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ABSTRACT
Wireless Sensor Networks (WSNs) with traditional cryptography
are applied in many areas including healthcare, earth sensing and
area monitoring. However, severe security constraints coupled with
malicious attacks and threats revolve around the implementation of
Wireless Sensor Networks which pose undesirable security perfor-
mance as well as affect the maintenance of proper functionality of
wireless sensor systems. Due to such circumstances, it is important
to recognise the need for a holistic and robust security to ensure
WSNs are well established and protected. In this study a more ro-
bust technique for a wireless sensor network system is employed.
The algorithm for Elliptic Curve Diffie Hellman key exchange is
studied and analyzed using PyCryptodome package and the El-
liptic Curve Integrated Encryption Scheme. The study is carried
out in comparison to Rivest-Shamir-Adleman (RSA) to assess the
strengths of ECC in key generation and encryption/decryption pro-
cess. The results obtained from the analysis reveals that ECC pro-
vides a higher level of security and also has very small key size in
comparison to RSA, which makes possible implementations more
compact for some level of security.
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1. INTRODUCTION
Recently, advances in integration between Miniature Embedded
Processors, wireless interfaces and micro-sensors have influenced
the forth coming of Wireless Sensor Network (WSN). The
emerging technology of WSNs have gained worldwide attention
due to their great importance in recent years. WSNs have been
incorporated in several solicitation domains due to its rapid
deployment, low cost, capability for self-organization, low energy
and data processing cooperation which includes applications for
habitat monitoring, military applications, intelligent agriculture
and home automation.

Sensing element and node devices are limited resources deployed
in hostile environments to properly sense data with efficiency.
Although Wireless Sensor Networks with traditional cryptography
are applied in many areas including healthcare, earth sensing
and area monitoring, it also poses austere security challenges
which includes sensor data forgery, denial of service attacks,

eavesdropping and the compromise of sensor nodes physically
(Ayaz & Mohiuddin, 2016). Hence, potential preparation of WSNs
for any real-time applications must address several issues, together
with system design, protocol functionalities and security. Provision
of security to these resourced sensor networks may be a terribly
difficult work in comparison to typical networks, like wide area
network (WAN) and local area network (LAN) (Rehana, 2009).
Henceforth, providing a more appropriate and secured network
has collectively emerged as the essential issue in WSNs, thus the
state-of-art ought to listen to the way to set-up secure, easy and
reliable WSNs. Currently, traditional cryptography is not possible
to protect Wireless Sensor Networks from threats or attacks
because of the unpredictable wireless channel and the network
security. This comes up as a result of the many limitations of
resources such as computational power, limited energy and lower
memory.

Wireless sensor networks (WSNs) collects data from its environ-
ment, store and process them, and finally sends the processed data
to users, either upon event detection or on demand (Ali, 2013).
They are identified as groups of widely distributed sensors used in
monitoring and recording the physical conditions of its environ-
ment through organization or collection of data and reporting them
to a central point (Boussag, 2017), through wireless links. This
makes it crucial to encrypt sensitive data that are transported from
a node to another node in wireless sensor networks so that it will
not be modified by or disclosed to any unauthorized party.

Data encryption and decryption however, hinges on the cryptog-
raphy scheme used and the generated key type. Cryptography
involves the technique for securing communication in the presence
of third parties, which is categorized into public key cryptography,
secret key cryptography and hash function (one-way cryptography)
based on the keys employed.

Public key cryptographic technique employs two keys - private
and public keys - which are mathematically related. In the process
of decryption and encryption, private and public keys are required
for both process to work. Public key cryptography depends on
mathematical functions that can be computed easily but relatively
difficult to compute its inverse. Among the public key crypto-
graphic schemes in modern days for key generation, Elliptic Curve
Cryptography (ECC) is found the latest encryption method which
offers high level of security.
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The problem of authenticated querying is crucial in Wireless
Sensor Networks. The unattended nature of some WSNs make
it prone to node compromise attack. The resource and network
constraints along with very different attacks impose many difficult
necessities for the safety style in WSNs. This sophisticated security
or authentication scheme requires that the design of wireless sensor
networks must be robust against sensor compromise and attacks
which introduces more security challenges. However, the robust
design to achieve best security is often not achieved during wireless
networking which mostly depends on the employed keys and the
encryption/decryption process. In addition, longer cryptographic
keys require more bandwidth, more space and an extra processor
power. And also takes time for key generation, data encryption
and decryption, which is mostly associated to most modern used
cryptographic keys like the RSA.

In this study, the application of elliptic curves in cryptography for
the construction of public and secret keys is carried out. To analyze
the strength and feasibility of elliptic curves in cryptography,
data encryption/decryption process is studied in line with elliptic
curves. The Elliptic Curve - Diffie Hellman (EC-DH) cryptography
technique identified as most robust technique for key generation is
then employed to construct secured public and private keys. And
the analysis carried out using the PyCryptodome package and the
Elliptic Curve Integrated Encryption Scheme (ECIES).

The rest of the paper is organized as follows: the second section
which discusses the concept of elliptic curve cryptography, Elliptic
Curve Diffie-Hellman analog, discrete problem. The pycryptodome
library and the elliptic curve integrated encryption scheme for anal-
ysis of the study is captured in section three. The fourth section con-
siders implementation and analysis of results and finally the study
is concluded in the fifth section.

2. PRELIMINARIES
2.1 Elliptic Curve Cryptography
The Elliptic Curve Cryptography (ECC) is one of the public key
cryptographic schemes. In general, users or devices which form
part of the communication processes in public key cryptography
have a key pair - a private key and a public key - for the crypto-
graphic scheme operations. With the private key, only one of the
users know it, however the public key is made available to every
user involved in the communication process. ECC is a modern
encryption method which offers stronger level of security. In
comparison to RSA algorithms, 256 bits of ECC equals 3072 bits
of RSA keys (Haakegaard and Lang, 2015).

The essence of constructing short keys is to obtain less power
of computations and secured and fast connections, which is ideal
for Tablets and Smartphones. The best cryptography scheme for
wireless applications is the ECC due to its limited battery life,
compute memory and power (Blab and Zitterbart, 2005). The cer-
tificate from elliptic curve cryptography (ECC) allows for small
key size while providing a higher security level. The smaller key
sizes, the more compact its implementations for a certain security
level, which is an implication of faster operations of cryptography.
Method for the creation of ECC certificate key differs entirely from
the other algorithms, which relies on using public keys for encryp-
tion processes and private keys for the process of decryption. ECC
has longer potential lifespan which starts small and comes with
slow potential for growth (Hankerson et al., 2000).

2.2 The Elliptic Curve
The mathematical operations of cryptographic schemes based on
elliptic curves are defined on elliptic curves. In ECC, we want an
elliptic curve E over a finite field Fp where p is a prime number
more than 3. An elliptic curve is defined by equation 1:

y2 = x3 + px+ q (1)

where p, q ∈ Fp and 4p3 + 27q2 6= 0 (Miller, 1985). The constant
values in the equation offers different elliptic curves. Every point
(x, y) that will satisfy the elliptic curve equation including a point
at infinity must lie on the curve. In ECC, the private keys are
random numbers and public keys are points in the curve obtained
by multiplying the private keys with generator G in the curve.
The parameters of the curve ′p′ and ′q′, the point generator G,
together with few additional constants makes up the ECC domain
parameter (Anoop, 2000).

More generally, the form of the elliptic curve is: (Vagle, 2000)

y2 + py = x3 + qx2 + rxy + sx+ t, p, q, r, s, t ∈ Fp (2)

According to Miller (1985), a and b must be chosen for elliptic
curves in cryptography such that

4p3 + 27q2 6= 0.

2.3 Arithmetics of Elliptic Curves
2.3.1 Point Addition. This operation involves the addition of two
points K and J in the elliptic curve to obtain L on the same elliptic
curve. This is illustrated in figure 1.

Fig. 1. Point Addition in Elliptic Curves

Considering the points K and J on the elliptic curve described in
figure 1(a), provided K 6= −J , we can draw a line via points K
and J to produce point −L which also lies in the curve. When
−L is reflected along the x−axis, a point L is obtained which is
the result of adding K and J . On the other hand, if the line passes
through the point K = −J , then the line intersect at a point at
infinity O, which we call the additive identity of the elliptic curve
group as described in figure 1(b).

The reflection of points along the x−axis is a negative of the
point. Analytically, considering the points K = (xK , yK) and
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J = (xK , yK), the addition of these points in the curve produce
one more point L = (xK , yK), where

yL = −yJ+s(xJ−XL)(mod p) and xL = s2−xJ−xK(mod p)
(3)

and

s =
yJ − yK
xJ − xK

(mod p)

is the gradient of the line through K and J .

We have that J + K = O, provided K = −J thus, K =
(xJ ,−yJ(mod p)) where O is the point at infinity. (Silverman,
1986).

2.3.2 Point Doubling. Consider point J = (xJ , yJ), where yJ 6=
0. If L = 2J where L = (xL, yL) then we obtain

yL = −yj+s(xJ−xL) (mod p) and xL = s2−2xJ (mod p)
(4)

where

s =
3x2

J + a

2yJ
(mod p)

is the tangent at J and a is a parameter in the chosen elliptic curve.
(Silverman, 1986)

Fig. 2. Example of Point Doubling in Elliptic Curves

2.3.3 Point Subtraction. Given the two unique points K =
(xK , yK) and J = (xJ , yJ), we have that J − K = J + (−K)
where −K = (xK ,−yK (mod p))

2.3.4 Point Multiplication. Consider that the scalar k is multi-
plied with P to result in point Q = kP on the elliptic curve. To
multiply the point P by the integer k, point addition and point dou-
bling are mainly. This method of integer multiplication is referred
as ‘double and add’ method. For instance, given k = 23, we have
kP = 23P = 2(2(2(2P ) + P ) + P ) + P . (Silverman, 1986)

2.4 Discrete Logarithm Problem
The ECC security depends on how difficult is the Elliptic Curve
Discrete Logarithm Problem. Given the points Q and P on an el-
liptic curve with scalar k so that kP = Q. With Q and P , it is still
infeasible computationally, to find k, provided k is large enough.
The scalar k is the discrete logarithm of Q to the base P (Vagle,
2000).

2.5 Elliptic Curve Diffie-Hellman (EC-DH) Analog
Elliptic Curve Diffie-Hellman protocol is a key agreement scheme
allowing party A and party B to construct shared secret keys which
are used for algorithms of private keys. The two parties do public
information exchange to one another. Employing the public infor-
mation and a private information, the two parties are able to gener-
ate a shared secret key. Third parties without an idea on the private
information of both parties can not calculate the secret shared key
from the public information available.

2.6 The Steps Involved in Elliptic Curve Cryptography
The processes of decryption and encryption in ECC can be catego-
rized into three main steps namely:
The encryption and decryption process can be grouped into three
main parts namely:

(1) Secret Key Generation

(2) Encryption

(3) Decryption

2.6.1 Secret Key Generation. The first step in elliptic curve
cryptographic process is the generation of a secret key to encrypt
messages before it is transfered to the intended recipient. The secret
key construction is done using the Elliptic Curve Diffie-Hellman
analog. ECDH is an improvement on the traditional Diffie-Hellman
key agreement algorithm based on elliptic curves. Diffie-Hellman
method generates secret shared keys between two parties in a
communication so that a third party cannot see the secret just
by observation of the communication. Hence the method of
Diffie-Hellman does not need a prior contact between both parties.
Each of the two parties generates dynamic private and public keys
for use. The public keys generated are exchanged between them.
Afterwards, each party uses its private key to combine with the
public key of the other party to generate the shared secret. The
steps involved in the generation of secret keys in elliptic curve
cryptography is illustrated in the following subsection.

In generating shared secret keys between two parties using the El-
liptic Curve Diffie-Hellman approach;

—Both parties must first agree on a publicly-known data items
(1) The values of elliptic curve equation and a prime, p
(2) The elliptic group obtained from the elliptic curve equation
(3) A base point, B, obtained from the elliptic group

—Each of the two parties generates their key pair (private or public)
(1) the private key is an integer, n, chosen from [1, p-1]
(2) the public key, Q is the product of base point and private key

(i.e., Q = xB)

—Each party then uses the public key, Q = xB generated to gen-
erate a secret key by multiplying Q by the selected secret integer
(i.e., xQ)

2.6.2 Encryption. The second step in the elliptic curve crypto-
graphic process after the generation of a shared secret key is en-
cryption. For party A to encrypt any message and send to party B,
a secret shared key, PS generated between the parties A and B is
used To obtain the encrypted message ME before sending to the
other party, the secret shared key, PS is added to the message such
that ME = PS + PM . Finally, a ciphered text CA = {PB , PS} of
the encrypted message ME is sent to the receiver for decryption.
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2.6.3 Decryption. The third step involved in ECC is decryption
where an encrypted message is decrypted. After the message is de-
livered to party B, the encrypted message is first decrypted to get
the original message. To decrypt the encrypted message from A,
party B has to subtract the shared secret key, PS from the encrypted
message ME such that PM = ME−PS , to obtain the original mes-
sage. Hence, it is a challenge for an adversary or third parties to
obtain the original message once he/she has only the ciphered text.
For instance, for third parties to be able to decrypt the ciphered text,
knowledge of the private key of the receiver is needed in order to
obtain the secret shared key. Which implies, the third party is to
compute the multiplier (i.e., solve the discrete logarithm problem)
provided he is given the public key of the receiver and the point P
on the elliptic curve.

3. SOFTWARE PACKAGES
3.1 The PyCryptodome Library
PyCryptodome toolkit is a self-contained Python package of low-
level cryptographic primitive. The PyCryptodome toolkits support
Python 2.6 or newer, and all versions of Python 3.
Unlike OpenSSL, PyCryptodome is not a wrapper to a separate
C library. The algorithms here are implemented in pure Python
to a largest extent possible. Just a part of the algorithm that are
extremely critical to performance (e.g. block ciphers) are imple-
mented as C extensions (Legrandin, 2018). It contains a built in
module for elliptic curve cryptography for private and public key
generation in cryptography. And uses the recommended NIST el-
liptic curves which is captured in section 3.1. All PyCryptodome is
organized into sub-packages which are designed to solve specific
class of problems.

The NIST Recommended Elliptic Curves
This is a group of recommended elliptic curves for use by the
Federal government and contains the choice for underlying field
and private key length. SHA-1 and the methods as described in
IEEE and ANS X9.62 Standard 1363-2000 standards were used to
generated the NIST curves. In 1999, a non-regulatory agency of
the United States Department of Commerce, and a physical sci-
ences laboratory, the National Institute of Standards and Technol-
ogy (NIST), made the Elliptic Curve Digital Signature Algorithm
a standard one in Federal Information Processing Standards (FIPS)
186-2, guidelines and specifications that apply to federal computer
systems. The 15 elliptic curves of varying security levels, called
NIST curves (Federal Informatin Processing Standards Publication,
2013) were recommended by NIST. Two kinds of these curves are:

—Pseudo-random curves: are elliptic curves with generated coef-
ficients from the seeded cryptographic hash function output. To
easily verify generated coefficients by this hash function, the do-
main parameter seed value mostly obtained alongside with these
coefficients.

—Special curves: which have their underlying field and coeffi-
cients specifically selected in order to make optimal the effi-
ciency of the operations of elliptic curves.

3.2 Elliptic Curve Integrated Encryption Scheme
The Elliptic Curve Integrated Encryption Scheme (ECIES) library
is a hybrid encryption system proposed by Victor Shoup in 2001
which combines secp256k1 and AES-256-GCM (powered by co-
incurve and pycryptodome) to provide an API of encrypting with

Table 1. Some NIST Recommended Standardized Elliptic Curves

secp256k1 public key and decrypting with secp256k1’s private
key. The ECIES uses secp256k1 to generate an elliptic and en-
crypts/decrypts by AES-256-GCM with the keys generated from
secp256k1. The secp256k1 is an Elliptic Curve Digital Signature
Algorithm (ECDSA) which is based on elliptic curve cryptography.
The secp256k1 is the curve

y2 = x3 + 7

over a finite field. It is defined in Standards for Efficient Cryptog-
raphy (SEC). Most commonly-used curves have a random struc-
ture, but secp256k1 was constructed in a special non-random way
which allows for especially efficient computation. As a result, it
is often more than 30% faster than other curves if the implementa-
tion is sufficiently optimized. Also, unlike the popular NIST curves,
secp256k1’s constants were selected in a predictable way, which
significantly reduces the possibility that the curve’s creator inserted
any sort of backdoor into the curve. The graph of the secp256k1 is
shown in figure 3

Fig. 3. The graph of secp256k1’s elliptic curve y2 = x3 +7 over the real
numbers

AES-256-GCM encryption is an encryption option for updated
installations and default encryption. The Galois/Counter mode
(GCM) of operation (AES-128-GCM), however, operates quite dif-
ferently. As the name suggests, GCM combines Galois field mul-
tiplication with the counter mode of operation for block ciphers.
ECIES has two steps:

—Use ECDH to calculate an AES session key.

—Use this AES session key to encrypt/decrypt the data under AES-
256-GCM.
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4. IMPLEMENTATION AND ANALYSIS OF
RESULTS

4.1 Key Generation with ECC in PyCryotodome
In this study, the PyCryptodome package among other packages
is used for analyzing the operations of elliptic curve cryptography
in generation of keys. The main package employed includes the
Crypto.Publickey modules to generate, export and/or import public
keys in ECC.

Figure 4 shows the python script for the generation of pub-
lic and private with elliptic curve cryptography using the
Crypto.PublicKey module in PyCryptodome.

Fig. 4. The Python script for Key Generation

4.2 First Run of Script
The script is then run on “5.8GB, Intel Pentium(R) CPU B940 @
2.00gHZ, Linux 64-bit OS, Intel Sandybridge Mobile Graphics”
using the terminal with the command: ”python ./ecckey.py”. The
output is shown in figure 5 which shows the used NIST curve, the
private and the private keys generated.

Fig. 5. Output of the first run of the Script.

4.2.1 First Run. The ’secp384r1’ in the code generates the rec-
ommended NIST elliptic curve, ’NIST P-384’ in the output. How-
ever, different curves can be chosen from the NIST recommended
curves by specifying the possible identifier in the code. The pa-
rameter d is a random integer (secret key) and (point x,point y) is
the base point on the elliptic curve, which is used to generate the
private key for encryption processes. The private key generated is
written to a Privacy-Enhanced Mail (PEM) file format for storing
and sending. The .pem file generated is shown in figure 6.

4.2.2 From the Second to the Fourth Run of the Script. The same
python script with the same curve type was run three more times
and the output are shown in figures 7, 8 and 9. In each of these
cases, the .pem file generated for the encryption/decryption shows
the same content as in figure 6 when it is opened.
From the output of the first run through to the fourth, it is observed
that, the generated public key (i.e., d and (point x, point y)) varies.

Fig. 6. The .pem private key file generated for encryption/decryption

Fig. 7. Output of the second run of the Script.

Fig. 8. Output of the third run of the Script.

Fig. 9. Output of the fourth run of the Script.

Thus with the elliptic curve cryptography, server public key is gen-
erated every time when the encryption/decryption process is initi-
ated, which is as a result of the random secret integer each party
generates.

4.3 Comparison to the Rivest-Shamir-Adleman (RSA)
Key Type

From the pycryptodome library, the rsa key was used to compare
its output to the ecc key. Rivest-Shamir-Adleman (RSA) is one of
the first public-key cryptosystems which is used widely to secure
transfer of data. In RSA the encryption key is public which is
availbale to whosoever wants to send a message to a recipient
while decryption is done with a secret key of the recipient. The
script for the key generation of private and public key with RSA
using the Crypto.PublicKey module is shown in figure 10.

For comparison purposes, the RSA script was run twice and the
output is shown in figures 11 and 12, which shows the private and
the private keys generated.

From the output of RSA script for key generation (figures 11 and
12), it is observed that the generated key with the RSA has many
characters when compared to the ECC keys which accounts for the
key size of RSA being larger than that of ECC.

5



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.10, April 2020

generate key EccKey(curve=’NIST P-384’, point_x=72495616789081766172
3357131866794591338341304391562459325035713277295457443923059699032332
2160278685408006506249063, point_y=16964775432959197489176107715892994
7377093704382621001073205579534098929055663479552586312589173233861348
54848582192, d=3670687046628640959227621834042592676826917416886772956
2816667613506005537925629872377791280975741993062788839277105)

Fig. 10. RSA Key generation Script.

Fig. 11. Output of the first run of RSA Script.

4.4 Encryption/Decryption Process using ECIES
Figure 13 below shows the script for encryption/decryption us-
ing the ECIES library. The main module employed here is the
Crypto.Ciper for encryption and decryption.

The corresponding output for the first and second run of the above
script in figure 13 are shown in figures 14 and 15.

From the output of the first and second run, it is observed that the
encryption keys with their corresponding encrypted messages are
different with different characteristics in both cases.

Fig. 12. Output of the second run of RSA Script.

Fig. 13. Encryption/Decryption Script with ECIES.

4.5 Comparison to RSA Encryption
Figure 16 shows the script for encryption/decryption using
the ECIES library. The main module employed here is the
Crypto.Ciper from which PKCS1 OAEP is imported for the en-
cryption.
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Fig. 14. First Output of Encryption/Decryption Script with ECIES.

Fig. 15. Second Output of Encryption/Decryption Script with ECIES.

Fig. 16. Encryption/Decryption Script with RSA.

The output for the first and second run of the RSA encryption script
(figure 16) are shown in figures 17 and 18

Fig. 17. First Output of Encryption/Decryption Script with RSA.

The output of the RSA encryption/decryption scheme shows a dif-
ferent characteristic of the encrypted data from that of ECC. Better
still, it is observed that the number of characters for the encrypted
data in RSA is more than that of ECC, which in effect makes RSA
having larger key sizes than ECC.

Fig. 18. Second Output of Encryption/Decryption Script with RSA.

5. CONCLUSION
The wireless sensor network system consists of spatially dispersed
sensors usually dedicated to monitor and also record the physical
conditions of the environment and also to organize the data
collected at a central location. The security of the network system
becomes a concern in the transmission of environmental data
from one sensor node to another. Hence for safe transmission of
data, good and highly secured keys must be generated to encrypt
and decrypt information in order to protect the network system
from third parties or attacks. In this study, the elliptic curve
cryptography (ECC), a public key cryptography (PKC) based
upon elliptic curves is studied and analyzed for its potential in
encryption and decryption in wireless network systems using
elliptic curve analogs.

From this study, it is observe from the output of the elliptic curve
cryptographic key generation code that, for each attempt to send or
transfer an information from a sender to a receiver, a new private
key is generated. This is as a result of the random private key
(integer) which is chosen to generate the shared private key for
the two parties. The variant shared private key generated for each
communication in the elliptic curve cryptography makes the net-
work protocol less predictive by attackers during communication.

On the account of security, the encryption results in both Run 1 (19
and 20) and Run2 is considered. In both cases, it is observed that
the encrypted message has different characteristics (see figures 19
and 20, Encrypted).

Fig. 19. First Output of Encryption/Decryption Script with ECIES.

In such conditions, finding a secret key by a third party to decrypt
the encrypted message in the second run using the characteristics
of the first encrypted message is almost highly impossible. Hence
there is a high level of security for elliptic curve cryptography base
network protocols, for a third party to intrude.

On the account of key size, the elliptic curve cryptography (ECC)
certificate allows key size to remain small while providing a higher
level of security. ECC key size in comparison to RSA key is shown
in table 5.
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Fig. 20. Second Output of Encryption/Decryption Script with ECIES.

Table 2. Comparison of ECC and RSA (Source: www.ssl2buy.com)
Minimum size (bits) of Public Keys Key Size Ratio
RSA ECC ECC to RSA Valid
1024 160-223 1:6 Until 2010
2048 224-255 1:9 Until 2030
3072 256-383 1:12 Beyond 2031
7680 384-511 1:20
15360 512+ 1:30

This is evident from figure the output of the run of both the RSA
and ECC key scripts as shown in figures 11 and 5. It was observed
that the RSA key has much more characters in comparison to the
ECC key which contributes to the ECC having much more smaller
key size in comparison to the RSA key. The smaller ECC key size
makes possible much more compact implementations for a given
level of security. This in essence results in faster cryptographic op-
erations, making it more feasible to run on smaller chips or for
achieving more compact software. The short key size also allows
for less computational power and fast and secure connection for
wireless sensor networks which transmits data with very small sen-
sor nodes.

6. RECOMMENDATION
For a secured wireless sensor network system, the elliptic curve
cryptography is recommended.
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