
International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

55

A Comprehensive Approach to Participatory Sensing of

Weather Information via Mobile Devices

Amr Elsaadany
Computer Engineering Dept.

Pharos University in Alexandria

ABSTRACT

Data sensing techniques are becoming widely used in various

applications including forecasting systems. Accurate

forecasting systems must rely on multiple input data sources.

In this paper, the techniques used in developing accurate

weather reporting systems are reviewed and the strength of

multiple data sensing techniques is utilized to conceptualize a

new system architecture that aims at accurate weather

forecasting. The new model is based on four main

components; environmental sensing component, user

submitted reports, social networks forecast, and external

sensors components. The resulting system produces more

accurate reports than systems that do not rely on multiple

input sources.

General Terms

Pervasive Computing, Mobile Computing, and Applications

of Computer Software in Forecasting.

Keywords

Sensors networks; crowd sensing; mobile sensing;

participatory sensing; weather forecast

1. INTRODUCTION
Accurate weather observations are important for meteorology

studies, energy planning, transportation, and manufacturing.

However, the data accuracy is quite limited by the low

concentration and wide dispersion of weather sensing stations

around the world. There are many weather checking software

tools available, however, their methods rely on one of the

techniques for weather forecasting [1]. Consequently, there is

a need to enhance the forecast accuracy based on multiple

data sources, many of which depend on the wide spread of

mobile computing and the ability to sense the environmental

variables under consideration.

Currently, many smartphones are equipped with

environmental sensors like temperature, humidity, and

pressure. The utilization of these sensors for improving

weather forecasting models is becoming a research interest

given the widespread these smartphones equipped with such

sensors. As such, this paper proposes a multi-faceted system

that utilizes the sensors already present in smartphones;

collects human-input observations of the weather around

them; analyzes public weather reports posted to social

networks; and uses external sensors connected to smartphones

for additional sensory input. By aggregating these methods

together, and identifying which methods are best for which

use-cases, a more accurate weather forecasting model can be

created.

The first section of the paper overviews the technical

solutions for data gathering and forecasting. While most of

these solutions adopt one method or another for data

collection, the proposed approach depends on multiple input

points among which is the sensing of various weather

observations, like temperature, humidity and pressure. The

proposed system consists of four sub-systems or components

that collectively help create a more accurate real-time weather

monitoring system compared to what is available today. The

system components are described in the requirements sub-

section below. The paper is organized as follows: the related

work and technologies are summarized in Section 2. Section 3

describes the system architecture and Section 4 describes the

system implementation strategy. The discussion and the

conclusion are given in the last section.

New System Requirements

The first proposed component of the system will rely on

automatically reading the sensor data from the user

smartphones in the background without user interaction, and

sending this collected data to a server that aggregates, filters

and stores this information. To maintain a high accuracy of

the automatically collected information, like temperature

reading from a smartphone ambient temperature sensor, the

system must collect several other pieces of information, for

example, to identify whether that reading was captured indoor

or outdoor. Presence of a known Wi-Fi network, and a weak

GPS signal, can imply an indoor environment, which calls for

not using the captured data. Moreover, the movement

combined with low proximity and low ambient light as

capture by a smartphone’s ambient light sensor, can imply the

smartphone being in a user’s pocket, hence another reason to

disregard the captured information.

The second component of the system will rely on user input

and validation, to collect weather condition information that

are not easily possible to detect in software or hardware, like

the cloud coverage, and whether or not it’s raining or

snowing. To maintain a high accuracy of the user-submitted

information, a rating system is employed that ranks user

submissions (e.g., cloud coverage). The system uses historical

data about the accuracy of this user’s past submissions, plus

submissions from other users in close vicinity, to estimate the

likelihood of accuracy of one submitted piece of information.

The third component of the system automatically searches and

collects weather information reported by all users on social

networks. Many users of social networks, like Twitter, post

status updates that reflect how the weather is around them.

They post messages like “it’s raining now in NY” or “I love

this 80 degree afternoon.” Since many of the messages are

also geo-tagged, natural language processing can be used to

extract the weather-related information from these messages.

The challenge in the third component of the system is parsing

the collected messages for meaningful and valuable weather-

related information, taking care of possible spelling mistakes,

observation inaccuracies, uncertainty about location

exactness, and filtering out generic statements like “I hate

when it’s 100 degrees hot.”

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

56

The fourth and final component of the system compromises a

hardware module that connects wirelessly via Bluetooth to a

smartphone. This module is equipped with environmental

sensors like temperature, humidity, pressure, air pollution,

radiations and Carbon Monoxide, and can stream the readings

in real-time to the smartphone. The advantage of an external

module is to provide a wider range of environmental

observations than is possible with most smartphones. While it

is true that an external module is more difficult to carry than a

smartphone; the plan is to create an extremely compact

solution that can be carried by the user (as part of a keychain).

The system also has a smartphone application, which supports

all four sub-systems of smartphone sensor reading, human

input collection, social network collection, and external sensor

reading. This application aggregates all or some of the

readings of these sub-systems, and sends them to a remote

server. The server then cross-examines the readings, and

combines them with publicly available weather information

from public weather stations to produce new weather

forecasting models. The details of the application modules

will be presented in later sections.

2. BACKGROUND AND RELATED

WORK
Several research works have targeted the advantages of

various forms of technologies in the data sensing and

forecasting field. In this section, the existing techniques and

platforms that can support wide range of sensing applications

are described. This background review helps set the stage for

the usage of new approaches such crowd sensing data

collection and analyses via mobile applications.

ResearchKit [2] is an open source software framework to

allow developers to create research applications. It leverages

the sensors of the iPhone to track movement, take

measurements and record data. The kit consists of three

modules, the first of which is a Survey module that provides

pre-built user interface elements to easily collect answers to

researcher-specified questions. The second module is the

Informed Consent, which is used to clarify what needs to be

provided and who will have access to the information. The

third module is the Active Tasks, which allows inviting users

to perform activities under semi-controlled conditions, while

iPhone sensors actively collect data. The Active Tasks

includes Gait (which uses the Accelerometer and Gyroscope),

Tapping (which uses the touch screen), and others that

collects motion, location, heart rate and other activities.

Atmos is a mobile-based platform that collects sensory data

through the mobile phones’ available on-board sensors, along

with human input. The authors employed the available sensor

found in a mobile device such as environmental pressure,

temperature, luminosity, and humidity. Additionally, they

query the application users to enter current and future weather

conditions. Collected data is then uploaded, processed and

clustered by location in an online database. Users can access

these data by searching for a weather report for a particular

location. It was possible to collect 18,000 sensor

measurements and 500 human inputs. The authors indicated a

significant positive relationship between recorded battery

temperature and pressure [3].

Autorasaurus was designed for the purpose of increasing the

accuracy and timeliness of Aurora Forecast, which provides

real time weather services. The data collection is based on the

use of the vast data already available on Twitter as input. The

system uses the Twitter API to go through all geo-coded

tweets mentioning Aurora sightings and other interested users

can verify these sightings. The users of the application can

manually input a sighting directly [4].

A system was designed in [5] for finding weather information

reported on Twitter. An experiment was conducted at the city

of Pretoria, South Africa. Every day before midnight, two

Twitter search queries are performed. The first looks for

tweets tagged with relevant terms as #ptaweather and

#pretoria, and the second query searches for tweets geo-

tagged in Pretoria that have terms like storm, rain, cold, hot,

sun, etc. The tweets are separate into two groups; the first is

called “ground truth” which are tweets from organizations that

possess detailed structure weather reports. The second group

is called “public category” which includes weather tweets

from the public and can be casual in nature like “Gloomy

weather today” or “Good Morning it’s such a beautiful day.”

The system utilizes a model that spots the predefined topics in

these tweets then process them and analyze the results. The

algorithm successfully classified 85% of the tweets.

To mitigate the lower accuracy of temperature observations

inside cities, the authors in [6] developed an Android

application that reads the phone’s battery temperature and

uses a heat transfer model to estimate daily mean air

temperatures. The authors collected 220 million battery

temperature readings in one year, and carried out their

analysis on a 2.1 million reading subset from 8 major cities.

They then averaged these temperatures in space and time to

obtain daily averages for each city. The officially recorded

daily mean temperatures as measured by airport-based

weather stations were collected and utilized to calibrate a heat

transfer model and for validation purposes. The authors found

that the mean absolute error of such measured daily air

temperatures amounts to 1.45 degree Celsius. The authors

believe that, by averaging over a sufficiently large number of

battery temperature readings, the existing variation in thermal

conductivity over individual readings is adequately filtered.

Even though some readings were captured indoors, the

influence of outside air temperature was already sufficiently

reflected in the battery temperature readings.

In [7], the authors present the design and implementation of a

portable measurement device for measuring air pollution by

connecting a low-cost ozone sensor to a smartphone running

the Android OS. The hardware sensor communicates with the

RS232-TTL interface to the smartphone via USB. It is

powered by an external array of four AAA batteries, which is

estimated to have a lifetime of 50 hours of active sensing

given a highest measured current draw of 50mA. The authors

observed that low-cost gas sensors, like the one used, must be

frequently re-calibrated, so they implement a re-calibration

system that takes into account available reference

measurements from static reference stations maintained by

official authorities. During the measurements, the authors

mounted the sensor on a bicycle and took measurements from

several rides around the city. Knowing that the daily ozone

concentration typically ranges between 0 and 70 ppb, the

observed mean error from the system was 2.74 ppb.

HazeWatch [8] is a low-cost air pollution-sensing device users

can mount to their vehicles, coupled with a mobile app that

tags the sensed data with location and time and uploaded it to

a server, a server that stores the data and applies interpolation

models to generate spatio-temporal estimates, and

visualization tools that map pollution levels. In their

deployment of the system for over 2 years, the authors found

that metal oxide sensors are cheap, but are non-linear and

unreliable, while the electrochemical sensors are expensive

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

57

and extremely sensitive. They also found that the calibration

of the sensor units is challenging, and that the packaging and

mounting presented some difficulties.

In [9], the data collected by smartphones sensors used to try to

get accurate weather forecasting. However, the accuracy of

the data collected with the mobile sensors affected by external

parameters and it is not possible to calculate the correction

constant that increases the accuracy of the sensed data.

CrowdSearch [10] presents a mobile-based search solution

that combines automated image-matching with real-time

human validation of search results. The solution claims a 95%

precision response-time within minutes and with low cost per

search query. In this system, delay-accuracy-cost models for

crowd-sourced users are developed to decide which images

need validation and estimates the delay of responses from

human validators, and how to price the validation tasks. The

system saves monetary cost by up to 50% in comparison with

non-adaptive schemes. The system incurs only 5-6% larger

delay in comparison to a delay-optimal scheme. The dynamic

partitioning of search across mobile phones and remote

servers saves overall energy consumption up to 70%. Instead

of using a parallel crowd sourced posting for result validation

(which sacrifices cost), or a serial posting (which sacrifices

delay), the proposed algorithm balances these two together.

Given a deadline for results, the algorithm waits for the first

responses to validate the first candidate search result, and if

by a certain pre-determined time, it can calculate that the

probability of the upcoming validation tasks are irrelevant

given the current received results and past historical data, it

halts further validation and returns the result.

In [11], the authors look into the obstacles facing large-scale

adoption of crowd sensing. They identify these to be; 1) the

heterogeneity of sensing hardware and mobile platforms, 2)

the users have to install a separate proprietary application for

every crowd sensed experiment in which he/she wishes to

participate, and 3) the increasing network bandwidth

demands. The authors present a solution based on 1)

separation of data collection and sharing from application-

specific logic, 2) removal of application installation on

smartphones from the critical path of application deployment,

and 3) decentralization of processing, and data aggregation

near the source of data. In their proposed solution, the mobile

devices are reduced to a role of forwarding sensor data to

proxy Virtual Machines, which comprises a distributed cloud

infrastructure deployed close to the users. Each proxy VM is

associated with a single smartphone and is kept physically

close to the user through VM migration. This proxy VM in

turn forwards the requests from mobile devices to application

VMs that perform the data processing. These application VMs

are managed and deployed by a single application server

running on the centralized cloud infrastructure.

A research into how to better select participants in a mobile

crowd sensing application to minimize the user’s incentive

payments while satisfying probabilistic coverage constraints is

covered in [12]. The paper states that the sensing coverage in

mobile crowd sensing applications relies on the uncontrollable

mobility of people, and thus it is important to consider their

mobility patterns. However, finding full coverage is not

always required, and it is sufficient to ensure a high ratio of

spatial coverage in a specified period. Additionally, uploading

sensed results in parallel with a 3G call can reduce about 75%

of energy consumption. The work focuses on selecting the

minimal number of participants in crowd sensing under

probabilistic coverage constraints, with consideration of both

total energy consumption and incentives paid per task. The

application achieves fewer participants on average than the

baseline, under the same coverage constraints.

Medusa [13] is a high-level programming framework for

easily writing task descriptions for crowd sensing tasks. It

employs a distributed runtime system that coordinates the

execution of these tasks between smartphones and a cluster in

the cloud. The authors set a number of requirements that their

system should have: 1) Requestors must be able to specify

worker-mediation, like a worker needing to perform an action

to complete a stage such as initiating the recording of a video

clip. 2) Requestors must be able to specify monetary

incentives for workers. Some tasks may also require reverse-

incentives, where the workers pay the requestors for the

privilege of participating in the task. 3) Tasks may have

timeliness requirements and any contribution received after

the deadline is discarded. 4) Workers must be able to sign up

for multiple concurrent tasks, and requestors should be able to

initiate multiple tasks concurrently. The runtime should

preserve subject anonymity with respect to requestors, and

should contain mechanisms for ensuring data privacy. The

Medusa framework uses MedScript which is an XML-based

language that consists of two high-level abstractions: stages,

which describe a sensing or computation action, and

connectors, which express control flow between stages. The

script is interpreted in the cloud by the MedScript interpreter.

Then, a Task Tracker spawns as many instances as needed for

the require worker stages. It coordinates the execution of

every stage and maintains instance state information in

persistent storage. A single worker may concurrently sign up

for multiple instances of the same task, and/or instances of

many different tasks. The Task Tracker does not know the

identities of the requestor or the worker, instead referring to

them in its internal data structures using a non-transparent

machine-generated ID. In evaluating Medusa, the authors

implemented a number of applications such as data

documentation, forensic analysis, and road monitoring.

Nericell [14] is a system for efficiently monitoring road and

traffic conditions, which is specially tailored for developed

countries. The authors observe that road and traffic conditions

in developed countries are much more complex and uncertain

than other countries for which most of the research had been

performed previously. The system uses various sensors such

as accelerometers and microphones. The system uses an

algorithm for determining the accelerometer orientation and

then re-orient automatically as needed. However, any

extraneous acceleration that occurs while the user is

interacting with the phone must be neglected.

Another participatory sensing through passengers’

smartphones is utilized in [15] to predict bus arrival times.

The system extracts unique identifiable fingerprints of public

transit buses and utilizes the microphones on mobile phones

to detect the audio indication signals of bus card readers. It

also leverages the accelerometer of the phones to distinguish

the travel pattern of buses to other transport means. Then,

based on both historical knowledge and the real-time traffic

conditions the system predicts the bus arrival time of various

routes. The system includes a database that stores sequences

of cell-tower IDs that are experienced along different bus

routes. To detect whether the user is in a public transit bus or

using a non-public bus, the authors employed a low-energy

solution to auto-detect the short beep audio responses from

the card readers since these audio responses are distinct to

public transportation methods. The authors observe that such

system’s accuracy is limited by the number of participating

passengers, and that the system is less accurate in the first few

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

58

bus stops due to the lack of a sufficiently long cell-tower

sequence to accurately classify the route.

In [16], the authors propose a system for participatory urban

sensing of environmental noise pollution in urban areas, as an

alternative for the existing models that are passed on

population and traffic models rather than on real data. The

system crowd sources the collection of environmental data in

urban spaces to people, who carry smart phones equipped

with sensors and GSP receivers. The paper proposes a

solution to the problem of incomplete samples by using data

sensing that focus on roadside noise pollution. The authors

showed that they could recover a noise map with high

accuracy, allowing nearly 40% missing samples while

reducing communication costs by 30%.

In view of the above mentioned background, it is becoming

clear that there is a good amount of work being done in the

area of participatory sensing and how they can be used to try

getting better sensing data for a variety of applications. It is

quite possible to apply some of these techniques to weather

data collection and forecasting with the aim of improving the

accuracy of weather reporting. The question is how to employ

some of these techniques to build a platform for a more

accurate forecast and this question is addressed in the rest of

the paper.

3. SYSTEM ARCHITECTURE
This section presents the architecture of the proposed system

and illustrates how the various components interact with each

other. As seen in Figure 1, the architecture consists primarily

of a client-side mobile application running on compatible

smartphones, and a forecast server that runs the necessary

services for forecast data collection, filtering, and distribution.

The mobile application consists of four modules. The first

module is the Environmental Sensing Module which identifies

the hardware capabilities of the smartphone and its available

environmental sensors, like the presence of a barometer

sensor for example, and uses the smartphone operating

system’s Application Programming Interfaces (APIs) to

collect readings from these sensors at specific intervals.

The second module is the User-Submitted Reports

component. This component provides the end-user the

capability to submit their own observations of the weather

around them, or the forecast as reported by their local weather

network. Some of the details that could be reported by the

user are hard to measure, like the “current cloud coverage” or

the “raining situation” and these reports have to be filtered by

the system.

The third module is the Social Networks Forecast Collector.

This module searches Social Networks such as Twitter and

Facebook for weather-related status messages, analyzes these

messages, and extracts the meaningful weather information.

The last module of the mobile application is the External

Sensors component. This component connects wirelessly to

external devices that have additional environmental sensors

that may not be present in a smartphone like Air Quality

sensors, and fetches environmental readings from them.

The mobile application may collect forecast data from one or

more of these modules. As introduced before, multiple

sources improve the accuracy of the forecast, and this is the

target of the proposed system architecture. The usage of

multiple modules depends on the capabilities of the

smartphone, the user’s willingness to submit reports, whether

or not the user links his social accounts, and whether or not

the user is in possession of the compatible sensors.

Fig 1: System Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

59

4. SYSTEM IMPLEMENTATION

STRATEGY
All of the collected environmental weather data is sent at a

preset interval to the Forecast Server, where they are received

by a Forecast Data Collector. They are then sent through a

Data Filtering Algorithm, which takes into account the

location, the forecast reports of other users, the past accuracy

of the user’s submitted reports, and the Baseline Forecast data

to adjust these readings. The adjusted data, along with the

original data, are then stored in the Forecast Data Store.

The Forecast Data Distributor is the Mobile Application’s

gateway to the Forecast Data Store. It sends back to the End

User the forecast data for his requested location, as filtered

and combined from the several data sources available.

The Baseline Forecast component connects to third party

weather services to retrieve the weather forecast. It also

collects raw weather data readings from weather sensing

stations (usually at airports). These two types of forecast data

are then used to augment the collected weather data and

compare its accuracy.

For the Environmental Sensing, the available sensory devices,

available in the smartphone can be queried. The query

depends on the smartphone and if it has a built-in sensors or

an external ambient temperature sensor is attached to it. For

each of the available environmental sensors, the current

readings are stored and then sent to the Forecast Server.

The Forecast Server is responsible for the collection, filtering,

storage and distribution of weather information. It collects

readings from the mobile application installed on user’s

smartphones, collects weather forecasts from third party web

services, and distributes forecasts to end-users through a web

services that report the weather for the requested locations.

4.1 Details of System Implementation
Basically, the implemented system consists of a mobile

application and a web based back end system. The back end is

done using Java, the Spring web model-view-controller

framework, the Hibernate object-relational mapping

framework, and MySQL database. The application senses the

temperature periodically and send it through an HTTP request

to the back end system. Figure 2 shows the implementation of

the system.

Fig 2: System Implementation Diagram

The system provides the average temperature of the sensed

data of all users within the same city and within one hour. A

sample data is shown in Table 1. The system data shows that

the average temperature has 2.5% accuracy over the web

forecast given over the internet (via Google in this case).

Table 1: A sample data comparison

The back end system contains Plain Old Java Objects

(POJOs) that maps the database tables, in addition to the Data

Access Objects (DAOs). The DAOs used by Hibernate

framework to access the database using HQL query language.

This approach makes the parts of the system loosely coupled

and grantees resiliency and maintainability of the system. The

DAOs are accessed by Spring controllers that accept HTTP

request from any web client interface with JSON payload.

5. CONCLUSION
After reviewing the available data collection and forecasting

techniques, a new architecture is proposed based on multiple

input data points in order to establish a comprehensive local

weather forecasting system. The new approach relies on four

input components to enable the system to get a more accurate

weather forecasting that is not possible with other systems.

The first component, Environmental Sensing, queries the

available sensory devices on the smartphone. The second

component, User Submitted Reports, provides the end-user

the capability to submit their own observations of the weather

around them, or the forecast as reported by their local weather

network. The third component, Social Networks Forecast,

searches Social Networks for weather-related status messages,

analyzes these messages, and extracts the meaningful weather

information from them. The last component is the External

Sensors component, which connects to external devices that

have additional environmental sensors that are not present in a

smartphone and fetches environmental readings from them.

The implemented system prototype, used the sensing

capabilities of the mobile devices and collected periodic

weather information along with textual description of the

weather (e.g. cloudy, rainy, etc.). The results show a more

accurate weather data than those available to users from other

web sources. Further enhancements to increase the

geographical area of the forecast is now being considered for

obtaining even more conclusive report about the weather

condition. As each input component has some weaknesses and

strengths, combining the input data from all the system

components enables the use of each sub-system at its

strengths.

6. ACKNOWLEDGMENTS
This is to acknowledge Eng. Amr Ramadan for his

contribution to the early part of this work.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.5, October 2017

60

7. REFERENCES
[1] Wankhede, P., Sharma, R., Pote, C. 2014. A Review on

Weather Forecasting Systems Using Different

Techniques and Web Alerts. International Journal of

Advanced Research in Computer Science and Software

Engineering, Volume 4, Issue 2.

[2] developer.apple.com, Apple Researchkit. [Online].

Available: http://developer.apple.com/ [Accessed: 15-

Jul- 2016].

[3] Niforatos, E. et al. 2014. Atmos: A Hybrid

Crowdsourcing Approach to Weather Estimation.

Proceedings of the 2014 ACM International Joint

Conference on Pervasive and Ubiquitous Computing

Adjunct Publication - UbiComp.

[4] LaLone, N. et al. 2015. Harnessing Twitter and

Crowdsourcing to Augment Aurora Forecasting.

Proceedings of the 18th ACM Conference Companion on

Computer Supported Cooperative Work & Social

Computing - CSCW'15 Companion.

[5] Butgereit, L. 2014. Crowdsourced weather reports: An

implementation of the μ model for spotting weather

information in Twitter. IST-Africa Conference

Proceedings.

[6] Overeem, A. et al. 2013. Crowdsourcing Urban Air

Temperatures from Smartphone Battery Temperatures.

Geophysical Research Letters 40.15: 4081-4085.

[7] Hasenfratz, D., et al. 2012. Participatory Air Pollution

Monitoring Using Smartphones. 2nd International

Workshop on Mobile Sensing.

[8] Sivaraman, V., et al. 2013. Hazewatch: A Participatory

Sensor System for Monitoring Air Pollution in Sydney.

38th Annual IEEE Conference on Local Computer

Networks – Workshops.

[9] Dalğın, S. and A. Doğru, O. 2015. Investigation of the

Usability of Mobile Sensors for Weather Forecasting.

International Journal of Environment and

Geoinformatics.

[10] Yan, T., Kumar, V. and Ganesan, D. 2010.

CrowdSearch- Exploiting Crowds for Accurate Real-

time Image Search on Mobile Phones. Proceedings of the

8th international conference on Mobile systems,

applications, and services - MobiSys.

[11] Xiao, Y. et al. 2013. Lowering the Barriers to Large-

Scale Mobile Crowdsensing. Proceedings of the 14th

Workshop on Mobile Computing Systems and

Applications - HotMobile.

[12] Zhang, D. et al. 2014. Crowdrecruiter: Selecting

Participants for Piggyback Crowdsensing under

Probabilistic Coverage Constraint. Proceedings of the

2014 ACM International Joint Conference on Pervasive

and Ubiquitous Computing - UbiComp.

[13] Ra, M. et al. 2012. Medusa: A Programming Framework

for Crowd-Sensing Applications. Proceedings of the 10th

international conference on Mobile systems,

applications, and services - MobiSys.

[14] Mohan, P., Padmanabhan, V., and Ramjee, R. 2008.

Nericell: Rich Monitoring of Road and Traffic

Conditions using Mobile Smartphones. Proceedings of

the 6th ACM conference on Embedded network sensor

systems - SenSys.

[15] Zhou, P., Zheng, Y., and Li, M. 2012. How Long To

Wait? Predicting Bus Arrival Time with Mobile Phone

based Participatory Sensing. Proceedings of the 10th

international conference on Mobile systems,

applications, and services - MobiSys.

[16] Rana, R. et al. 2010. Ear-Phone: An End-to-End

Participatory Urban Noise Mapping System. Proceedings

of the 9th ACM/IEEE International Conference on

Information Processing in Sensor Networks - IPSN.

IJCATM : www.ijcaonline.org

