
International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.6, October 2017

37

Coverage DB: A Tool for Intelligent Selection of Tests

Aditya Akotkar
ME Student,

Department of Computer Engineering,
Pune Institute of Computer Technology, Pune, India

M. S. Wakode
Professor

Department of Computer Engineering,
Pune Institute of Computer Technology, Pune, India

ABSTRACT

Regression testing is an expensive testing procedure utilized

to validate modified software. Tester struggles to selectively

run the relevant tests for pre-testing defects in software.

Standard set of tests identified based on features may not

include all the impacted tests for pretesting a fix made at

different layers. Also, it is inefficient to execute all the tests

for a small change in code. Thus to reduce the cost of testing

and to improve the effectiveness, there is a need of

identifying, selecting and executing impacted tests based on

changes in the code. Existing test selection techniques select

non modification revealing and redundant tests. Our system

identifies changes made in the code and then selects

modification revealing tests using proposed ‘Hybrid’

technique. ‘Hybrid’ technique selects optimal and relevant

number of tests that would provide maximum test coverage

with minimal number of tests. Proposed technique uses a

combination of ‘By Line’ and ‘By Function’ to increase

precision. Redundant tests are further reduced with clustering.

The idea is to create a database to map the functional tests and

C++ code files by collecting coverage data and then grouping

tests based on multiple techniques. Finally, integrating this

utility into existing testing process for selecting tests based on

changes in the code.

General Terms

Software Testing, Regression Testing, Code Coverage

Keywords

Regression Test Selection, Clustering.

1. INTRODUCTION
Software systems continuously evolve during development

and maintenance. Software is changed for a variety of

reasons, such as fixing defects, adding new functionality, or

improving its performance. While this evolvement of software

systems, it is important to check new functionality as well as

old functionality is still working correctly. The modified

version of the software should behave as intended, and that

modifications should not adversely impact its quality. This is

tested by regression testing. General approach of regression

testing is to test all the test cases. Thus regression testing is

expensive. It takes up to 80 percent of testing budget and 50

percent of maintenance cost. Regression testing may waste

resources such as tester’s time and computation resources. Till

date various prioritization methods are proposed.

Prioritization helps in early detection of defect but it does not

reduce cost of regression testing. Regression test selection is a

well-known problem in software testing. Regression test

selection techniques select smaller subset of large regression

test suite for testing. 'Retest all' approach is not suitable for

large test suites as resource requirement is very high. Also it is

inefficient to execute all tests for small change in code. Thus

it is necessary to trim the test suite.

2. LITERATURE SURVEY
Researchers have studied various methods for improving cost

effectiveness regression testing by applying various test

selection and prioritization methods. Survey of such methods

is carried out by Rothermel [13] and many others [11] [8] [6].

Researchers have given different names to different

techniques, but the core logic is similar. These techniques can

be broadly classified as follows.

2.1 By Line
This is very basic test case selection method based on code

coverage [14]. In this approach test cases which traverses

through modified source lines, are selected. In practical,

considering only modified lines may not give impacted test as

change in one line may affect others. To solve this, lines are

normalized by considering code block of five lines (above two

lines and below two lines) and test cases which pass through

this block are selected. Tests selected by this approach are

large in number.

2.2 Max Min
This is a statistical approach to solve regression test selection

problem. In this approach minimum number of tests are

selected such that their combined coverage is maximum. This

technique ensures that most of the code is tested. Tests

selected by this method are less than that of By Line. Similar

technique is used in various prioritization algorithms. Survey

of such techniques is given by Rothermel [5].

2.3 Intersect
This is hybrid approach of solving regression test selection

problem. This method is combination of By Line and Max

Min. Tests which traverse through modified part and provides

high coverage are selected. Kandil [1] proposed similar

approach which is combination of test case selection and

prioritization. As tests are selected by combining above two

methods, tests selected are less in number.

2.4 Clustering
In addition to above techniques clustering technique can be

used in test case prioritization [3] [4]. In clustering technique,

test cases are clustered based on certain properties such as

code coverage, previous fault history etc. Clustering group

similar test cases in one group and dissimilar test cases in

different groups. Different techniques ensure that dissimilar

tests are selected so as to provide high fault detection

capability.

‘By Line’ technique works on approximation, which is not

very reliable in case of coding. By selecting function level

granularity, test cases traversing through function which

contains modified code can be obtained. By using function

level granularity, more number of tests than are selected.

Combination of ‘By Line’ and ‘By Function’ will select

modification revealing test cases. Combined approach will

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.6, October 2017

38

select large number of redundant tests which can be removed

by clustering them on the basis code coverage.

3. SYSTEM ARCHITECTURE
Figure 1 describes ‘Coverage DB’. System provides a utility

to tester for selecting regression test suite. System can be

divided into two parts. First is building coverage database and

second is integrating it with existing defect system.

3.1 Build Coverage DB
System executes test suite on application under test and

generates coverage data using open source code coverage

tool. ‘Open Cpp Coverage’ is used as code coverage tool.

‘Open Cpp Coverage’ is a free and open source code coverage

tool for Cpp applications. Code coverage data is generated in

xml format. Code coverage data is then loaded into the

database. Also data is merged to produce a single report in

HTML format. This report can be used by functional testers

to add more tests to test suite.

Fig 1: System Architecture

3.2 Integration with Defect Runs
Second part is integration with defect system. Jenkins build

number is taken as input from tester along with the method of

test selection. There are four methods provided namely ‘By

Line’, ‘Max Min’, ‘Intersect’ and proposed method which is

named as ‘Hybrid’. To get modified file and line information,

developer’s branch is compared with master branch using

version control system. Diffs obtained are then parsed to

extract modified file name and line number. Finally tests are

selected according to the selected method.

3.3 Proposed Test Selection Method
Figure 2 describes proposed test case selection technique.

It combines ’By Line’ and ’By Function’ method to select

modification revealing tests. For modified line which is at

function edge, ’By Line’ approach may select lines outside the

function and thus ineffective tests. Combination of techniques

will discard such ineffective tests.

Fig 2: Proposed Test Selection Method

Algorithm:
1. Execute test suite on the code under test.

2. Generate code coverage report at line level and

function level granularity.

3. Select regression test suite based on ‘By Line’

method.

4. Trim test suite obtained in step 3 by selecting

matched test with ‘By Function’ method.

5. Apply clustering technique on trimmed test suite to

remove redundant tests.

6. Apply ‘Max Min’ on each cluster to get final

reduced test suite.

Clustering is done on the basis of code coverage. Execution

trace of each test case is represented by a binary string. Each

bit corresponds to a statement in the source code. If the

statement is executed by the test case, the digit is 1; otherwise

it is 0. The similarity between two test cases is measured by

the distance between two binary strings using Hamming

distance. Output of clustering is groups of similar test cases.

These similar test cases can be a same test case with different

arguments for checking boundary conditions or different test

cases checking same code. Such redundant test cases are

removed by clustering. Last step selects test case from each

cluster which has maximum coverage.

4. RESULTS
Graph shows comparison of proposed test selection method

with existing methods. Inclusiveness and precision are

comparison parameters given by Rothermel [13]. Selected test

percentage is percentage of test suite selected for testing.

Redundant test percentage is determined by expert by

manually analyzing test suite.

International Journal of Computer Applications (0975 – 8887)

Volume 175 – No.6, October 2017

39

To calculate performance evaluation parameters, test selection

methods are applied on multiple known defects. Average

values of comparison parameters are plotted on the graph.

Graph shows that 100% precision is achieved in proposed test

selection technique and up to 10% less redundant tests are

selected. Inclusiveness of Hybrid technique is less as it omits

redundant tests.

Fig 3: Results

5. CONCLUSION
Proposed system is useful for testers to select regression test

cases from large test suite. It is also useful for developers for

quick testing changes in their code. This reduces testing time

and results in fast deployment of project. Existing test

selection techniques have less precision and more redundancy

in selected tests. Proposed Hybrid test selection technique

clusters test cases on the basis of code coverage to reduce

redundancy. Combining ‘By Line’ and ‘By Function’ restricts

selection of tests that are not modification revealing which

results in increase in precision. This technique is combination

of test case selection and prioritization offering advantages of

both. ‘Hybrid’ test selection technique increases precision by

10 percent and selects up to 10 percent less redundant tests

than ‘Intersect’ technique. The research work provides

solution for regression test selection problem which has high

precision and less redundancy than existing solutions.

6. ACKNOWLEDGMENTS
This work is sponsored by SAS Research and Development,

Pune. We take this opportunity to express my deep sense of

gratitude towards Mr. Kishore Jain, Manager, SAS Research

and Development Pune, for giving me this splendid project for

my dissertation work. We would like to thank Mr. Atul

Kachare, Tech Lead, SAS Research and Development Pune,

for his valuable guidance. We wish to express my thanks to

Dr. Rajesh Ingle, HOD Computer Department, PICT, for

encouragement and providing best facilities. We thank all the

staff members for their indispensable support and for most

valuable time lent as and when required. We thank all the

people who are directly or indirectly involved in this project.

7. REFERENCES
[1] Kandil, Passant, Sherin Moussa, and Nagwa Badr.

“Regression testing approach for large-scale systems.”

Software Reliability Engineering Workshops (ISSREW),

2014 IEEE International Symposium on. IEEE, 2014.

[2] Shahid, Muhammad, Suhaimi Ibrahim, and Mohd Nazri

Mahrin. “Code Coverage Information to Support

Regression Testing.” The International Conference on

Informatics and Applications (ICIA2012). The Society of

Digital Information and Wireless Communication, 2012.

[3] Carlson, Ryan, Hyunsook Do, and Anne Denton. “A

clustering approach to improving test case prioritization:

An industrial case study.” Software Maintenance

(ICSM), 2011 27th IEEE International Conference on.

IEEE, 2011.

[4] Yoo, Shin, et al. “Clustering test cases to achieve

effective and scalable prioritisation incorporating expert

knowledge.” Proceedings of the eighteenth international

symposium on Software testing and analysis. ACM,

2009.

[5] Elbaum, Sebastian, Alexey G. Malishevsky, and Gregg

Rothermel. “Test case prioritization: A family of

empirical studies.” IEEE transactions on software

engineering 28.2 (2002): 159-182.

[6] Bharati, Chandana, and Shradha Verma. “Analysis of

Different Regression Testing Approaches.” Analysis 2.5

(2013).

[7] Kapfhammer, Gregory M. “Empirically evaluating

regression testing techniques: Challenges, solutions, and

a potential way forward.” Software Testing, Verification

and Validation Workshops (ICSTW), 2011 IEEE Fourth

International Conference on. IEEE, 2011.

[8] Yoo, Shin, and Mark Harman. “Regression testing

minimization, selection and prioritization: a survey.”

Software Testing, Verification and Reliability 22.2

(2012): 67-120.

[9] Blondeau, Vincent, et al. “Test case selection in industry:

an analysis of issues related to static approaches.”

Software Quality Journal (2016): 1-35.

[10] Pathania, Yamini, and Gurpreet Kaur. “Role of Test Case

Prioritization based on Regression Testing using

Clustering.” International Journal of Computer

Applications 116.19 (2015).

[11] Biswas, Swarnendu, et al. “Regression test selection

techniques: A survey.” Informatica 35.3 (2011).

[12] Chittimalli, Pavan Kumar, and Mary Jean Harrold.

“Recomputing coverage information to assist regression

testing.” IEEE Transactions on Software Engineering

35.4 (2009): 452-469.

[13] Rothermel, Gregg, and Mary Jean Harrold. “Analyzing

regression test selection techniques.” IEEE Transactions

on software engineering 22.8 (1996): 529-551.

[14] Beena, R., and S. Sarala. “Code coverage based test case

selection and prioritization.” arXiv preprint

arXiv:1312.2083 (2013).

[15] Huang, Sheng, Jun Zhu, and Yuan Ni. “ORTS: a tool for

optimized regression testing selection.” Proceedings of

the 24th ACM SIGPLAN conference companion on

Object oriented programming systems languages and

applications. ACM, 2009.

IJCATM : www.ijcaonline.org

