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ABSTRACT 

The introduction of Software Defined Networking (SDN) as a 

panacea to the global demand for a more secure and highly 

dependable internet infrastructure has also brought along 

security issues. The adoption of OpenFlow Protocol (OFP) by 

SDN as the way of communication between controllers and 

switches, has not only brought about easy and direct 

manipulation of data for enhanced packet forwarding policies, 

but also renders the network vulnerable to security issues 

(DDoS attacks) since the OpenFlow (OF) switch has to ask 

the controller to install new rules for any new incoming 

packet. 

In this work, the capability of SDN in handling security 

threats that arise from the above vulnerability is proven. This 

work seeks to design and implement a DDoS detection model 

that uses Hidden Markov Model (HMM) for detecting 

abnormal traffic (OpenFlow flooding attacks) directed 

towards the SDN controller aimed at destabilizing the flow of 

normal network traffic among users in a software-defined 

networking environment. 

The experiment achieved an accuracy of 94.3% in 

classifying network traffic with 5.7% false positive rate. The 

feasibility of this approach is proven by building a test 

scenario to simulate the approach with POX controller and 

OpenFlow switches.  

General Terms 

Software Defined Networking (SDN), Anomaly Detection, 

Distributed Denial of Service (DDoS), Network Security 

Keywords 

OpenFlow, Mininet, OpenFlow (OF), SDN, Hidden Markov 
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1. INTRODUCTION 
Innovative internet ideas are increasingly the interest of 

today`s world due to the rise in technological demands. As a 

result, the need for an equally innovative internet security 

architecture has become the focus for researchers. Software 

Defined networking (SDN) is one of the few areas that has 

proven to be the future of networking since it is dynamic and 

programmable due to the separation of its control and data 

plane. This makes application of security approaches more 

convenient as compared to traditional networks where 

networking devices are vertically integrated hence, reducing 

network configuration flexibility, policy enforcement and 

evolution of the network. SDN enhances network utilization 

and management, ensuring availability and security as well as 

promoting evolution whiles maintaining performance with the 

use of a well-defined application programming interface 

(API)[1], [2].  OpenFlow is the most notable API in the world 

of SDN today since it is the first and widely used standardized 

protocol which defines the way of communication between 

controllers and switches. OpenFlow adopts the concept of 

flows to determine traffic flow based on a per-flow basis 

through network devices[3]. This allows for direct 

manipulation of data in order to enhance policies for packet 

forwarding, unlike current traditional networks. In a typical 

SDN environment, the controller manages a set of flow tables 

in an OF switch. These flow tables contain flow entries made 

up of counters and match fields as well as a set of actions to 

apply to matching packets. 

This separation however, is also subject to vulnerability issues 

with the central control logic prone to failure due to attacks 

from malicious users. One of such vulnerabilities that has 

been prominent is Distributed Denial of Service (DDoS) 

attacks[4]. In SDN, DDoS attacks occur as a result of a 

malicious user sending numerous numbers of anomalous 

packets with different header fields which are forwarded by 

the OpenFlow switch to the controller for further actions since 

no matching rules are found. Hence, the controller uses much 

resources that prevents it from answering requests from 

legitimate users. Also, once an attacker successfully 

compromises an SDN switch, flow table modification 

becomes easy for an attacker to change rules to attack the 

whole network [5]. The above issues as well as several threat 

vectors identified by [6] warrants the need for constant 

improvements in the security of SDN. With numerous 

literature on SDN and its security aspects including but not 

limited to the works of [7]–[11], there is still the need for 

improvements in enhancing SDN security.  

The rise of machine learning in network anomaly detection 

has also paved a way for the development and improvement 

of anomaly detection systems. Therefore, in this paper, an 

attempt is made to identify anomalous flow patterns by 

observing the behavior of packet flow in a software defined 

network and using the characteristics of this behavior to 

design a system for detection of distributed denial of service 

(DDoS) attacks aimed at the SDN controller. Hidden Markov 

model[12] is applied to predict the state of the network. This 

detection model will help in identifying effective techniques 

to handle these attacks. 

Specifically, this study: 

1. Seeks to show the effects DDOS attacks have on SDN by 

employing a few threat vectors identified by [6] i.e., forged 

traffic flows and vulnerabilities in controller communication. 

2. Uses a Software Defined Network (SDN) to achieve 

complete control of network traffic for intrusion detection and 

utilize OpenFlow’s message mechanism to increase the 

flexibility of the detection period. 
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3. Proposes an anomaly detection model using hidden Markov 

model (HMM) to define a variety of states with double 

stochastic processes of hidden states and observed states to 

improve the true positives and reduce the false positives. 

2. SYSTEM DESIGN AND MECHANISM 
In this chapter, an in-depth description of the system design 

and mechanism process is given. As depicted in figure 1, the 

detection scheme consists of three phases which will be 

discussed in detail in the preceding chapters: Data collection, 

Data preprocessing/Feature Selection, and Data modelling 

with HMM.  

 
Figure 1 System Design Process 

2.1 Data Collection 
Data is obtained by deploying an SDN network where the 

controller is connected to the switches that serve as points of 

data collection. 

 

The proposed system uses a Flow_Statistics_collector that 

records the flow information in an active flow table in the 

controller which consists all current active flows in the 

network. Table 1 shows the structure of the 

Flow_Statistics_collector. For better performance, the 

statistics collector is only responsible for gathering data and 

merging port and flow statistics into a single list and stored in 

a CSV file. 

Data statistics are gathered from controlled switches that are 

authenticated by the controller (POX) by generating IDs for 

each switch. This allows for exchange of packets between 

hosts connected to each switch. Since the headers of each 

packet arriving at the switch is matched against flow entries of 

the switches flow table, statistics of flow entries are updated 

in the case of a successful match. However, if no flow entry 

(in the switch’s Flow Table) matches the packet’s header, our 

application proactively uses OpenFlow to install a Flow Entry 

that instructs the controlled switches to forward all traffic to 

the controller. In its turn, the controller may add, according to 

the defined policy, a new flow entry to the Flow Table of 

every switch as required for policy enforcement by using 

FlowMod control message. Thus, the traffic generated by all 

hosts connected to a given OF switch will populate the Flow 

Table of said switch. 

 
 Figure 2 Data Collection System 

  
Table 1 How Flow information is stored in 

Flow_Statistics_Collector 

Flow Counter 

          

flow1 

i. Packet count 

ii. Total bytes 
iii. Duration 

 

Two main fields are contained in Table 1: flow and counter 

with the counter further divided into Packet_Count, 

Total_Bytes and Duration field. When the controller performs 

the actions explained earlier after the arrival of an incoming 

packet, the new information is added to the list of active 

flows(flow1) by our Flow_Statistics_collector in the flow 

field. The controller then installs the associated rules as a flow 

entry in the flow table of the switch via FlowMod message. 

Figure 2 depicts the nature of our data collection module. 

The collection of flow entries from an OpenFlow switch is 

performed at predetermined time intervals by the controller. 

From this collection important features are extracted to 

classify traffic as normal or as an attack. As the collector 

gathers samples from all OF switches authenticated by POX, 

the switch ID is used to help the classifier module pinpoint in 

which OF switches DDoS flooding attacks were detected. 

2.2 Data preprocessing 
Preprocessing converts network traffic into a series of 

observations, where each observation is represented as a 

feature vector. Observations are optionally labeled with its 

class, such as “normal” or “anomalous”. These feature vectors 

are then suitable as input to HMM algorithm. The algorithm is 

able to generalize from these labelled data(observations), 

hence allowing future observations to be automatically 

classified.  

Collected data usually contain redundant, noisy and different 

scales of feature values which presents challenges that are 

critical to data modelling. In order to fix these challenges, data 

are treated to scale by calculating the standard scores for each 

feature. The standard score xi, of a data feature x is given by: 

   
   

    
          2-1 

Where      represents the standard deviation and   the 

distribution mean value for  . the issues of high variability 

and scaling effect is removed and reduced in standardized 

features since they have approximately zero mean and unit 

standard deviation.  

2.3 Feature Selection 
Several features of dataset have been identified by several 

authors for developing an intrusion detection and evaluation 

system. However, the most effective and significant features 

need to be extracted in order to build a suitable detection 
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algorithm with high detection accuracy. Reducing the feature 

set to a smaller set of features and selecting the significant 

features will improve the computation time, obtain higher 

accurate detection rates and minimize the effect of noise when 

training occurs. Since our work is focusing on OpenFlow 

flooding attacks, we consider the most obvious features with 

reference to the works of[7], [10].  

In this method, the feature set includes 6 different features 

whose data are extracted and stored in a CSV file format. 

These features include: 

1.  Average number of packets per flow (APf): In order to 

increase an attack’s efficiency during an OpenFlow 

flooding attack, source IP spoofing is usually employed 

by generating a limited number of flows with small 

number of packets, this creates a difficulty in tracing the 

attack source. Considering that normal traffic usually 

contains a much larger number of packets, we calculate 

the median value. Based on the number of packets per 

flow, flows are ordered in ascending order prior to 

calculating the median value.  This computation is done 

using equation 3-2, where K is the number of packets per 

flow and n is the sequence of flows, thus, k(1), 

k(2),…,k(n) represents the sequence of packets. 

 

       

  
   

 
                           

 
                 

 
              

            2-2 

2. Average number of bytes per flow (ABf): This can also 

be computed as a median value using equation 3-2 with 

K now representing the number of bytes. This number of 

bytes can be obtained from the flow stats in the 

OpenFlow switch. 

3. Growth rate of different Ports (GDP): Just like IP 

spoofing, ports can also be generated randomly during 

attacks. Thus, the growth rate of different ports can be 

computed using equation 3-3.  

 

    
         

        
                               2-3 

4. Growth rate of flows (Gof): when a flood attack starts, 

there can be a quick rise in the number of flows. This can 

be seen through programming the OpenFlow switch to 

record the flow of every packet in the flow table. To 

compute this growth, we use equation 3-4. 

 

    
                          

             
        2-4 

 

5. Percentage of Pair-flows (PPf): In order for flows (flow1 

and flow2) to be considered pair-flows, they should meet 

the following conditions, flows that do not meet the 

following conditions are called single-flows: 

 SrcIP(flow1) = DstIP(flow2) 

 DstIP(flow1) = SrcIP(flow2) 

 Both flows must have the same 

communication protocol.  

The attacker’s use of fake IPs results in an increase in single-

flows hence the decrease in percentage of pair-flows can be an 

indication of attack in the SDN environment. This feature 

helps determine the number of pair-flows occurring in a flow 

stream over a certain interval. We use equation 3-5 to 

compute the percentage of pair-flows. 

    
                

         
                2-5 

6. Average of Duration per flow (ADf): The duration of 

time a flow spends in a flow table decreases the number 

of false positives during packet exchange (small number) 

between applications. In order to measure the duration of 

time a flow spends in a flow table; we also employ the 

use of median value. Equation 3-2 is used for this 

computation with X now representing the duration of 

flow in the switch and n the number of flows. 

2.4 Data modelling with HMM 
In this section, we explain how we employed the Hidden 

Markov Model in our data modelling.  

 

Traditional HMM specifies five entities in the model property: 

the set of states’    the observation set  , the initial 

probability state  , transition probabilities   and the 

observation probability B. For the purpose of this project, we 

define 6 entities as follows:  

                where:  

S represents the number of different states assumed to be in 

the system. Each individual state is represented by        . 

In this work, we use the following 4 classes as states: 

Normal(N): indicates that there is no case of malicious 

activity in the system. 

TCP flood(T): Indicated that there is a TCP flooding attack 

occurring in the system. 

ICMP flood(I): indicates that there is an occurrence of ICMP 

flooding attack. 

UDP flood(U): indicates the occurrence of UDP attacks.  

Each state is represented by the following characters hence: 

                                .  

The security state of a network changes over time, and the 

sequence of state from time 1 to   is denoted by   
        , where     . The Markov Model used for our 

HMM is a first order model. That is, the state transition 

probabilities only depend on the previous state. Figure 3 

shows the topology of the transition states of our HMM model 

from one state to another.          and    represent the 

states of our HMM model. The connecting link in the figure 

indicates the state transition probability for each state.  

 
Figure 3 HMM model topology of transition states 

V denotes the set of all possible feature observations, 

generally expressed as              .  The observation 

feature set in our work includes 6 different features as 
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explained in section 3.3; Average number of packets per flow 

(APf): Average number of bytes per flow (ABf): Change rate 

of source ports (Gof): Growth of Single-flows (GSf): 

Percentage of Pair-flows (PPf): Average of Duration per flow 

(ADf). M is the number of distinct feature observations per 

state which corresponds to the physical output of the modeled 

state. Thus,    = 12 since each feature has two values which 

can be normal or abnormal. For better illustration of the 

various attack features 

     {     ,      ,            ,            }. 

      indicates a normal status whiles       indicates an 

abnormal status. The observation value sequence is    
               , where              represents 

the observed feature set at certain time. Each observed feature 

set consists of 6 feature values, 

                         . A is a matrix which 

represents the state transition probability matrix usually 

represented as: 

                                

                                   2-6 

where, qt is the state at time       (set of all possible 

states). The state transition probability describes the 

probability of transitions between the states of the models 

where each model     represents the probability of the 

network state changing to the state    at time    , given 

that it is in the state    at time  .  Parameter B defines the 

observation symbol probability matrix as; 

           ,                             
                                    2-7 

The Observation Probability Matrix B describes the 

probability of observing a network feature value given that the 

network is in a certain state. Each entry       represents the 

probability of observing    in a network status    at a time  . 

And the initial state probability vector           as 

defined in the equation below. 

      , where,                        2-8 

The decision whether the TCP, ICMP or UDP packet type is 

normal or an attack is based on the combined features and 

their values, these feature values represent observations that 

can be taken as observation sequences and classified with the 

right observation symbol numbers. Hence to reduce 

dimensionality of the model and improve performance, we 

treat all features and their values separately. The actual values 

of the selected features as well as the discrete observation 

symbol of the corresponding values in our session are shown 

in Table 3. 

Table 2 Actual Values and Discrete Observation Symbol 

values of the Features 

Features Value 1 Value 2 

Average number of packets per flow 9 4 

Average number of bytes per flow 534 248 

Change rate of source ports 0 0 

Growth of Single-flows 0 0 

Percentage of Pair-flows 0 0 

Average of Duration per flow 1308 2945 

Observation Symbol number 1 2 

From Table 3.3, it can be seen that the above-described values 

have adapted as observation sequence of    

               and   which correspond to the 

observation symbols for each sequence. Thus, after these 

values are classified with their observation symbol numbers, 

the observation sequences qualify for classification of an 

instance with type normal or attack and divided into two 

types: (1) a known observation sequence extracted from the 

training dataset and used for training model, and (2) an 

unknown observation sequence extracted from the test dataset 

and used for evaluating trained model. 

Once the observation sequences of type normal or an attack 

are generated, the next step is to set up the HMM parameters 

for training and testing model as explained in the next section. 

 

2.4.1 Parameter Estimation and Training 
In this section, the use of HMM’s to learn the typical 

behaviors in the SDN network environment is discussed. In 

order to train a model, we first need to get the hidden state 

space π, the observed state  , and the initial probability 

matrix  . 

We use Baum-Welch algorithm to train  (observed value 

sequence) and  (corresponding state sequence), and for 

parameter estimation of the values          . This 

algorithm calculates the parameters by initializing a model 

and updating the model into a better one until the quantity of 

the model cannot be improved further. The Baum-Welch 

algorithm contains two steps:  

i- E-step (Expected step) where the expected state 

occupancy count   and the expected state transition 

count   from the initial transition and emission 

probabilities are computed. 

ii- M-step (maximization step): In this step, the expected 

state occupancy count γ and the expected state transition 

count   are used to recompute new   and   

probabilities.  

Given  , the expected number of times that you are in a state 

  , at a time  , the probability that you transition from state  , 
to state  , and   ,   , the steps of Baum-Welch algorithm 

applied are shown in Algorithm 1 where  ,   represent 

different status in status set  , and         is calculated by 

equation 3-9. 

        
                       

                    
 
   

 
   

          2-9 

Algorithm 1 Baum-welch Algorithm 

Input: Observed value sequence O = {O1, O2, ..., OT} 

Output: the parameters of the Hidden Markov Model:  

            = π, A, B; 

Step 1: Initialization 

        for n = 0, select πi
(0), aij

(0), bj
(0) to obtain the initial model 

ʎ(0) = (π(0), A(0), B(0)) 

Step 2: Iterative calculation 

            for n = 1,2, …, 

      Update aij:     
     

   
         
   
   

         
   
   

 

      Update bj:       
      

   
 
         

   

   
 
       

; 
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      Set πi:    
     

          
Step 3: Termination. Obtain the parameters value where  

          ʎ= π, A, B =                     
. 

Two types of models are considered in this approach: Model 

for normal HMM λ1 and model for Attack HMM λ2. Each 

model is assigned to each distinguishable state with initial 

values of  ,   and   carried out to be uniformly distributed 

so that the local maximum becomes the global maximum. The 

initial values of  ,  , and   for each session in our model are 

initialized to be the same for both HMM for "normal" and 

HMM for an "attack" model. The corresponding initial values 

of   and   parameter which correspond to the initial state 

probability distribution and state transition probability 

distribution respectively are illustrated in Table 4 and 5. 

Table 3 Initial State distribution (Parameter ‘π’ of HMM) 

States Initial State Distribution Value 

1 0.000582 

2 0.261901 

3 0.089831 

4 0.375827 

Table 4 State transition probability distribution 

(Parameter ‘A’ of HMM) 

States 1 2 3 4 

1 0.1455 0.1061 0.2719 0.2496 

2 0.0679 0.3353 0.2774 0.2004 

3 0.0191 0.1165 0.4647 0.1878 

4 0.6308 0.2843 0.0760 .0030 

The Baum-Welch algorithm is applied to re-estimate the 

HMM parameters to get a new set of parameters until a point 

is reached where the sample likelihood is locally maximal. 

For updating and re-estimating the HMM parameters once 

they are initialized, we use         and the probability       

generated by the training process of Baum-Welch algorithm to 

get the optimality criterion which maximizes the expected 

number of correct individual states.       is the probability of 

status Si at time t, as shown in equation 3-10. 

      
          

      
 

          

           
 
   

         2-10 

The following steps were employed in the re-estimation stage 

of the training algorithm: 

i- Re – estimating initial state distribution values 

                                     2-11 

ii- Re – estimating state transition probability distribution 

                   
   
   

   
              2-12 

iii- Re – estimating observation symbol probability 

distribution 

      
               

 
      

   
 
      

                    2-13 

We continue the process of re-estimation until we cannot 

reach the desired limiting point. At the end of the training 

phase, we generate one model for the trained values of the 

HMM parameters     and   as depicted in Tables 6, 7, and 8 

below. 

Table 5 Trained values of Parameter ‘A’ of HMM 

States 1 2 3 4 

1 0.2458 0.1249 0.3470 1.5571 

2 0.0066 0.01015 0.9816 0.2005 

3 0.0191 0.0951 0.5727 0.2117 

4 0.7104 0.3854 0.1670 0.1084 

 

Table 6 Trained values of Parameter ‘B’ of HMM 

States 1 2 3 4 

1 0.3156 0.2164 0.1714 0.0394 

2 0.0679 0.4355 0.2774 0.2005 

3 0.0191 0.1165 0.4648 0.1878 

4 0.6308 0.2844 0.0760 0.0029 

Table 7 Trained Initial State distribution (Parameter ‘π’ 

of HMM) 

States Initial State Distribution Value 

1 0.15610 

2 0.38650 

3 0.09963 

4 0.48582 

2.4.2 Model Evaluation 
The issue of calculating the probability of the unknown 

observation sequence          where the model   of type 

normal or attack and the observation sequences   
               and    of type normal or attack are given 

already, can be solved using Forward algorithm and 

Backward algorithm. The process is described in a and b 

below:  

a-  Forward procedure: The forward variable       

               ,  ,            indicates the 

probability of the partial observation sequence 

              ,   and the state    at time  , given 

the model λ. The stages in the forward procedure is given 

in the equations below: 

i- Forward variable value initialization 

                             2-14 

                        where 1≤ i ≤ N   

ii- Induction  

            
 
                                       2-15 

where 1≤ t ≤ T – 1; 1 ≤ j ≤ N  

iii- Termination 

           
 
                                                  2-16 

Thus,         is the sum of all the       values. 

b-  Backward procedure: Backward variable       refers to 

the probability of the partial observation sequence from 

      to the end, given state Si at time t and the model 

λ. the main steps involved in Backward Procedure are 

described using the equations below. 

i- Initialization 

                                                                 2-17 

ii- Induction step 

          
 
                                           2-18 

             where                        
     

 

2.4.3 Risk assessment 
   Each of the states in the system is associated with a risk 

vector C which indicates the potential consequences of the 

state in question. After obtaining the probability      , as well 

as the risk vector                  , we calculate the 

total risk value Rt at time t using the following equation; 

 

        
                                                        2-19  

where       is the probability that the system is in security 

state    at time  ,   is the number of security states, and 

     is the risk value associated with state   . 
 



International Journal of Computer Applications (0975 – 8887) 

Volume 175 – No. 39, December 2020 

38 

2.4.4 Anomaly Detection 
We employed the Viterbi algorithm for our attack detection. 

This algorithm is used in finding the most likely sequence of 

hidden states as a result of unobserved sequence events. As a 

dynamic programming algorithm, it can be used to solve 

HMM issues thus, making it fit for predicting the state of the 

network in our work.  

In this work, we employ the following process in applying 

Viterbi algorithm where δt(i) is defined as a maximum 

probability among all the paths (x1, x2, ..., xt) in status i at time 

t, as denoted in the equations below. 

 

      
                  

                               

                                                                          2-20 

The recursion formula of δ is as Eq. 

                        
        
                        

       
                                  

                                                                             
2-21 

      is the   –      node in   , as shown below; 

      =            
       

                          2-22 

Viterbi algorithm recursively calculates δt(i) and then trace 

back to obtain the optimal path, using the observed value 

sequence                to predict the status sequence 

              , where          ,   is the status 

value at time   corresponding to the observed sequence. The 

process is summarized in algorithm 2. 

 

Algorithm 2 Viterbi Algorithm 

Input: HMM: π, A, B 

Observed sequence: O = {O1, O2, …, Ot}: 

Output: Optimal path: X⃰ = {x⃰1, x⃰2, …xt ⃰}; 

1: Begin δt(i)= πibi(o1) and ψ1(i) = 0, I =1, 2, …N; 

2: for t = 2; t ≤ T: t + + do: 

3:      δt(i) = max [δt-1(j)aji]bi(ot), i = 1,2, …, N 

             1≤j≤N 

4:     ψ1(i) = arg max[δt-1(j)aji], i = 1,2, …, N 

             1≤j≤N 

5: end for P ⃰ = max δt(i), iT ⃰= arg max[δT(i)] 

             1≤j≤N      1≤j≤N                          

6: for t = T-1: t > 0, t - - do: 

7:      x⃰t = ψt+1(xt+1) 

8: end for. 

 

3. IMPLEMENTATION AND 

EVALUATION 
In this study, POX controller will be used to implement our 

detection module. It contains several in-built components that 

can be invoked to control various functionalities in the 

network. 

One of the components that is vital to our work is the 

                                           . It 

serves as a good example of using POX`s packet library in 

examining and constructing ARP requests and replies.  

For the virtual testbed in this experiment, we will be using 

Mininet network emulator installed on VMWARE emulated 

machine running on a computer equipped with Ubuntu Linux 

OS and an Intel Core i5-5200U @2.20GHz resources all 

available to the virtual machine. Mininet simulated networks 

run real Linux network applications and provides Linux 

kernel and networking stack for further development (real-

world testing, performance evaluation, and deployment).  

Scapy was used to generate both attack and normal traffic 

during this test. The code for generating random 

source IP addresses and host IP addresses is in Python. 

 

Our model includes a tree-type network of depth two with 

three OpenFlow virtual switches (OVS) and 8 hosts with 

separate IP addresses all connected with a virtual Ethernet 

cable. The OpenFlow switches are configured to connect to 

our remote POX controller (running l3_learning module) as 

depicted in figure 4. 

Our simulation consists of varying attack parameters for our 

DDoS attack as well as different types of legitimate traffic. 

The traffic generated during tests is a composition of several 

different protocols: 85% is TCP, 10% is UDP, and 5% of 

ICMP (ping). After successfully setting up our network 

topology and running a successful ping command to test 

connectivity between hosts, we start our detection module on 

the controller alongside a l3_learning using;   
                                       . Normal 

traffic is run using                       . Attack 

traffic is run with the command                      .   

From figure 4, hosts 1, 2 and 4 are the attackers launching 

TCP, ICMP and UDP attack traffic respectively directed 

towards the controller whiles the remaining hosts represent 

normal hosts. 

 
Figure 4 Tree-Type Network Topology Setup 

Due to the use of flow-based information for classification of 

traffic patterns, we set the interval of detection loop to 10 

seconds for approximately 1,100 seconds, hence every switch 

is programmed to obtain flow tables every 10 seconds for 

feature selection and exported into a CSV format file. 

Timestamp and duration of each flow was used to sort out 

flow. Thus 1,000 flow tables were considered at 1,100 

different times. During time 151 to 300, we simulated TCP 

flooding; during time 451 to 650, ICMP attacks were 

launched; UDP attacks were from time 801 to 950; other 

remaining time periods had no attacks (i.e. normal status). The 

6 features as specified in section 3.3 were extracted by 

analyzing the flow tables.  

A total of 3000 flows were generated; 2000 flows were 

collected during the interval of attack whiles 1000 were 

collected during normal traffic. We used 2100 for training and 

900 for testing. In Table 4.1 we present the types of attacks 

launched for the training and testing phases, along with their 

respective estimated number of generated flows. 
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Table 8 Attack traffic used for training and testing 

 

Attack 

types 

Training Testing 

TCP/SYN 1720 455 

UDP 380 300 

ICMP 100 145 

 

An example on the various values of one feature at different 

times is depicted in Figure 5 and 6. We selected two features 

as a potential attack indicator to determine their values at 

different times as depicted below. Average number of packets 

per flow (APf) and percentage of pair-flows (PPF) were 

considered most likely to influence the decision of whether a 

traffic flow is normal or an attack. 

 
Figure 5 APf of normal and attack traffic 

Figure 5 shows the average number of packets per flow (APf) 

in OpenFlow flooding attack. It can be observed that, there is 

a rise in the variation of number of packets during normal 

packets sessions from 40 to 65 which occurred during times 1 

to 150, 301 to 450, 651 to 800 and 951 to 1100 whiles 

flooding attacks occurred between times 151 and 300, 451 and 

times 650 as well as 801 and 950 with a decrease in packet 

number between 5 to 0 per flow. This decrease in packet 

number increases the speed of sending numerous packets and 

also aids in better distinguishing of feature values.  

 
Figure 6 PPF of normal and abnormal traffic 

As depicted in Figure 6, PPF is near 0 during attack times 151 

to 300, 451 to 650 and 801 to 950 whiles PPF of normal 

traffic falls between 30 to 60 at times 1 to 150, 301 to 450, 

651 to 800 and 951 to 1100. 

In order to adopt the features into our training model, we set 

two values {0,1} for each feature, 1 represents a normal 

feature value and 0 represents an abnormal value, from our 6 

features, we can deduce that the HMM model has 12 possible 

feature observations.  

All the observation sequence values were tagged as normal 

and abnormal after which they were trained to obtain the 

parameters π, A, B using the Baum-Welch Algorithm as 

depicted in section 3.3 earlier. The probability    at different 

times were also obtained as shown in Figure 7. The times 1-7 

at the x-axis represents the time periods 1-150, 151-300, 301-

450, 451-650, 651-800, 801-950, 951-1100 respectively. Each 

bar on the graph denotes the average probability of being in a 

certain state at 150 different times. It can be observed that the 

probabilities of SDN in a normal state N is much higher at 

times 1-150, 301-450, 651-800, 951-1100. Whiles TCP attack 

is at time 151 to 300, the probability of state T is higher; 

ICMP attack is at time 451-650, hence, a higher probability of 

state I; UDP attack at time 801-950 thus a higher probability 

of state U.  

 
Figure 7  Average probability of being in a state i at 

various time periods 

To get the total risk value, corresponding to the status set {N, 

T, I, U}, the risk vector is defined as C = {0,20,60,80}. This is 

done according to the damages and threats of state on the 

entire network with 0 indicating that there is no risk when the 

network is in a normal state, and 20 to 80 indicates that the 

SDN network is under attack under the remaining states 

which is large enough to set status C with the maximum risk 

value. The average risk values from time 0 to 1100 are 

depicted in Figure 8. Since there are different attacks in the 

network, the risk value changes with regards to the risk 

vector, thus the higher the risk values, the higher there is a 

security risk in the network. The times 1-7 at the x-axis 

represents the time periods 1-150, 151-300, 301-450, 451-

650, 651-800, 801-950, 951-1100 respectively. 

 
Figure 8 Average risk values at various time periods 

From the Figure 8, it can be observed that the risk values 

conform with the values we set previously with TCP attack 

having the highest value of 60.013, UDP attack comes second 

with a value of 59.501 and ICMP has a value of 59.401. 

Normal values are stable around 29. 

3.1 Evaluation 
In this section, we depict our results based on different 

evaluation measures under two broad categories (Accuracy 

and Efficiency). The measures are shown in a 2d-axis diagram 

in Figure 9. Various labels are used in our evaluation method 

and these labels are True Positive (TP): The number of attacks 

instances classified as attacks, True Negative (TN): The 

number of non-attacks instances classified as non-attacks, 

False Negative (FN): The number of attacks instances 

classified as non-attacks and False Positive (FP): The number 

of non-attacks instances classified as attacks. 
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We also used a subset of the KDD Cup 1999 intrusion 

detection data set prepared to further evaluate our model. The 

attack launched in our own simulation is constant rate attack, 

we choose the constant rate TCP attack samples in KDD Cup 

data. We employed the Weka (Waikato Environment for 

Knowledge Analysis) [13] tool for this evaluation.  

 

3.1.1 Accuracy 
To evaluate the performance of our proposed model in terms 

of correctness, we calculate its accuracy. Accuracy measures 

the detection, failure rates as well as the number of false 

alarms produced by the system. In this work accuracy is 

measured by using the Viterbi algorithm to generate a likely 

state sequence and compare it to the known state sequence to 

get TP, FP, FN, and TN. This form of evaluation helps 

determine how correctly our model is in classifying and 

predicting the class label of attack and normal. Our 

experiment achieved an accuracy of 94.3% with 5.7% false 

positive rate. In order to access the accuracy of our model, we 

considered the following measures:  

i. Sensitivity and Specificity:  Sensitivity is the ratio of 

the total number of detected true positive that are 

correctly identified as attack to total number of positive 

instances. Specificity is the ratio between TN and 

(FP+TN). The Sensitivity and Specificity can be 

calculated by using the following equations 

respectively: 

                 
  

     
                          3-1 

             
  

     
                                   3-2 

ii. Precision, Recall and F-measure: Precision is defined as 

the fraction of retrieved objects (e.g., documents) that 

are relevant to a given query, Recall is the fraction of 

the objects that are relevant to a given query or search 

request and are correctly retrieved. F-measure is 

calculated by combining precision and recall into a 

simple metric. Figure 10 depicts the sensitivity and 

specificity as well as the Precision, Recall and F-

measure of our model on SDN generated data and KDD 

Cup dataset. 

 
Figure 9 Accuracy of proposed model on SDN data and 

KDD Cup data 

i. Confusion matrixes: A confusion matrix can be used to 

show the overall performance of an Intrusion Detection 

System. The confusion matrix can be used in the case of 

n class problems, where n = number of problems. Table 

10 shows the results of our experiment. 

Table 9 Confusion matrix of proposed model 

   Detected 

 

 Actual 

  

Benign  

 

 

Attacks 

Benign  TP = 43 FP = 6 

Attacks  FN = 1 FN = 50 
ii. Receiver operating characteristic (ROC) curve: The 

Receiver Operating Characteristics (ROC) is used in 

this work for representing the relation between True 

Positive Rate (TPR) and False Positive Rate (FPR) for 

the different attack rates tested on our detection model. 

As depicted in the figures below, x-axis represents TPR 

which is the fraction of attack traffic correctly as attack 

traffic whereas y-axis represents FPR which is the 

fraction of normal traffic incorrectly predicted as attack 

traffic. Figure shows the ROC Curve of our model and 

figure shows the ROC Curve of one session of KDD 

Cup dataset used. From these figures, the curves are 

closer to both the Y-axis and the point (0, 1) which 

implies that low false positives were obtained. 

 
Figure 10 ROC Curve from SDN generated Data 

 
Figure 11 ROC Curve from one session of KDD Cup data 

3.1.2 Performance 
With the use of flow-based information within a given time 

interval for collection of samples every 10 seconds and 

classification of traffic patterns, the issue of minimal effect on 

the controller in terms of resource usage needs to be 

examined, remarkable overhead reduction of our detection 

mechanism something we considered during or design. 

In view of this, we compare the CPU time for extraction of 

features by our system to other DDoS attack detection 

approaches in SDN.  

Table 10 Detection of feature extraction overhead 

 

The results from Table 11 shows that our system is much 

faster that KDD 99 based method but almost same as the 

method employed by Braga et al [7]. 

In chapter 4 of our work, we demonstrated how our proposed 

mechanism can be implemented and evaluated it in terms of 

accuracy and performance. We demonstrated that our 

mechanism extracts significant features with low overhead as 

compared to other methods. Our model demonstrated 94.3 % 

accuracy and 5.7% false positive rate with minimum overhead 

as compared with other methods. Finally, we showed that the 

flexibility and programmable nature in Software Defined 

Networking that makes it the new norm for networking in 

today’s world. 

4. CONCLUSION 
This work presented a mechanism for Distributed Denial of 

Service anomaly detection of the controller in Software 

 Our 

method 

Braga et 

al 

KDD99 based 

method 

No. of features 6 6     9 

CPU times 156 154 237 
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Defined networking environment. The mechanism employed 

Hidden Markov Model technique for anomaly detection. 

An in-depth description of the methodology design and 

mechanism and how this model can handle DDoS attacks in 

SDN was given in chapter 2: employing the 

Flow_Statistics_Collector for data collection, Baum-Welch 

algorithm for training and Viterbi algorithm for anomaly 

detection just to mention a few.  

 

Chapter 3 demonstrated how the proposed mechanism can be 

implemented and evaluated it in terms of accuracy and 

performance. We demonstrated that our mechanism extracts 

significant features with low overhead as compared to other 

methods. Our model demonstrated 94.3 % accuracy and 5.7% 

false positive rate with minimum overhead as compared with 

other methods. Finally, we showed that the flexibility and 

programmable nature in Software Defined Networking that 

makes it the new norm for networking in today’s world. 

Since machine learning techniques are becoming relevant in 

anomaly detection [14], [15], it`s principles running alongside 

SDN will make network security vulnerability issues much 

easier to handle and improve. Therefore, for our future work, 

we will attempt to identify and mitigate anomalous flow 

patterns, by applying hybrid machine learning methods on 

results obtained from backtracking attack traffic generated and 

designing a highly effective mitigation technique at the cost of 

low resource usage and a rigorous dataset to handle threats 
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