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ABSTRACT 

Data sensing techniques are becoming widely used in various 

applications including forecasting systems. Accurate 

forecasting systems must rely on multiple input data sources. 

In this paper, the techniques used in developing accurate 

weather reporting systems are reviewed and the strength of 

multiple data sensing techniques is utilized to conceptualize a 

new system architecture that aims at accurate weather 

forecasting. The new model is based on four main 

components; environmental sensing component, user 

submitted reports, social networks forecast, and external 

sensors components. The resulting system produces more 

accurate reports than systems that do not rely on multiple 

input sources. 
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Pervasive Computing, Mobile Computing, and Applications 

of Computer Software in Forecasting. 
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1. INTRODUCTION 
Accurate weather observations are important for meteorology 

studies, energy planning, transportation, and manufacturing. 

However, the data accuracy is quite limited by the low 

concentration and wide dispersion of weather sensing stations 

around the world. There are many weather checking software 

tools available, however, their methods rely on one of the 

techniques for weather forecasting [1]. Consequently, there is 

a need to enhance the forecast accuracy based on multiple 

data sources, many of which depend on the wide spread of 

mobile computing and the ability to sense the environmental 

variables under consideration. 

Currently, many smartphones are equipped with 

environmental sensors like temperature, humidity, and 

pressure. The utilization of these sensors for improving 

weather forecasting models is becoming a research interest 

given the widespread these smartphones equipped with such 

sensors. As such, this paper proposes a multi-faceted system 

that utilizes the sensors already present in smartphones; 

collects human-input observations of the weather around 

them; analyzes public weather reports posted to social 

networks; and uses external sensors connected to smartphones 

for additional sensory input. By aggregating these methods 

together, and identifying which methods are best for which 

use-cases, a more accurate weather forecasting model can be 

created. 

The first section of the paper overviews the technical 

solutions for data gathering and forecasting. While most of 

these solutions adopt one method or another for data 

collection, the proposed approach depends on multiple input 

points among which is the sensing of various weather 

observations, like temperature, humidity and pressure. The 

proposed system consists of four sub-systems or components 

that collectively help create a more accurate real-time weather 

monitoring system compared to what is available today. The 

system components are described in the requirements sub-

section below. The paper is organized as follows: the related 

work and technologies are summarized in Section 2. Section 3 

describes the system architecture and Section 4 describes the 

system implementation strategy. The discussion and the 

conclusion are given in the last section. 

New System Requirements 

The first proposed component of the system will rely on 

automatically reading the sensor data from the user 

smartphones in the background without user interaction, and 

sending this collected data to a server that aggregates, filters 

and stores this information. To maintain a high accuracy of 

the automatically collected information, like temperature 

reading from a smartphone ambient temperature sensor, the 

system must collect several other pieces of information, for 

example, to identify whether that reading was captured indoor 

or outdoor. Presence of a known Wi-Fi network, and a weak 

GPS signal, can imply an indoor environment, which calls for 

not using the captured data. Moreover, the movement 

combined with low proximity and low ambient light as 

capture by a smartphone’s ambient light sensor, can imply the 

smartphone being in a user’s pocket, hence another reason to 

disregard the captured information. 

The second component of the system will rely on user input 

and validation, to collect weather condition information that 

are not easily possible to detect in software or hardware, like 

the cloud coverage, and whether or not it’s raining or 

snowing. To maintain a high accuracy of the user-submitted 

information, a rating system is employed that ranks user 

submissions (e.g., cloud coverage). The system uses historical 

data about the accuracy of this user’s past submissions, plus 

submissions from other users in close vicinity, to estimate the 

likelihood of accuracy of one submitted piece of information. 

The third component of the system automatically searches and 

collects weather information reported by all users on social 

networks. Many users of social networks, like Twitter, post 

status updates that reflect how the weather is around them. 

They post messages like “it’s raining now in NY” or “I love 

this 80 degree afternoon.” Since many of the messages are 

also geo-tagged, natural language processing can be used to 

extract the weather-related information from these messages. 

The challenge in the third component of the system is parsing 

the collected messages for meaningful and valuable weather-

related information, taking care of possible spelling mistakes, 

observation inaccuracies, uncertainty about location 

exactness, and filtering out generic statements like “I hate 

when it’s 100 degrees hot.” 
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The fourth and final component of the system compromises a 

hardware module that connects wirelessly via Bluetooth to a 

smartphone. This module is equipped with environmental 

sensors like temperature, humidity, pressure, air pollution, 

radiations and Carbon Monoxide, and can stream the readings 

in real-time to the smartphone. The advantage of an external 

module is to provide a wider range of environmental 

observations than is possible with most smartphones. While it 

is true that an external module is more difficult to carry than a 

smartphone; the plan is to create an extremely compact 

solution that can be carried by the user (as part of a keychain). 

The system also has a smartphone application, which supports 

all four sub-systems of smartphone sensor reading, human 

input collection, social network collection, and external sensor 

reading. This application aggregates all or some of the 

readings of these sub-systems, and sends them to a remote 

server. The server then cross-examines the readings, and 

combines them with publicly available weather information 

from public weather stations to produce new weather 

forecasting models. The details of the application modules 

will be presented in later sections.  

2. BACKGROUND AND RELATED 

WORK 
Several research works have targeted the advantages of 

various forms of technologies in the data sensing and 

forecasting field. In this section, the existing techniques and 

platforms that can support wide range of sensing applications 

are described. This background review helps set the stage for 

the usage of new approaches such crowd sensing data 

collection and analyses via mobile applications. 

ResearchKit [2] is an open source software framework to 

allow developers to create research applications. It leverages 

the sensors of the iPhone to track movement, take 

measurements and record data. The kit consists of three 

modules, the first of which is a Survey module that provides 

pre-built user interface elements to easily collect answers to 

researcher-specified questions. The second module is the 

Informed Consent, which is used to clarify what needs to be 

provided and who will have access to the information. The 

third module is the Active Tasks, which allows inviting users 

to perform activities under semi-controlled conditions, while 

iPhone sensors actively collect data. The Active Tasks 

includes Gait (which uses the Accelerometer and Gyroscope), 

Tapping (which uses the touch screen), and others that 

collects motion, location, heart rate and other activities. 

Atmos is a mobile-based platform that collects sensory data 

through the mobile phones’ available on-board sensors, along 

with human input. The authors employed the available sensor 

found in a mobile device such as environmental pressure, 

temperature, luminosity, and humidity. Additionally, they 

query the application users to enter current and future weather 

conditions. Collected data is then uploaded, processed and 

clustered by location in an online database. Users can access 

these data by searching for a weather report for a particular 

location. It was possible to collect 18,000 sensor 

measurements and 500 human inputs. The authors indicated a 

significant positive relationship between recorded battery 

temperature and pressure [3]. 

Autorasaurus was designed for the purpose of increasing the 

accuracy and timeliness of Aurora Forecast, which provides 

real time weather services. The data collection is based on the 

use of the vast data already available on Twitter as input. The 

system uses the Twitter API to go through all geo-coded 

tweets mentioning Aurora sightings and other interested users 

can verify these sightings. The users of the application can 

manually input a sighting directly [4]. 

A system was designed in [5] for finding weather information 

reported on Twitter. An experiment was conducted at the city 

of Pretoria, South Africa. Every day before midnight, two 

Twitter search queries are performed. The first looks for 

tweets tagged with relevant terms as #ptaweather and 

#pretoria, and the second query searches for tweets geo-

tagged in Pretoria that have terms like storm, rain, cold, hot, 

sun, etc. The tweets are separate into two groups; the first is 

called “ground truth” which are tweets from organizations that 

possess detailed structure weather reports. The second group 

is called “public category” which includes weather tweets 

from the public and can be casual in nature like “Gloomy 

weather today” or “Good Morning it’s such a beautiful day.” 

The system utilizes a model that spots the predefined topics in 

these tweets then process them and analyze the results. The 

algorithm successfully classified 85% of the tweets.  

To mitigate the lower accuracy of temperature observations 

inside cities, the authors in [6] developed an Android 

application that reads the phone’s battery temperature and 

uses a heat transfer model to estimate daily mean air 

temperatures. The authors collected 220 million battery 

temperature readings in one year, and carried out their 

analysis on a 2.1 million reading subset from 8 major cities. 

They then averaged these temperatures in space and time to 

obtain daily averages for each city. The officially recorded 

daily mean temperatures as measured by airport-based 

weather stations were collected and utilized to calibrate a heat 

transfer model and for validation purposes. The authors found 

that the mean absolute error of such measured daily air 

temperatures amounts to 1.45 degree Celsius. The authors 

believe that, by averaging over a sufficiently large number of 

battery temperature readings, the existing variation in thermal 

conductivity over individual readings is adequately filtered. 

Even though some readings were captured indoors, the 

influence of outside air temperature was already sufficiently 

reflected in the battery temperature readings. 

In [7], the authors present the design and implementation of a 

portable measurement device for measuring air pollution by 

connecting a low-cost ozone sensor to a smartphone running 

the Android OS. The hardware sensor communicates with the 

RS232-TTL interface to the smartphone via USB. It is 

powered by an external array of four AAA batteries, which is 

estimated to have a lifetime of 50 hours of active sensing 

given a highest measured current draw of 50mA. The authors 

observed that low-cost gas sensors, like the one used, must be 

frequently re-calibrated, so they implement a re-calibration 

system that takes into account available reference 

measurements from static reference stations maintained by 

official authorities. During the measurements, the authors 

mounted the sensor on a bicycle and took measurements from 

several rides around the city. Knowing that the daily ozone 

concentration typically ranges between 0 and 70 ppb, the 

observed mean error from the system was 2.74 ppb. 

HazeWatch [8] is a low-cost air pollution-sensing device users 

can mount to their vehicles, coupled with a mobile app that 

tags the sensed data with location and time and uploaded it to 

a server, a server that stores the data and applies interpolation 

models to generate spatio-temporal estimates, and 

visualization tools that map pollution levels. In their 

deployment of the system for over 2 years, the authors found 

that metal oxide sensors are cheap, but are non-linear and 

unreliable, while the electrochemical sensors are expensive 
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and extremely sensitive. They also found that the calibration 

of the sensor units is challenging, and that the packaging and 

mounting presented some difficulties. 

In [9], the data collected by smartphones sensors used to try to 

get accurate weather forecasting. However, the accuracy of 

the data collected with the mobile sensors affected by external 

parameters and it is not possible to calculate the correction 

constant that increases the accuracy of the sensed data. 

CrowdSearch [10] presents a mobile-based search solution 

that combines automated image-matching with real-time 

human validation of search results. The solution claims a 95% 

precision response-time within minutes and with low cost per 

search query. In this system, delay-accuracy-cost models for 

crowd-sourced users are developed to decide which images 

need validation and estimates the delay of responses from 

human validators, and how to price the validation tasks. The 

system saves monetary cost by up to 50% in comparison with 

non-adaptive schemes. The system incurs only 5-6% larger 

delay in comparison to a delay-optimal scheme. The dynamic 

partitioning of search across mobile phones and remote 

servers saves overall energy consumption up to 70%. Instead 

of using a parallel crowd sourced posting for result validation 

(which sacrifices cost), or a serial posting (which sacrifices 

delay), the proposed algorithm balances these two together. 

Given a deadline for results, the algorithm waits for the first 

responses to validate the first candidate search result, and if 

by a certain pre-determined time, it can calculate that the 

probability of the upcoming validation tasks are irrelevant 

given the current received results and past historical data, it 

halts further validation and returns the result. 

In [11], the authors look into the obstacles facing large-scale 

adoption of crowd sensing. They identify these to be; 1) the 

heterogeneity of sensing hardware and mobile platforms, 2) 

the users have to install a separate proprietary application for 

every crowd sensed experiment in which he/she wishes to 

participate, and 3) the increasing network bandwidth 

demands. The authors present a solution based on 1) 

separation of data collection and sharing from application-

specific logic, 2) removal of application installation on 

smartphones from the critical path of application deployment, 

and 3) decentralization of processing, and data aggregation 

near the source of data. In their proposed solution, the mobile 

devices are reduced to a role of forwarding sensor data to 

proxy Virtual Machines, which comprises a distributed cloud 

infrastructure deployed close to the users. Each proxy VM is 

associated with a single smartphone and is kept physically 

close to the user through VM migration. This proxy VM in 

turn forwards the requests from mobile devices to application 

VMs that perform the data processing. These application VMs 

are managed and deployed by a single application server 

running on the centralized cloud infrastructure. 

A research into how to better select participants in a mobile 

crowd sensing application to minimize the user’s incentive 

payments while satisfying probabilistic coverage constraints is 

covered in [12]. The paper states that the sensing coverage in 

mobile crowd sensing applications relies on the uncontrollable 

mobility of people, and thus it is important to consider their 

mobility patterns. However, finding full coverage is not 

always required, and it is sufficient to ensure a high ratio of 

spatial coverage in a specified period. Additionally, uploading 

sensed results in parallel with a 3G call can reduce about 75% 

of energy consumption. The work focuses on selecting the 

minimal number of participants in crowd sensing under 

probabilistic coverage constraints, with consideration of both 

total energy consumption and incentives paid per task. The 

application achieves fewer participants on average than the 

baseline, under the same coverage constraints. 

Medusa [13] is a high-level programming framework for 

easily writing task descriptions for crowd sensing tasks. It 

employs a distributed runtime system that coordinates the 

execution of these tasks between smartphones and a cluster in 

the cloud. The authors set a number of requirements that their 

system should have: 1) Requestors must be able to specify 

worker-mediation, like a worker needing to perform an action 

to complete a stage such as initiating the recording of a video 

clip. 2) Requestors must be able to specify monetary 

incentives for workers. Some tasks may also require reverse-

incentives, where the workers pay the requestors for the 

privilege of participating in the task. 3) Tasks may have 

timeliness requirements and any contribution received after 

the deadline is discarded. 4) Workers must be able to sign up 

for multiple concurrent tasks, and requestors should be able to 

initiate multiple tasks concurrently. The runtime should 

preserve subject anonymity with respect to requestors, and 

should contain mechanisms for ensuring data privacy. The 

Medusa framework uses MedScript which is an XML-based 

language that consists of two high-level abstractions: stages, 

which describe a sensing or computation action, and 

connectors, which express control flow between stages. The 

script is interpreted in the cloud by the MedScript interpreter. 

Then, a Task Tracker spawns as many instances as needed for 

the require worker stages. It coordinates the execution of 

every stage and maintains instance state information in 

persistent storage. A single worker may concurrently sign up 

for multiple instances of the same task, and/or instances of 

many different tasks. The Task Tracker does not know the 

identities of the requestor or the worker, instead referring to 

them in its internal data structures using a non-transparent 

machine-generated ID. In evaluating Medusa, the authors 

implemented a number of applications such as data 

documentation, forensic analysis, and road monitoring. 

Nericell [14] is a system for efficiently monitoring road and 

traffic conditions, which is specially tailored for developed 

countries. The authors observe that road and traffic conditions 

in developed countries are much more complex and uncertain 

than other countries for which most of the research had been 

performed previously. The system uses various sensors such 

as accelerometers and microphones. The system uses an 

algorithm for determining the accelerometer orientation and 

then re-orient automatically as needed. However, any 

extraneous acceleration that occurs while the user is 

interacting with the phone must be neglected. 

Another participatory sensing through passengers’ 

smartphones is utilized in [15] to predict bus arrival times. 

The system extracts unique identifiable fingerprints of public 

transit buses and utilizes the microphones on mobile phones 

to detect the audio indication signals of bus card readers. It 

also leverages the accelerometer of the phones to distinguish 

the travel pattern of buses to other transport means. Then, 

based on both historical knowledge and the real-time traffic 

conditions the system predicts the bus arrival time of various 

routes. The system includes a database that stores sequences 

of cell-tower IDs that are experienced along different bus 

routes. To detect whether the user is in a public transit bus or 

using a non-public bus, the authors employed a low-energy 

solution to auto-detect the short beep audio responses from 

the card readers since these audio responses are distinct to 

public transportation methods. The authors observe that such 

system’s accuracy is limited by the number of participating 

passengers, and that the system is less accurate in the first few 
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bus stops due to the lack of a sufficiently long cell-tower 

sequence to accurately classify the route. 

In [16], the authors propose a system for participatory urban 

sensing of environmental noise pollution in urban areas, as an 

alternative for the existing models that are passed on 

population and traffic models rather than on real data. The 

system crowd sources the collection of environmental data in 

urban spaces to people, who carry smart phones equipped 

with sensors and GSP receivers. The paper proposes a 

solution to the problem of incomplete samples by using data 

sensing that focus on roadside noise pollution. The authors 

showed that they could recover a noise map with high 

accuracy, allowing nearly 40% missing samples while 

reducing communication costs by 30%. 

In view of the above mentioned background, it is becoming 

clear that there is a good amount of work being done in the 

area of participatory sensing and how they can be used to try 

getting better sensing data for a variety of applications. It is 

quite possible to apply some of these techniques to weather 

data collection and forecasting with the aim of improving the 

accuracy of weather reporting. The question is how to employ 

some of these techniques to build a platform for a more 

accurate forecast and this question is addressed in the rest of 

the paper. 

3. SYSTEM ARCHITECTURE 
This section presents the architecture of the proposed system 

and illustrates how the various components interact with each 

other. As seen in Figure 1, the architecture consists primarily 

of a client-side mobile application running on compatible 

smartphones, and a forecast server that runs the necessary 

services for forecast data collection, filtering, and distribution. 

The mobile application consists of four modules. The first 

module is the Environmental Sensing Module which identifies 

the hardware capabilities of the smartphone and its available 

environmental sensors, like the presence of a barometer 

sensor for example, and uses the smartphone operating 

system’s Application Programming Interfaces (APIs) to 

collect readings from these sensors at specific intervals. 

The second module is the User-Submitted Reports 

component. This component provides the end-user the 

capability to submit their own observations of the weather 

around them, or the forecast as reported by their local weather 

network. Some of the details that could be reported by the 

user are hard to measure, like the “current cloud coverage” or 

the “raining situation” and these reports have to be filtered by 

the system. 

The third module is the Social Networks Forecast Collector. 

This module searches Social Networks such as Twitter and 

Facebook for weather-related status messages, analyzes these 

messages, and extracts the meaningful weather information. 

The last module of the mobile application is the External 

Sensors component. This component connects wirelessly to 

external devices that have additional environmental sensors 

that may not be present in a smartphone like Air Quality 

sensors, and fetches environmental readings from them.  

The mobile application may collect forecast data from one or 

more of these modules. As introduced before, multiple 

sources improve the accuracy of the forecast, and this is the 

target of the proposed system architecture. The usage of 

multiple modules depends on the capabilities of the 

smartphone, the user’s willingness to submit reports, whether 

or not the user links his social accounts, and whether or not 

the user is in possession of the compatible sensors. 

 

Fig 1: System Architecture 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 175 – No.5, October 2017 

59 

4. SYSTEM IMPLEMENTATION 

STRATEGY 
All of the collected environmental weather data is sent at a 

preset interval to the Forecast Server, where they are received 

by a Forecast Data Collector. They are then sent through a 

Data Filtering Algorithm, which takes into account the 

location, the forecast reports of other users, the past accuracy 

of the user’s submitted reports, and the Baseline Forecast data 

to adjust these readings. The adjusted data, along with the 

original data, are then stored in the Forecast Data Store. 

The Forecast Data Distributor is the Mobile Application’s 

gateway to the Forecast Data Store. It sends back to the End 

User the forecast data for his requested location, as filtered 

and combined from the several data sources available. 

The Baseline Forecast component connects to third party 

weather services to retrieve the weather forecast. It also 

collects raw weather data readings from weather sensing 

stations (usually at airports). These two types of forecast data 

are then used to augment the collected weather data and 

compare its accuracy. 

For the Environmental Sensing, the available sensory devices, 

available in the smartphone can be queried. The query 

depends on the smartphone and if it has a built-in sensors or 

an external ambient temperature sensor is attached to it. For 

each of the available environmental sensors, the current 

readings are stored and then sent to the Forecast Server. 

The Forecast Server is responsible for the collection, filtering, 

storage and distribution of weather information. It collects 

readings from the mobile application installed on user’s 

smartphones, collects weather forecasts from third party web 

services, and distributes forecasts to end-users through a web 

services that report the weather for the requested locations. 

4.1 Details of System Implementation 
Basically, the implemented system consists of a mobile 

application and a web based back end system. The back end is 

done using Java, the Spring web model-view-controller 

framework, the Hibernate object-relational mapping 

framework, and MySQL database. The application senses the 

temperature periodically and send it through an HTTP request 

to the back end system. Figure 2 shows the implementation of 

the system. 

 

Fig 2: System Implementation Diagram 

The system provides the average temperature of the sensed 

data of all users within the same city and within one hour. A 

sample data is shown in Table 1. The system data shows that 

the average temperature has 2.5% accuracy over the web 

forecast given over the internet (via Google in this case). 

 

Table 1: A sample data comparison 

The back end system contains Plain Old Java Objects 

(POJOs) that maps the database tables, in addition to the Data 

Access Objects (DAOs). The DAOs used by Hibernate 

framework to access the database using HQL query language. 

This approach makes the parts of the system loosely coupled 

and grantees resiliency and maintainability of the system. The 

DAOs are accessed by Spring controllers that accept HTTP 

request from any web client interface with JSON payload. 

5. CONCLUSION 
After reviewing the available data collection and forecasting 

techniques, a new architecture is proposed based on multiple 

input data points in order to establish a comprehensive local 

weather forecasting system. The new approach relies on four 

input components to enable the system to get a more accurate 

weather forecasting that is not possible with other systems. 

The first component, Environmental Sensing, queries the 

available sensory devices on the smartphone. The second 

component, User Submitted Reports, provides the end-user 

the capability to submit their own observations of the weather 

around them, or the forecast as reported by their local weather 

network. The third component, Social Networks Forecast, 

searches Social Networks for weather-related status messages, 

analyzes these messages, and extracts the meaningful weather 

information from them. The last component is the External 

Sensors component, which connects to external devices that 

have additional environmental sensors that are not present in a 

smartphone and fetches environmental readings from them. 

The implemented system prototype, used the sensing 

capabilities of the mobile devices and collected periodic 

weather information along with textual description of the 

weather (e.g. cloudy, rainy, etc.). The results show a more 

accurate weather data than those available to users from other 

web sources. Further enhancements to increase the 

geographical area of the forecast is now being considered for 

obtaining even more conclusive report about the weather 

condition. As each input component has some weaknesses and 

strengths, combining the input data from all the system 

components enables the use of each sub-system at its 

strengths. 
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