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ABSTRACT 

A new simple method is proposed to synthesize the 

instrument-specific dictionaries and its use is examined in the 

time domain musical signal representation. By investigating 

the spectrum of musical note signals, it is seen that only a 

small number of frequency elements are significant in the 

inherent structure of a musical note, and other elements could 

be omitted. This sparsity is utilized to synthesize note-specific 

atoms. Firstly, some basic functions are defined from the 

long-term spectrum of the note signal, called primary atoms. 

Then the primary atoms that satisfy some conditions are 

selected as basic atoms and are incorporated to synthesize 

note-specific atoms. Some usual signal processing windows 

also are examined such as Gaussian and Hamming windows 

to synthesize note-specific atoms. The note-specific atoms of 

an instrument are integrated in an instrument-specific 

dictionary. A musical signal is represented by mapping to this 

dictionary by means of the Matching Pursuit algorithm. The 

proposed method was evaluated on the RWC musical sound 

database. The results showed that it improves the quality of 

signal representation compared to some previous methods. 
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1. INTRODUCTION 
Considering the large size of multimedia data such as sound 

and image, storing their basic information in low volume 

seems necessary. An important challenge is to preserve the 

useful information while non-important data is removed [1]. 

The basic information of different sounds is less in common 

with one another. Therefore, the difference between the main 

information of sounds causes discrepancy among them. The 

basic information of sounds can be considered in the form of a 

limited number of the basic functions. These basic functions 

are called atoms and a group of these atoms is called 

dictionary [2]. 

The time structure of the sound sources could be obtained 

through the learning of a group of functions in time domain, 

so that these basic functions encode the signal perfectly using 

statistical methods [3]. First, some particular basic functions 

are chosen. Then, the weights of these functions are 

determined using the Maximum Likelihood (ML) method. 

Next, each sound source is modeled as a weighted linear 

summation of the basic functions (see Figure 1). 

This method leads to a sparse representation of sources only if 

each basis function has a high correlation with one of the 

sources and low correlation with others. Otherwise, the sparse 

representation will not occur. 

 

Fig 1: Learning the basic functions. aij is the basic function 

j of the source i and sij is its corresponding weight learned 

from data X [3] 

Signal representation using sparse dictionaries are considered 

in several recent researches as an efficient method for 

different audio processing issues such as audio structure 

analysis, automatic music transcription, and audio source 

separation [4-9]. 

The sparse representation of music signals using source-

specific dictionary, has been proposed in [10]. The main 

purpose in their research is to separate music signals from 

background signals or speech. To achieve this, a source-

specific dictionary is formed for each musical source using 

some synthesized atoms. Then, the mixed signal is 

decomposed to the atoms of this dictionary, and thus, only 

those parts of the signal having high correlation with the 

related atoms are extracted and background signals or speech 

are omitted. The selection and extraction of suitable atoms for 

representing the signal is done by means of the Matching 

Pursuit (MP) algorithm [11]. 

The main goal of this study is to propose a new simple 

method of synthesizing some time-domain function, called 

note-specific atoms, which improve the efficiency of musical 

signal representation. In the proposed method, the structural 

elements of a musical note are extracted by signal analysis in 

the frequency domain, which are then used for synthesizing 

the time-domain note-specific atoms. Next, an instrument-

specific dictionary is made by collecting the note-specific 

atoms. This dictionary is used for musical signal 

representation. The proposed method is experimented for the 

test signals produced from the Piano, Clarinet, Classical 

Guitar and Violin. 

2. SYNTHESIZING NOTE-SPECIFIC 

ATOMS 
The proposed method in synthesizing note-specific atoms 

consists of three main steps, as depicted in Figure 2, which are 

described in the following subsections. We used this method 

also in audio source separation [12]. 
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Fig 2: The steps of synthesizing note-specific atoms 

2.1 Definition of the Primary Atoms 
The primary atoms are defined from the FFT components of 

the note signal as: 

                                          

where A, f and φ are the amplitude, frequency and the phase 

of an FFT component of the note signal, respectively, n is the 

sample number, and N is the arbitrary length of a primary 

atom. In order to avoid the FFT components in reverse phase 

due to the symmetry, the number of primary atoms is set to 

half the length of the original signal. 

2.2 Selecting the Basic Atoms 
The note-specific are synthesized atoms using only the 

primary atoms corresponding to the main components of the 

frequency spectrum, called basic atoms. These atoms contain 

the main inherent structure of the note signal. A primary atom 

which is a candidate for being a basic atom should satisfy two 

conditions: First, it should be greater than the lateral atoms 

within a predetermined neighborhood, and second, the 

average of its lateral atoms in the specified neighborhood 

must be greater than a lateral threshold. These conditions can 

be summarized as follows: 

                                       

    
 

   

   
                    

in which An is the amplitude of the primary atom, THL is the 

lateral threshold, and L is the neighborhood distance from 

each side. 

By checking the first condition, only one atom having the 

highest peak in a frequency neighborhood is selected, 

resulting in sparsity. For example, consider the spectrum 

details of the piano note C4 around 263 Hz as depicted in 

Figure 3. By checking this condition, the primary atoms 

around 263 Hz are omitted, which although their amplitude is 

large enough, they are smaller than an atom in their 

neighborhood. So, only one atom is selected around 263 Hz. 

The second condition should be satisfied to ensure that the 

signal energy is sufficient around the basic atom. So, we 

check if the integration of amplitudes around the test atom is 

greater than a lateral threshold (THL). Note that before 

applying the algorithm, the spectrum must be normalized so 

that the total energy of spectra is 1, i.e.: 

   
 

 
                       

After extracting the atoms in peaks, they are sorted according 

to their amplitude and use the first M atoms of this list as the 

basic atoms. The parameters THL, L and M are assigned 

adaptively to yield best representation performance. 

 

Fig 3: The spectrum of piano note C4 and its detail around 263 Hz 
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2.3 Synthesizing the note-specific atoms 
The note-specific atoms is calculated as: 

               

 

   
                   

where H(n) is a note-specific atom, w(n) is a signal processing 

window, M is the number of basic atoms, hm(n) is the mth 

basic atom chosen from primary atoms as described in the 

previous section, and k is the normalizing factor such that the 

total energy of note-specific atom is 1. 

Common signal processing windows can be used to 

synthesize note-specific atoms. Hamming, Gaussian and 

Rectangular windows are examined, and according to the 

experiments, using either Hamming or Gaussian windows 

improve the efficiency of signal representation. 

3. MUSIC SIGNAL REPRESENTATION 
Musical signal representation is done by mapping the signal to 

the instrument-specific dictionaries. The instrument-specific 

dictionary is composed of a set of note-specific atoms of each 

instrument. Decomposition of instrument music signal into 

note-specific atoms is done by the MP algorithm [11], as 

described in Algorithm 1, where an input signal X(t) is 

decomposed into the atoms of dictionary D in Q iterations. 

The existing atoms in the dictionary D are expressed as Gi. In 

the beginning, the initial residual signal R0 is set equal to X. 

Then decomposition is performed for Q iterations. At iteration 

n, the selected atom Gn is the atom with the highest 

correlation with the last residual signal Rn−1. To update the 

new residual Rn, the selected atom weighted by the correlation 

factor is subtracted from the last existing residual signal.

Algorithm 1: MP algorithm for signal decomposition [11] 

          ;  

For n=1:Q  

         
      
      

             ; 

                                   ; 

 End For 

 

After decomposition, the original signal could be estimated 

as: 

                 
 

   
                     

It is clear that the original signal will be:  

                               

After decomposition, the Signal to Distortion Ratio (SDR) can 

be calculated as: 

         
   

      
             

It is noted that the dictionary used by the MP algorithm 

implicitly includes all possible time-delayed functions of an 

atom. Generally, it is assumed that once an atom is included 

in a dictionary, all atoms resulted from its time-delayed 

functions also exist in that dictionary. 

4. EXPERIMENTS 
The RWC musical instrument sound dataset [13] is used to 

evaluate our proposed method. In that dataset, there are three 

variations of different musical instruments notes. Two 

variations are used for building the instrument-specific 

dictionary and one to make the test signals. 

4.1 Synthesizing note-specific atoms 
The note-specific atoms are synthesized for two variations of 

piano, clarinet, classical guitar and violin notes in the RWC 

dataset using our method. The sampling rate in the dataset is 

44100 samples per second. Since there are no frequency 

elements above 5 kHz in the used note signals, according to 

the Nyquist theorem, a sample rate of 10000 would be 

sufficient, and thus the sample rate is reduced to 25% of the 

original, i.e. 11025 samples per second for the experiments.  

The lengths of the used note signals were lower than 65536 

samples after down-sampling. Therefore, to calculate the long 

term spectrum, the lengths of all note signals are equalized to 

65536 samples by zero-padding, resulting in a spectrum 

resolution of 0.168 Hz. After computing the spectrum, it was 

normalized so that the total energy is 1. 

Subsequently, the basic atoms of each note signal spectrum 

was extracted. A sliding window sweeps the spectrum and the 

atoms which satisfy the conditions are extracted and sorted 

according to their amplitudes. By investigating the note signal 

spectrums, it is observed that the minimum distance between 

the peaks was around 50 Hz. On the other hand, there was no 

considerable frequency element in more than 10 Hz far from 

the peaks. If the neighborhood around 30 Hz is select from 

each side, there would be no overlaps and no frequency 

element would be lost. So, considering the FFT resolution of 

0.168 Hz, the parameter L is selected as 200. Also, there were 

not more than 5 effective peak elements in any spectrum. So 

the parameter M is set as 5. A wide range of values is tried for 

the parameter THL. The best results in the representation stage 

were achieved when we used 0.038 for THL. So the proposed 

algorithm is applied to all note signals using the parameter set 

0.038, 200 and 5 for THL, L, and M, respectively 

Figure 4 shows the note-specific atom, computed for the piano 

note C4 using different windows for length of 1024 samples. 

It is seen that the Gaussian and Hamming windows represent 

better characteristics in the frequency domain. However, 

based on our experimental results, no preference is observed 

in choosing these two windows. 
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Fig 4: Atoms obtained for the Piano note C4: a) Rectangular window, b) Hamming window, c) Gaussian 

4.2 Constructing the instrument-specific 

dictionaries 
The instrument-specific dictionaries are constructed for the 

piano, clarinet, classical guitar and violin. The lengths of the 

note-specific atoms were selected as N = 512, 1024, and 2048. 

Our observations in the experiments demonstrated that the 

best representation efficiency can be typically achieved in 

lengths of 2048 for lower frequencies, and in lengths of 512 

for higher frequency notes. So, the lengths of 512, 1024 and 

2048 are used to synthesize note-specific atoms. 

For each instrument, distinct dictionaries are constructed 

using different windows. Two variations of dataset are used as 

training data for each note signal and synthesized note-

specific atoms in three lengths. So, for each note there are six 

note-specific atoms in each instrument-specific dictionary. 

For comparisons, source-specific dictionaries also are 

constructed (SSD) [10]. A Gabor atom dictionary is used to 

extract new atoms. To perform a fair comparison, all these 

new atoms were synthesized in three different lengths for two 

training data. The instruments-specific and the source-specific 

dictionaries were used for evaluation of the proposed method. 

 

Fig 5: a) A piano test signal, b) Its representation using hamming window 

4.3 Representation of musical signals 
The constructed dictionaries are used to represent synthesized 

music signals of four different instruments. Test signals are 

produced by weighted summation of note signals for each 

instrument. Figure 4 shows the note-specific atom, computed 

for the piano note C4 using different windows for length of 

1024 samples. It is seen that the Gaussian and Hamming 

windows represent better characteristics in the frequency 

domain. However, based on our experimental results, we did 

not observe any preference in choosing these two windows. 

The efficiency of representation is calculated using (8). The 

proposed algorithm is evaluated, comparing to SSD method 

[10]. The average SDR of test signal representation is shown 

in Table 1. According to the results, the proposed method 
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demonstrates a better efficiency. Also, in [10], the MP 

algorithm was used to synthesize note-specific atoms, which 

is a complicated process. However, in our method there is no 

need to use that algorithm for making an instrument-specific 

dictionary, and note-specific atoms are computed with a fast 

and simple process in the frequency domain. 

As we aimed to propose a new source-dependent method for 

music representation, the results are compared with source-

specific dictionaries as a relevant baseline, and showed that 

our algorithm outperforms the SSD method. Thus, 

comparison with source-independent methods is out of the 

scope of this paper, since this comparison has been done 

previously and the effectiveness of source-dependent 

algorithms has been proved in [10]. 

Table 1. The Average SDR of Reconstructed Signals 

Instrument 

Average SDR 

SSD 

Proposed Method 

Rectangular 

Window 

Gaussian 

Window 

Hamming 

Window 

Piano  8.7 10.1 11.3 11.5 

Clarinet 12.5 12.3 13.3 13.3 

Violin 12.8 11.4 15.1 15.1 

Guitar 13.3 12.8 16.2 16.3 

 

5. CONCLUSION 
In this paper, a novel method is proposed for constructing the 

instrument-specific dictionaries, which was used for music 

signal representation. The inherent time structures of the 

musical note signals are extracted by spectrum analysis and 

used them to synthesize note-specific atoms. These atoms 

were integrated to the instrument-specific dictionary and 

musical signals were represented by mapping to this 

dictionary. 

Compared to the method proposed in [10], a better quality of 

musical signal representation was achieved in the SDR 

criterion. The proposed method is also simpler in making an 

instrument-specific dictionary. 

As a future work, conceptual structure of note signals can be 

used in synthesizing note-specific atoms. Quality of signal 

representation could be enhanced using this feature. 
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