
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.1, October 2017

20

ASCII based Technique of Obtaining Data Set to

Perform Fuzzy Keyword Searching

Pooja Prashar
Amity School of Engineering & Technology

Sector 125, Noida
Uttar Pradesh, India

Shivanku Mahna
San Jose State University

1 Washington Sq
San Jose, CA, 95192

ABSTRACT
The world we live in is full of amazing art of science, where

the role of technology is highly important. Hence, in such a

conducive environment, major break-throughs are bound to

happen. One such major development which has brought lot

of positive results in the current scenario is how we save our

information. Earlier, we used to save our data in tape based

hard-disks and floppy drives, whereas now we are saving our

data in some remotely located server or cloud based servers.

However, it is quite evident that, with a positive aspect, there

is always a drawback associated with it. One major drawback

associated with the current practice of saving our data which

cannot be ignored is situating the confidential files and folders

at the risk of being exposed to unwanted people, so much so

that the precious data loses its confidentiality and integrity.

Another huge problem that arises with the usage of cloud is

that, even in this day and age of artificial intelligence, where

we are trying to predict and understand well in advance what

other person is trying to say; searching on cloud is still not

typo friendly. In this paper, we have tried to analyze the

already existing fuzzy type searching algorithms and provide

a completely innovative and more effectual method that aims

at making searching typo friendly and efficient in time &

space on any platform , be it windows, local hosting servers,

cloud or backend servers. The ASCII based algorithm that we

are going to suggest, will have its focus on finding a method

that provides results in effective & efficient manner and yet

does not compromises on the data integrity and confidentiality

of the data being searched or being stored on the cloud/server.

In order to do so, we have also used the encryption and

decryption techniques like AES algorithm which is very safe

and efficient. Making a system friendly to fuzzy type keyword

searching will enhance its usability and make it typo friendly.

We shall be using ASCII coding in order to quantify

keywords similarity and for constructing fuzzy keyword sets.

General Terms

Cloud, Encryption, Decryption, Gram Based, Wild Card.

Keywords

AES, Fuzzy type keyword, ASCII

1. INTRODUCTION
With so much of advancement happening in every sector, it is

extremely hard for an individual to keep themselves abreast of

the latest developments in their surroundings. There is one

sector which has had a lot of development happening and has

brought a lot of ease in our lives, and that is technology. With

the technology bloom happening, therein comes a new range

of more efficient options for us to choose from. If we consider

this in the context of the way we are saving our ever

increasing data, then we surely have come a long way since

the beginning of computing era. In the older times, it was

extremely hard to manage our records. The task of

maintaining them and keeping them up to date was extremely

burdensome. Since the records were maintained physically, it

became really difficult for the changes being made to certain

data be known to rest of the other people associated with it.
Then, the technology came to rescue and data was being

stored in tape based hard disks and floppy drives, but they

also were either too bulky or too short on space in most cases.

Hence a better solution was required. The technology of

modern days allows us to maintain all our files and

information on cloud. Now we can store all our information as

if it is being stored on a data server which is located in a

different country. It can also play the role of an achieved copy

and replica, which can be retrieved if the center is damaged

due to any reason. But one thing that is yet to be a little more

developed or enhanced is the searching techniques which are

being used today. Today, if we want to search a file on a

computer or a server, then we need to enter the exact same

name of the file in order to get the file retrieved. If, by

chance, we have a typographical error while typing in the

name of the file (which is a highly probable case in today's

time of fast typing), then no result is retrieved. It is common

for people to have typos while typing and thus the method

currently in place in cloud or computer systems is inefficient

in processing our language and realizing what we wanted to

find while making that typo and as a result, no file is

retrieved. As an example, we can consider the case taken for

the screenshots attached below. If we try and search for a

file named ‘Pooja’, then the system returns a lot of files but

when we try and search for a file named ‘Pooja’ but, by

mistake, make a typographical error and type in Pooja as

‘oooja’, then nothing is returned. It is hard to believe that in

today's day and age of artificial intelligence, where we are

trying to understand all the possible cases and cover the

maximum possible outcomes, even before they have

occurred, the searching techniques on windows, cloud or

local host servers is still not able to understand what we are

trying to search for and returns back unfavorable or 0

results. We, as a result, decided to dig deep into this

problem to obtain a solution and finally, after a lot of

research work and calculations, were able to obtain a

method using which we can make searching more efficient

and more friendly to typographical errors. We have also

analyzed all the different possible fuzzy searching

algorithms which are currently available for use and then,

developed one of the most efficient algorithm in today’s day

and age, which makes the cloud typo friendly, enhanced the

results computing power by drastically reducing the time

being used to calculate and search for the desired results and

last but not the least, do all this, with minimum memory and

space consumption. The section following this has listed a

few of the earlier methods, which are being used till date at

some of the places and we, while explaining that, have tried

to explain why each of them is more inefficient than the one

we are suggesting in the upcoming sections post section 2.0

[1].

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.1, October 2017

21

Fig: 1.1 Search Results that we get on searching for

Pooja.

Fig: 1.2 Search Results that we get on searching for

oooja (Pooja with typo error).

2. CONCEPT OF KEYWORD NAMING
A cloud is not only used by people for personal use but also

used by companies or associations to save their highly

classified and secret data, losing which can cause a loss of

millions. Hence we realized this fact and came to the

conclusion that directly applying a searching algorithm on the

file name can cause a lot of trouble and can lead to leaking of

sensitive information if two important file names are quite

similar. Hence we suggest the use of keywords to save the

file. When a file has to be saved, the user will firstly have to

assign it a keyword and then the file will be saved on the

cloud using that keyword. There will never ever be a mention

of the name of the file and hence this problem of data integrity

will be solved. Also the fact that once a keyword is entered,

the system will calculate the possible typo keywords that can

be entered by the user and will save those in the memory, the

user cannot enter the same keyword again and hence no

ambiguity will be there in terms of naming of the keywords as

well. And hence even after doing a typo, only that file will be

shown that is associated with the actual keyword and not any

random file. Also file names can sometimes give away a little

information about what might possibly be there inside the file.

But saving the file with a keyword solves that problem as well

[2].

3. ANALYSING EARLIER METHODS

OF KEYWORD SEARCHING
Before showing how our suggested method works, we shall

first showcase the drawbacks that exist within the earlier

methods that make them both inefficient and inappropriate to

use [8].

So, now that we have saved our file with a keyword that will

exclusively be used for that file and will represent that file in

the database, there are 3 methods, explained below in detail,

of breaking keywords into individual letters and making its

fuzzy sets, which are then saved into the computer memory.

3.1 Straightforward Method of Set

Construction
In the first method, we take a keyword, break it into

individual letters and replace every letter with the letter from

A to Z and save the words so formed into the computer

memory so as to cover all the probable cases of a typo error

that can occur while typing in the keyword. But as

cumbersome as it sounds, it will take a lot of time and

memory which is unnecessary and will lead to very inefficient

way of formation of a fuzzy set and saving of the fuzzy set

[3].

For example if we take “KEY” as the keyword, then the

algorithm will make the computer save the following values

into its database as the probable cases of typo associated with

this keyword:

KEY: - {AEY, BEY, CEY, ZEY, KAY, KBY, KCY, KZY,

KEA, KEB .. KEZ}

Even though this approach might lead us to file saved with the

keyword entered, but even for such a small keyword, there are

as many as 3x26 cases being saved in the computer memory,

which is sheer wastage and underutilization of resources at

hand. This act might make the system inefficient and

incompetent. Hence, there was a need for a more efficient

method of searching and in came the concept of ‘Gram Based

Error Assumption’, explained in the following section [7].

3.2 Gram Based Error Assumption
In this method, an assumption was made that the error can be

of as many letter as possible and it was assumed that while

typing the keyword, the typo error, can be as small as of a

single letter or as big as 26 letters, and while doing the same,

the person either replaced the letter being typed or added extra

letters that were not required in the keyword [5]. An example

of the same can be seen below:

Ex: For the keyword Magic, the following words will be

saved in the fuzzy set so formed:

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.1, October 2017

22

{*MAGIC, *AGIC, M*AGIC, MA*GIC, MAG*IC,

MAGIC*C, MAGIC*, M*GIC, MA*IC, MAG*C, MAGI*}

Where * can be a typo error of as many letters as possible.

But the fault in this method lies in the fact that the assumption

says that error can be of as many letters as possible whereas

usually the error is of just one letter [5]. Hence, while

covering all the unnecessary cases, whose probability of

occurring is very less, we are wasting a lot of our resources in

terms of time and memory. Hence another more efficient

method was required and in came another revision of this

method explained below [5].

3.3 Unit Distance Error Assumption
In this method, the assumption made is that the error is at unit

distance and there is at most a single letter error or a unit error

and that can be identified and using that, file can be retrieved

even after committing a typo error [4].

For example, considering the keyword “MAGIC”, and if we

type MNAGIC, the file will be retrieved as error is at unit

distance.

Hence by doing this, the size of the fuzzy set thus being

formed will be reduced significantly.

But the very fact that none of the algorithms till now are

thinking about the fact that a typographical error occurs only

around the key that one was about to type is something we

realized and made use of in the algorithm suggested by us in

the next section [6]. As a result of our efforts, we have made

the fuzzy searching process even more efficient by using the

method suggested by us in the following section.

4. ASCII BASED ALGORITHM
Whenever a typographical error occurs, it occurs out of the

letters that surround the letter that we were about to type. So

for example, if we were about to type in the letter ‘k’, the only

probable typos that can occur while typing k are:

K – L M J I O

We realized this fact and made use of this logic in order to

develop our algorithm [9].

 Hence, if we think this way, then the size of the set that we

were creating gets reduced significantly as only 5 probable

cases are actually going to occur out of the otherwise 26 cases

that were being stored in the earlier methods. And this

reduction is just with one letter’s case. As the size of the

keyword will go on increasing, this efficiency will go on

further increasing.

So, if we take the same example of using the keyword

“KEY”, the set so obtained and saved in the computer

memory using ASCII based algorithm will be as follows:

KEY:

{KEY,LEY,MEY,JEY,IEY,OEY,KRY,KWY,KDY,KSY,K

 FY,KEU,KET,KEG,KEH,KEJ }

So, the number of cases so obtained are = 16 as compared to

the number of cases obtained in normal approach which were

= 78.

The lower the number of cases, the lower amount of memory

used, and hence, the searching will be more efficient and

faster both in terms of speed as well as in terms of memory

consumption.

The way in which this algorithm will be used is the fact that

every letter of the keyboard has an ASCII value associated

with it and we have tried to exploit this fact to obtain the

letters surrounding the letter entered in the keyword using its

ASCII value. The algorithm is given in the following section

below [8].

5. WORKING OF ALGORITHM
private void calculateASCIIDifference(String str1, String str2)

 {

 try{

 n = str1.length();

 m = str2.length();

 init = new double[n][m];

 for (int i = n - 1,i2 = 0; i >= 0; i--, i2++) {

 for (int j = 0; j < m; j++) {

 init[i2][j] = Math.abs((int) str1.charAt(i) - (int)

str2.charAt(j));

 }

 }

 } catch(Exception e){

 System.out.println("calculateASCIIDifference

exception: "+e.toString());

 }

 }

 private double[][] getASCIIDifference()

 {

 return init;

 }

private void setASCIIDifference(double[][] a,int n, int m) {

 this.n = n;

 this.m = m;

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.1, October 2017

23

 this.init = a;

 }

 public double calculateSimilarity(String str1, String str2)

 {

 calculateASCIIDifference(str1,str2);

 try{

 result = new double[n][m];

 double res, val1, val2, val3;

 //initialize first element

 result[n - 1][0] = init[n - 1][0];

 //initialize first column

 for (int i = n - 2; i >= 0; i--) {

 result[i][0] = result[i + 1][0] + init[i][0];

 }

 //initialize first row(from down)

 for (int j = 1; j < m; j++) {

 result[n - 1][j] = result[n - 1][j - 1] + init[n - 1][j];

 }

 //initialize others

 for (int i = n - 2; i >= 0; i--) {

 for (int j = 1; j < m; j++) {

 val1 = result[i][j - 1] + init[i][j];

 val2 = result[i + 1][j] + init[i][j];

 val3 = result[i + 1][j - 1] + (init[i][j] * 2);

 //minimum of the 3 val's

 res = val1 < val2 ? val1 : val2;

 res = res < val3 ? res : val3;

 result[i][j] = res;

 }

 }

 return getSimilarityValue();

 }

 catch(Exception e){

 System.out.println("calculateSimilarity exception:

"+e.toString());

 }

 return -1;

 }

 //getting result of Similarity

 private double getSimilarityValue() {

 //need to devide if m != n

 if(m != n)

 return result[0][m - 1] / (m + n);

 else

 return result[0][m - 1];

 }

 //getting result array

 private double[][] getSimilarityArray()

 {

 return result;

 }

 FuzzySearch(String sval)

 {

 double result1;

 int i=0;

 try {

 connn obj= new connn();

 obj.connn1();

 decription dd= new decription();

 obj.st.executeUpdate("delete from similardt");

 ResultSet res=obj.st.executeQuery("select *

from database");

 Statement st1=obj.con.createStatement();

 while(res.next())

 {

 String a=res.getString(2);

 String use=res.getString(4);

System.out.print(a);

System.out.print("\t\t");

 result1 = calculateSimilarity(a,sval);

 System.out.println(result1);

 String dt= dd.decription1(a);

st1.executeUpdate("insert into similarity

value('"+result1+"','"+dt+"','"+a+"','"+use+"')");

}

}

 catch(Exception ee)

 {

 ee.printStackTrace();

 }

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.1, October 2017

24

6. RESULTS
The ASCII based algorithm suggested by us increases the

efficiency of the searching the database and result retrieval,

both in terms of speed and time. As shown in the sections

above, at one place, where we were saving 78 possible cases

of error for a three letter keyword, the method suggested by us

made it to come down to 16, which is a drastic decrement.

And the very fact that this level of efficiency will only keep

on increasing with every increase in the size of the keyword

makes in the best possible solution for fuzzy searching.

Hence, the larger the keyword, even more efficient will be the

results of the ASCII based algorithm suggested by us.

7. CONCLUSION
As a result of our efforts and research on this topic, we were

able to design an algorithm which will help in performing

fuzzy keyword searching in one of the most efficient ways

possible till date and hence, while doing so, will make our

searching typo friendly. As a result, we were able to make our

cloud database typo friendly, and were able to make it retrieve

the results in an extremely efficient and fast pace, making the

algorithm a success.

8. REFERENCES
[1] Daniyal M. Alghazzawi, Syed Hamid Hasan and

Mohamed Salim Trigui, "Advanced Encryption Standard

- Cryptanalysis research", 2014 International Conference

on Computing for Sustainable Global Development.

[2] S. Chandragandhi and L. M. Nithya, "Optimizing fuzzy

search in XML using efficient trie indexing structure",

2013 International Conference on Recent Trends in

Information Technology (ICRTIT).

[3] Simran Bijral and Debajyoti Mukhopadhyay, "Efficient

Fuzzy Search Engine with B -Tree Search Mechanism",

2014 International Conference on Information

Technology.

[4] Seba Susan, Abhishek Jain and Aakash Sharma, "Fuzzy

match index for scale-invariant feature transform (SIFT)

features with application to face recognition with weak

supervision" IET Image Processing, Volume: 9, Issue:

11, 11 2015.

[5] A. Behm, S. Ji, C. Li, and J. Lu, “Space-constrained

gram-based assortment for economical approximate

string search,” in Proc. of ICDE’09.

[6] D. Song, D. Wagner, and A. Perig, “Practical techniques

for searches on encrypted information,” in Proc. of IEEE

conference on Security and Privacy’00, 2000.

[7] He Tuo and Ma Wenping, "An Effective Fuzzy Keyword

Search Scheme in Cloud Computing", 2013 5th

International Conference on Intelligent Networking and

Collaborative Systems.

[8] M. Armbrust and et.al, “Above the clouds: A berkeley

view of cloud computing,” Tech. Rep., Feb 2009.

[Online]. Available: http://www.eecs.berkeley.edu/Pubs/

TechRpts/2009/EECS-2009-28.html.

[9] Li Xue, Ren Wuling and Jiang Guoxin,"A solution which

can support privacy protection and fuzzy search quickly

under cloud computing environment", Proceedings of

2nd International Conference on Information Technology

and Electronic Commerce, 20-21 Dec. 2014.

IJCATM : www.ijcaonline.org

