Abstract

Underwater wireless sensor networks (UWSNs) obtained the information from the underwater sensors nodes. In which there are lots of issues and difficulties in underwater like size, limited battery power, deployment and limited bandwidth capacity. In underwater, it is difficult to recharge or substitute the battery of the sensors nodes. In such circumstances the concentrate on reducing the battery utilization of the sensors nodes. There are various techniques are used to reduce the battery utilization. The design of routing protocols for underwater sensor networks creates numerous challenges due to essential properties of the underwater environment. Many routing protocols have been proposed in order to provide an efficient, reliable and route discovery between the sources and the sink. It also has more through-put as compared to the existing technique. In this paper, display a survey and comparison of various groups according to their taxonomy with their ability is discussed in detailed.
5. C. García Izquierdo, F. Bertiglia, “TRACEABILITY OF GROUND-BASED METEOROLOGICAL SURFACE TEMPERATURE MEASUREMENTS”, 2012
18. Amir Akhavan Kharazian, Kamal Jamshidi and Mohammad Reza Khayyambashi
“ADAPTIVE CLUSTERING IN WIRELESS SENSOR NETWORK: CONSIDERING NODES
WITH LOWEST ENERGY”, International Journal of Ad hoc, Sensor & Ubiquitous Computing
(IJASUC) Vol.3, No.2, April 2012

19. Yu, Haitao, and Yao, Nianmin and Liu, Jun, An adaptive protocol in underwater sparse

20. Zhang, Ying and Sun, Hongliang and Yu, Jiancheng, “Clustered Protocol Based on
Improved K-means Algorithm for Underwater Wireless Sensor Networks”, Cyber Technology in
Automation, Control, and Intelligent Networks (CYBER), 2015 IEEE International Conference
on, year-2015, IEEE

Ali and Qasim, Umar and Sher, M, “CoDBR: cooperative depth based for underwater wireless
sensor networks”, Broadband and Wireless Computing, Communication and Applications

22. Wahid, Abdul, and Lee, Sungwon and Kim, Dongkyun, “A reliable and energy-efficient
protocol for underwater wireless sensor networks”, International Journal of Communication

23. Hwang, Daeyoup, and Kim, Dongkyun, DFR: Directional flooding-based protocol for
Underwater Sensor Networks pages-{1-7}, Year-2008, IEEE

Wireless Sensor Networks”, in Information Technology (ITSim), 2010 International Symposium
on, vol. 2, June 2010

balanced algorithm for UWSNs”, Grid and Cooperative Computing, 2008. GCC’08. Seventh
International Conference on IEEE, pp.349-355

27. Majid, Abdul and Azam, Irfan and Waheed, Abdul and Zain-ul-Abidin, Muhammad and
Hafeez, Taimur and Khan, Zahoor Ali and Qasim, Umar and Javaid, Nadeem, “An energy
efficient and balanced energy consumption cluster based protocol for underwater wireless
sensor networks”, Advanced Information Networking and Applications (AINA), 30th International

28. Azam, Irfan and Majid, Abdul and Ahmad, Ijaz and Shakeel, Usman and Maqsood,
Hamad and Khan, Zahoor Ali and Qasim, Umar and Javaid, Nadeem, “SEE: Sparsity-aware
energy efficient clustering protocol for underwater wireless sensor networks”. Advanced
Information Networking and Applications (AINA), 2016 IEEE 30th International Conference on

29. Ayaz, Muhammad, and Abdullah, Azween, and Faye, Ibrahima and Batista, Yasir, “An
efficient Dynamic Addressing based protocol for underwater wireless sensor networks”.

30. Li, Tonghong, Multi-sink opportunistic protocol for underwater mesh network,
Communication, circuits networks, ICCCAS 2008 International Conference on, IEEE,
pp.404-409

Index Terms

Computer Science Wireless

Keywords
Types of UWSN, application, the architecture of UWSN, the taxonomy of routing protocols