, 2010, pp. 408–415, doi:

10.1109/LCN.2010.5735752.

[8] S. Shin, S. Shin, V. Yegneswaran, P. Porras, and G. Gu,

“AVANT-GUARD: Scalable and Vigilant Switch Flow

Management in Software-Defined Networks,” Accessed:

Apr. 20, 2020. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1

.645.5293.

[9] S. Shin et al., “Rosemary: A Robust, Secure, and High-

Performance Network Operating System,” Accessed:

Apr. 20, 2020. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1

.650.2722.

[10] Z. Fan, Y. Xiao, A. Nayak, and C. Tan, “An improved

network security situation assessment approach in

software defined networks,” Peer-to-Peer Netw. Appl.,

vol. 12, no. 2, pp. 295–309, Mar. 2019, doi:

10.1007/s12083-017-0604-2.

[11] R. Mohammadi, R. Javidan, and M. Conti, “SLICOTS:

An SDN-based lightweight countermeasure for TCP

SYN flooding attacks,” IEEE Trans. Netw. Serv. Manag.,

vol. 14, no. 2, pp. 487–497, Jun. 2017, doi:

10.1109/TNSM.2017.2701549.

[12] L. R. Rabiner, “A Tutorial on Hidden Markov Models

and Selected Applications in Speech Recognition,” Proc.

IEEE, vol. 77, no. 2, pp. 257–286, 1989, doi:

10.1109/5.18626.

[13] “Weka tutorial: machine learning & data mining.”

https://wekatutorial.com/ (accessed May 17, 2020).

[14] R. Swami, M. Dave, and V. Ranga, “Software-defined

Networking-based DDoS Defense Mechanisms,” ACM

Comput. Surv., vol. 52, no. 2, pp. 1–36, May 2019, doi:

10.1145/3301614.

[15] D. K. Bhattacharyya, Network anomaly detection?: a

machine learning perspective. 2013.

IJCATM : www.ijcaonline.org

