Weak Domination in LICT Graphs

M. H. Muddebihal Professor
Department of Mathematics, Gulbarga University, Kalaburagi-585106,
Karnataka, India

Geetadevi Baburao
Research Scholar
Department of Mathematics, Gulbarga University, Kalaburagi-585106, Karnataka, India

Abstract

The lict graph $n(G)$ of a graph G is the graph whose set of vertices is the union of set of edges and the set of cut vertices of G in which two vertices are adjacent if and only if the corresponding edges are adjacent or the corresponding members of G are incident.In this paper, we initiate the study of variation of standard domination, namely weak lict domination. A weak dominating set D is a weak dominating set of $n(G)$, if for every vertex $y \in V[n(G)]-D$ there is a vertex $x \in D$ with $\operatorname{deg}(x) \leq \operatorname{deg}(y)$ and y is adjacent to x. A weak domination number of $n(\mathrm{G})$ is denoted by $\gamma_{\mathrm{wn}}(\mathrm{G})$, is the smallest cardinality of a weak dominating set of $n(\mathrm{G})$. We determine best possible upper and lower bounds for $\gamma_{\mathrm{wn}}(\mathrm{G})$, in terms of elements of G.

Keywords

Domination, Double domination, restrained domination, weak domination, weak lict domination.
Subject classification number: AMS-05C69, 05C70.

1. INTRODUCTION

In this note, we will use the notation and terminology in [1].Let $G=(V, E)$ be a simple graph with $|V|=p$ and $|E|=q$. The degree, neighborhood and closed neighborhood of a vertex v in a graph G are denoted as $\operatorname{deg}(v), N(v)$ and $N[v]=N(v) \cup v$ respectively. We use $\Delta(G)\left[\Delta^{\prime}(G)\right]$ denotes the maximum degree of a vertex (edge)in G and $\delta(G) \delta^{\prime}(G)$ denotes the minimum degree of a vertex (edge) in G. The notation $\alpha_{0}(G)\left[\alpha_{1}(G)\right]$ is the minimum number of vertices (edges) in a vertex (edge) covers of G. The notation $\beta_{0}(G)\left[\left(\beta_{1}\right)\right]$ is the minimum number of vertices (edges) in a maximal independent set of a vertex (edge) of G.

We say a set S is a dominating set of G, if for every vertex $u \in V-S$, there exists a vertex $v \in S$ such that $u v \in E$. The domination number of G, denoted by $\gamma(G)$ is the minimum cardinality of a dominating set of G. For compressive work on the subject has been done in [3],[4].A dominating set S of G is called a connected dominating set of G, if the induced subgraph $\langle S\rangle$ is connected. The minimum cardinality taken over all the minimal connected domination number and is denoted by $\gamma_{c}(G)$. A dominating set $S \subseteq V(G)$ is called the total dominating set, if for every vertex $v \in V$, there exist a vertex $u \in S, u \neq v$ such that u is adjacent to v. The total domination number of G is denoted by $\gamma_{t}(G)$ is the minimum cardinality of total dominating set of G.A set S of vertices in a graph G is an independent dominating set of G, if S is an independent set and every vertex not in S is adjacent to a vertex in S. The smallest cardinality of an independent dominating set is called an independent domination number of G and is denoted by $i(G)$.A dominating set D of a graph G is
a split dominating set if the induced subgraph $\langle V-D\rangle$ is disconnected. The split domination number $\gamma_{s}(G)$ is the least cardinality of a split dominating set of G.

In [5], the strong slit domination was given as follows. A set $S \subseteq G$ is called the strong slit dominating set of G, if $\langle V-S\rangle$ is totally disconnected with at least two isolated vertices. The strong slit domination number $\gamma_{s s}(\mathrm{G})$ is the lowest level cardinality of minimal strong split dominating set of G.

A dominating set D of a graph $G=(V, E)$ is a cotatal dominating set if, every vertex $v \in V-D$ is not an isolated vertex in the induced subgraph $\langle V-D\rangle$. The cototal domination number $\gamma_{c o t}(G)$ of G is the smallest cardinality of a cototal dominating set of G.A set $S \subseteq V(G)$ is a Restrained dominating set of G, if every vertex in $V-S$ is adjacent to a vertex in S as well as another vertex in $V-S$. The Restrained domination number of a graph G is denoted by $\gamma_{\text {Res }}(G)$ is the least cardinality of a Restrained dominating set of G.Given two adjacent vertices u and v of G. We say v weakly dominates u, if $\operatorname{deg}(v) \leq \operatorname{deg}(u)$. A set $S \subseteq V(G)$ is a weakly dominating set, if every vertex in $\langle V-S\rangle$ is weakly dominated by at least one vertex in S. Weak domination number $\gamma_{w}(G)$ is the minimum cardinality of a weak dominating set of G.

In [7], the author showed that a weak dominating set S is a weak dominating set of $L(G)$, if for every vertex $u \in$ $V[L(G)]-S$ there is a vertex $v \in S$ with $\operatorname{deg}(v) \leq \operatorname{deg}(u)$ and u is adjacent to v. A weak line domination number $\gamma_{w l}(G)$ is the least cardinality of a weak line dominating set S of $L(G)$.

In [6], the author has defined that the lict graph $n(G)$ of a graph G is the graph whose set of vertices is the union of set of edges and the set of cutvertices of G in which two vertices are adjacent if and only if the corresponding edges are adjacent or corresponding members of G are incident

In [8], Sampathkumar and Pushpa Latha have shown weak and strong domination number.

In this paper, we study the theoretic properties of $\gamma_{w n}(G)$ and many bounds are obtained in terms of elements of G and its relationship with other domination parameter were found.
In section 2 we determine this parameter for some standard graphs. We obtained best possible upper and lower bound for $\gamma_{w n}(G)$.

2. RESULTS

First we list out the exact values of $\gamma_{w n}(G)$ for some standard graphs.

Theorem 2.1: i]. For any path P_{n} with $n \geq 3$ vertices
$\gamma_{w n}(G)=P-2$.
ii].For any star $K_{1, n}$ with $n \geq 2$ vertices

$$
\gamma_{w n}\left[K_{1, n}\right]=\gamma(G)=\gamma_{n}(G)=\gamma_{s}(G)=\gamma_{w}(G)=\gamma_{w l}=1 .
$$

iii]. For any cycle C_{p} with $\mathrm{p} \geq 3$ vertices.

$$
\gamma_{w n}\left(C_{p}\right)=\left\{\begin{array}{c}
\frac{p}{3} \text { if } p \equiv O(\bmod 3) \\
\left\lceil\frac{p}{3}\right\rceil \text { otherwise } .
\end{array}\right.
$$

iv]. For any wheel W_{p} with $p \geq 4$ vertices.

$$
\gamma_{w n}\left(W_{p}\right)=\left\{\begin{array}{l}
\frac{p}{2} \text { if } p \text { is even } \\
\left\lfloor\frac{p}{2}\right\rfloor \text { if } p \text { is odd }
\end{array}\right.
$$

v]. For any complete graph K_{p} with $p \geq 3$ vertices.

$$
\gamma_{w n}\left(K_{p}\right)=\left\{\begin{array}{c}
\frac{p}{3} \text { if } p \equiv 0(\bmod 3) \\
\left\lceil\frac{p}{3}\right] \text { Otherwise } .
\end{array}\right.
$$

vi]. For any star $K_{1, p}$ with $p \geq 2$ vertics $\gamma_{w n}\left(K_{1, p}\right)=\alpha_{0}$.

Upper bounds for $\boldsymbol{\gamma}_{\boldsymbol{w n}}(\boldsymbol{G})$.

We obtained an upper bound for $\gamma_{w n}(G)$ in terms of $\beta_{1}(G)$ and weak line domination $\gamma_{w l}(G)$.

Theorem 2.2: For any graph $G, \gamma_{w n}(G) \leq \gamma_{w l}(G)+\beta_{1}+$ 1.

Proof: Let $B=\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{m}\right\} \subseteq E(G)$ with $N\left(e_{i}\right) \cap$ $N\left(e_{j}\right)=e$ for every $e_{i}, e_{j} \in B, \quad 1 \leq i \leq m, \quad 1 \leq j \leq m$ and $e \in E(G)-B$. Clearly B forms a maximal independent edge set in G. Let $A=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \subseteq V[L(G)]$ be the set of vertices with $\operatorname{deg}\left(u_{i}\right) \geq 1,1 \leq i \leq n$. Such that $N[A]=$ $V[L(G)]$. Hence A forms a $\gamma-$ set of $L(G)$.
Suppose there exists a set $A_{1} \subseteq V[L(G)]-A$ such that $\forall u_{i} \in A_{1}, \operatorname{deg}\left(u_{i}\right) \geq \operatorname{deg}\left(u_{k}\right), \forall u_{k} \in A$. Then $A \cup A_{1}$ forms a minimal weak dominating set of $L(G)$.Suppose $S=\left\{u_{1} u_{2} u_{3}, \ldots, u_{n}\right\} \subseteq V[n(G)]$ and $\operatorname{deg}\left(u_{m}\right) \geq \operatorname{deg}\left(u_{n}\right)$, $\forall u_{m} \in V[n(G)]-S$ and $\forall u_{n} \in S$ such that $N[S]=V[n(G)]$. Then S forms a dominating set of $n(G)$.Suppose there exists a set $S_{1} \subseteq V[n(G)]-S$ such that $u_{i} \in S \operatorname{deg}\left(u_{i}\right) \geq \operatorname{deg}\left(u_{k}\right)$, $\forall u_{k} \in S_{1}$. Then $S \cup S_{1}$ forms a minimal weak dominating set of $n(G)$. Hence it gives $\left|S \cup S_{1}\right| \leq\left|A \cup A_{1}\right|+|B|+1$. Clearly $\gamma_{w n}(G) \leq \gamma_{w l}(G)+\beta_{1}+1$.
A Roman domination function of a graph $G=(V, E)$ is a fuction $f: V \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of a Roman dominating function in G is the value of $f(v)=\sum_{u \in v} f(u)$.The Roman domination number of G is denoted by $\gamma_{R}(G)$, equals the smallest weight of a Roman dominating function on G. Farther we relates our concept to $\gamma_{R}(G)$ and $\alpha_{1}(G)$.

Theorem 2.3: For any connected (p, q) graph G, with ($p \geq$ 2), then $\gamma_{w n}(G) \leq \alpha_{1}(G)+\gamma_{R}(G)+1$.

Proof: Let $f: V_{i} \rightarrow\{0,1,2\} ; i=0,1,2$ be a Roman domination function of D^{\prime} where D^{\prime} is a Roman dominating set of G. Let $A=\left\{e_{j}\right\}, j=1,2, \ldots, m$ be the minimal edge caver of G, so that $|A|=\alpha_{1}(G)$. Now in $n(G)$, let $B=$
$\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\} \subseteq V[n(G)]$ be the minimal set of vertices where $N[B]=V[n(G)]$. Then B is a dominating set of $n(G)$. Suppose $\forall v_{i} \in V[n(G)]-B, \quad \operatorname{deg}\left(v_{i}\right) \leq$ $\operatorname{deg}\left(v_{k}\right)$ where $\forall v_{k} \in B$. Then $B \cup\left\{v_{i}\right\}$ forms a minimal weak lict γ-set of G. Thus $\left|B \cup\left\{v_{i}\right\}\right| \leq|A|+\left|D^{\prime}\right|+1$ gives $\gamma_{w n}(G) \leq \alpha_{1}(G)+\gamma_{R}(G)+1$.

Theorem 2.4: For any nontrivial tree $T, \gamma_{w n}(T) \leq i(T)+$ $\gamma_{\text {Res }}(T)+1$.

Proof: Suppose $D=\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\} \subseteq V(T)$ be the set of vertices such that $N[D]=V(T)$. Then D is a minimal $\gamma-$ set of T.If $\langle D\rangle$ is a set of isolates, then D itself is an independent dominating set of T. Otherwise, if there exists an edge e in D then $D-\{e\}$ forms an independent dominating set of T. Since D is dominating set of T. If the set of vertices in $V-D$ is adjacent to at least one vertex of D and at least one vertex of $V-D$, then D itself is a $\gamma_{\text {Res }}-$ set of T.In lict graph $n(T)$, let $M=\left\{v_{1}, v_{2}, \ldots \ldots, v_{n}\right\} \subseteq V[n(T)]$ be the set of minimum degree vertices such that $N[M]=$ $V[n(T)]$.Then M forms a minimal $\quad \gamma_{w n}-s e t$ of T. Hence $|M| \leq|D-\{e\}|+|D|, \quad$ gives $\gamma_{w n}(T) \leq i(T)+\gamma_{\text {Res }}(T)+1$.

Lower Bounds for $\boldsymbol{\gamma}_{\boldsymbol{w n}}(G)$:

Here we have found lower bounds for $\gamma_{w n}(G)$ in terms of elements of G and other domination parameters of G.
Theorem 2.5: For any connected (p, q) graph G, $\gamma_{w n}(G) \geq \gamma(G)$.

Proof: Since the $V[n(G)]=E(G) \cup C(G), \mathrm{C}(\mathrm{G})$ a cutvertex set of G.Now we deal with two cases.

Case1: Suppose G is a nontrival tree. Then one can see that $\gamma_{w n}(G) \geq \gamma(G)$.

Case2: Suppose G is not a tree. Then again it is true that $\gamma_{w n}(G) \geq \gamma(G)$.

Theorem 2.6: For any $\operatorname{connected}(p, q) \operatorname{graph} G, \gamma_{w n}(G) \geq$ $\operatorname{diam}(G)-1$.

Proof: Let $D=\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{m}\right\} \subseteq E(G)$ be the set of edges which constitute the diametral path in G. Then $|D|=$ $\operatorname{diam}(G)$. Farther consider $E=\left\{e_{1}, e_{2}, e_{3}, \ldots \ldots, e_{m}\right\} \quad ;$ $C=\left\{c_{1}, c_{2}, \ldots \ldots, c_{n}\right\}$ be the set edges and cutvertices in G. Then $V[n(G)]=E(G) \cup C(G)$. Let $S=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right\}$ be the minimum degree vertices in $n(G)$, which covers all the vertices in $n(G)$ such that $N[S]=V[n(G)]$. Thus S forms a minimal weak dominating set of $n(G)$. It follows that $|S| \geq$ $|D|-1$. Hence $\gamma_{w n}(G) \geq \operatorname{diam}(G)-1$.
In [2],the author has defined the double domination. A dominating set $D \subseteq V(G)$ is said to be double dominating set of G, if every vertex of V is dominated by at least two verities in D. The double domination number $\gamma_{d d}(G)$ of G is the least cardinality of a double dominating set of G.

Theorem 2.7: For any connected (p, q) graph G, then $\gamma_{w n}(G) \geq\left\lfloor\frac{\gamma_{d d}(G)}{\Delta(G)}\right\rfloor$.

Proof: Suppose $A=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{j}\right\} \subseteq V(G)$ be the set vertices with $\operatorname{deg}\left(v_{i}\right) \geq 2,1 \leq i \leq j$ such that $N[A]=V(G)$. Hence A forms a minimal dominating set of G. A set $A \subseteq$ $V(G)$ is a double dominating set, if for every vertex $v \in$ $V(G), A^{\prime}=|N[v] \cap A| \geq 2$. Now we consider the lict graph
$n(G)$ of a graph G. Such that $S=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right\} \subseteq$ $V[n(G)]$ be the set of vertices with $\operatorname{deg} v_{l} \geq 2 ; 1 \leq l \leq k$ and if $N[S]=V[n(G)]$. Then S forms a $\gamma-$ set of $n(G)$.Suppose there exists a set $S_{1} \subseteq V[n(G)]-S$ such that $\forall v_{i} \in S_{1}$, $\operatorname{deg}\left(v_{i}\right) \leq \operatorname{deg}\left(v_{j}\right), \quad \forall v_{j} \in S$. Then $S \cup S_{1}$ forms a minimal weak dominating set of $n(G)$. Suppose there exists at least one vertex $v \in A$ of maximum degree such that $\operatorname{deg}(v)=\Delta(G)$.Hence $\quad\left|S \cup S_{1}\right| \cdot \Delta(G) \geq|A|$. Clearly, it follows that $\gamma_{w n}(G) \geq\left\lfloor\frac{\gamma_{d d}(G)}{\Delta(G)}\right\rfloor$.

Theorem 2.8: For any tree T with K number of cut vertices then $\gamma_{w n}(T) \geq K$.

Proof: Let $B=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{n}\right\}$ be the set of all cutvertices in tree T, with $|B|=K$. Further let $J=\left\{e_{1}, e_{2}, e_{3}, \ldots, e_{i}\right\}$ be the set of all end edges in T, also $J^{\prime}=\left\{e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}, \ldots, e_{i}^{\prime}\right\}$ be the set of all nonend edges in T. Then in lict graph $n(T), V[n(T)]=J \cup J^{\prime} \cup B$. Suppose $D \subseteq V[n(T)]$ and $N[D]=V[n(T)] \quad$ and $\operatorname{deg}\left(v_{i}\right)<\operatorname{deg}\left(v_{j}\right) \quad$ where $\quad v_{i} \in$ $V[n(T)]-D$ and $v_{j} \in D$. Since $v_{i} \in D_{1}=V[n(T)]-D$, then $\left|D \cup D_{1}\right| \geq|K|$ which gives $\gamma_{w n}(T) \geq K$.

Theorem 2.9: For any non trivial tree T, vertices and l end vertices and S the number of support vertices, then $\gamma_{w n}(T) \geq$ $\left\lceil\frac{q-2-l+s}{3}\right\rceil$.

Proof: Let $I=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{m}\right\} \subseteq V(T)$ be the set of all end vertices in T with $|I|=l$ and let $J=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{n}\right\}$ be the support vertices in T with $|J|=S$. In lict graph $n(T), D=$ $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\}=V[n(T)] . \quad$ Suppose $\quad D_{1} \subseteq D, \quad \forall v_{j} \in D_{1}$, $\operatorname{deg}\left(v_{j}\right) \geq 2$ and $D_{2} \subseteq D$ be the set of minimum degree vertices which are adjacent to a cutvertex of $n(T)$, since each block of $n(T)$ is complete and covers all the vertices of $n(T)$. Then $\left\{D_{1} \cup D_{2}\right\}$ is a minimal weak dominating set of $n(T)$.Thus
$3\left|D_{1} \cup D_{2}\right| \geq|E(T)|-2-|I|+|J|$, gives $\gamma_{w n}(T) \geq$ $\left\lceil\frac{q-2-l+s}{3}\right\rceil$.

A dominating set $S \subseteq V(G)$ is a strong nonsplit dominating set, if the induced subgraph $\langle V-S\rangle$ is complete. The strong nonsplit domination number $\gamma_{\text {sns }}(G)$ of G is minimum cardinality of a strong nonsplit dominating set of G.

Theorem 2.10: For any connected (p, q) graph G, with $p \geq 2$ then $\gamma_{w n}(G) \geq\left\lfloor\frac{\gamma_{\text {sns }}(G)+2}{3}\right\rfloor$ and $G \neq K_{1, n}(n \geq 4)$.
Proof: Suppose $G=K_{1, n}, n \geq 4, \gamma_{w n}(G)=1<\left|\frac{n+2}{3}\right|$, a contradiction to the fact.

Lat $D=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\}$ be the vertex set of G. Suppose $D_{1}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{m}\right\} \subseteq D$ and if $N\left[D_{1}\right]=V(G)$. Then D_{1} is a minimal dominating set of G. If the induced subgraph $\left.<V-D_{1}\right\rangle$ is complete, then D_{1} itself is a $\gamma_{s n s}-$ set of G.Since the $V[n(G)]=E(G) \cup C(G), \mathrm{C}(\mathrm{G})$ a cutvertex set of G. Suppose $F=\left\{v_{1}, v_{2}, \ldots \ldots, v_{k}\right\} \subseteq V[n(G)]$ if $N[F]=V[n(G)] \quad$ and $\quad|\operatorname{deg}(x)-\operatorname{deg}(y)| \geq 2, \forall x \in$ $V[n(G)]-F, \forall y \in F$. Then F forms a weak dominating set of $n(G)$. Otherewise there exists at least one vertex $\{w\} \subseteq$ F such that $F \cup\{w\}$ forms a minimal $\gamma_{w n}-$ set. Thus $3|F| \geq\left|D_{1}\right|+2$. Hence $\gamma_{w n}(G) \geq\left\lfloor\frac{\gamma_{\text {sns }}(G)+2}{3}\right\rfloor$.
Theorem 11: For any connected (p, q) graph G, then $\gamma_{w n}(G)+\alpha_{0}(G) \geq \gamma(G)+\gamma_{s s}(G)$.

Proof: Let $M=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\} \subseteq V(G)$ and $\forall e_{i} \in$ $E(G)$ is incident to at least one vertex of M. Then $|M|=\alpha_{0}$. Let $M_{1} \subseteq M$ Such that $N\left[M_{1}\right]=V(G)$ then M_{1} is a minimal dominating set of G and $M_{2} \subseteq V(G)-M_{1}$. Suppose $M_{2}^{\prime} \subseteq M_{2}$ and $H=\left[V(G)-\left(M_{1} \cup M_{2}^{\prime}\right)\right]$ where $N\left[M_{1} \cup M_{2}^{\prime}\right]=V(G)$ and $\langle H\rangle$ is totally disconnected. Clearly $M_{1} \cup M_{2}^{\prime}=\gamma_{s s}$ set of G. Now in $n(G)$, let $R=\left\{u_{1} u_{2}, \ldots \ldots \ldots, u_{n}\right\} \subseteq$ $V[n(G)]$ be the minimal set of vertices where $N[R]=$ $V[n(G)]$. Then R is a dominating set of $n(G)$. Suppose $\forall v_{i} \in R_{1}=V[n(G)]-R, \operatorname{deg}\left(v_{i}\right) \leq \operatorname{deg}\left(v_{k}\right) \quad$ where $\forall v_{k} \in R$, then $\left\{R \cup R_{1}\right\}$ forms a minimal weak dominating set of $n(G)$. Clearly $\left|R \cup R_{1}\right|+|M| \geq\left|M_{1}\right|+\left|M_{1} \cup M_{2}^{\prime}\right|$, gives $\gamma_{w n}(G)+\alpha_{0}(G) \geq \gamma(G)+\gamma_{s s}(G)$.
Next, we give a bound of $\gamma_{w n}(G)$ of G with minimum edge degree δ^{\prime} and $\gamma_{w}(G)$.

Theorem 2.12: If G is a (p, q) connected graph then $\gamma_{w n}(G) \geq\left\lfloor\frac{\gamma_{w}(G)+\delta^{\prime}(G)}{3}\right\rfloor-1$ and $G \neq K_{1, n}(n>5)$

Proof: \quad Suppose $\quad G=K_{1, n} n>5, \gamma_{w n}(G)=1<$ $\left\lfloor\frac{\gamma_{w}(G)+\delta^{\prime}(G)}{3}\right\rfloor-1$, a contradiction to the fact.
Let $S \subseteq V(G)$ where $\forall v_{i} \in S$ is adjacent to at least one vertex of $V(G)-S$. Then S is a dominating set of G. Suppose there exists a set $H \subseteq V(G)-S$ such that $\forall v_{j} \in H, \operatorname{deg}\left(v_{j}\right) \leq$ $\operatorname{deg}\left(v_{k}\right), \forall v_{k} \in S$. Then $S \cup H$ forms a minimal $\gamma_{w}-s e t$ of G.In $\quad n(G), V[n(G)]=[E(G) \cup C(G)]$. Let $D=\left\{u_{1}, u_{2}, \ldots \ldots, u_{n}\right\} \subseteq V[n(G)]$ be the set of vertices in $n(G)$.Suppose $D^{\prime} \subseteq D$ be the set of vertices with $\operatorname{deg}(w) \geq$ $3, \forall w \in D^{\prime}$ such that $N[D]=V[n(G)]$. If $\forall v_{i} \in V[n(G)]-D^{\prime}$ with $\operatorname{deg}\left(v_{i}\right)<$
3. Then $\left\{D^{\prime}\right\} \cup\left\{v_{i}\right\}$ forms a $\gamma_{w n}-$ set of G.Sience for any graph G there exists at least one edge e with \mid dege $\mid=\delta^{\prime}(G)$. Hence $\quad 3\left|D^{\prime} \cup\left\{v_{i}\right\}\right|+1 \geq|S \cup H|+\mid$ dege \mid. Therefore $\gamma_{w n}(G) \geq\left[\frac{\gamma_{w n}(G)+\delta^{\prime}(G)}{3}\right\rfloor-1$.
The minimum number of color in any coloring of a graph G such that no two adjacent vertices have same color is called the chromatic number of G and is denoted by $\chi(G)$.
Theorem 2.13: If T is a tree, with $p \geq 2$, then $\gamma_{w n}(T) \geq$ $\gamma_{s}(T)+\chi(T)-2$.

Proof: Let $B_{1}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{k}\right\} \subseteq V(T)$ be the set of all nonend vertices in T. Such that $N\left[B_{1}\right]=V(T)$ then B_{1} forms a $\gamma-$ set of T. Suppose the induced subgraph $\left\langle V-B_{1}\right\rangle$ is have more than one component then B_{1} itself is a split dominating set of T. In $n(T)$, let $A=\left\{v_{1}, v_{2}, \ldots \ldots, v_{m}\right\} \subseteq$ $V[n(T)]$ be the $\gamma_{w n}-$ set. For any tree, $\chi(T)=2$ and $\gamma_{w n}(T) \geq \gamma_{s}(T)+2-2$. Therefore $|A| \geq\left|B_{1}\right|+\chi(T)-2$, gives $\gamma_{w n}(T) \geq \gamma_{s}(T)+\chi(T)-2$.
A set $F \subset E(G)$ is called an edge dominating set of G, if every edge not in F is adjacent to at least one edge in F. The minimum cardinality taken over all the edge dominating set of G, denoted as $\gamma^{\prime}(G)$ is called an edge domination number of G.

Theorem 2.14: For any connected (p, q) graph G, with $p \geq$ 2, then $\gamma_{w n}(G)+\Delta^{\prime}(G) \geq \gamma^{\prime}(G)+\left\lfloor\frac{\beta_{0}}{2}\right\rfloor-1$.
Proof: Let $E=\left\{e_{1}, e_{2}, \ldots \ldots \ldots, e_{k}\right\}$ be the edge set of G. Then $E_{n} \subseteq E$ such that $N\left[E_{n}\right]=E(G)$, then E_{n} is an edge dominating set of G. Suppose $e \in E_{n}$ is an edge have maximum degree in G such that $\operatorname{deg}(e)=\Delta^{\prime}(G)$. Let $A=$
$\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\} \subseteq V(G)$ be a maximal independent vertex set of G such that $N\left(v_{i}\right) \cap N\left(v_{j}\right)=u, 1 \leq i \leq n$ and $1 \leq j \leq n$. Also $u \in V(G)-A$. Hence $|A|=\beta_{0}(G$.). In lict graph $n(G)$, let $L=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\} \subseteq V[n(G)]$ such that $N[L]=V[n(G)]$ and if $\forall v_{l} \in L$ has degree at least 2 and $v_{k} \in V[n(G)]-L$ and $\operatorname{deg}\left(v_{k}\right) \leq \operatorname{deg}\left(v_{l}\right)$. Then $L \cup\left\{v_{l}\right\}$ forms $\quad \gamma_{w n}-$ set. Hence $\left|L \cup\left\{v_{l}\right\}\right|+|\operatorname{deg}(e)| \geq\left|E_{n}\right|+$ $\left\lfloor\frac{A}{2}\right\rfloor-1$, gives $\gamma_{w n}(G)+\Delta^{\prime}(G) \geq \gamma^{\prime}(G)+\left\lfloor\frac{\beta_{0}}{2}\right\rfloor-1$.

Theorem 2.15: For any connected (p, q) graph G,then $\gamma_{w n}(G) \geq\left\lfloor\frac{\gamma_{t}(G)+\gamma_{c}(G)}{2}\right\rfloor$ and $G \neq C_{p}(p \geq 5)$.
Proof: Let H be a dominating set of G.If the induced subgraph $\langle H\rangle$ has exactly one component then H itself is a connected dominating set of G.Otherwise, if H has more than one component then attach the minimum number of vertices $\left\{v_{i}\right\} \in V(G)-H, \forall v_{i}, \operatorname{deg}\left(v_{i}\right) \geq 2$, so that $S=H \cup$ $\left\{v_{i}\right\}$ forms exactly one component. Clearly $S=\gamma_{c}$-set of G. Let $V_{1}=V(G)-H$ and if $J \subseteq V_{1}$ be the minimum set of vertices which are adjacent to at least one vertex of H.Then $<H \cup J>$ is a $\gamma_{t}-$ set of G.Suppose R be the vertex set of lict graph $n(G)$. Let $R_{1} \subseteq R$ be the set of vertices with minimum degree and $N\left[R_{1}\right]=V[n(G)]$.Then $\quad R_{1}$ is a minimal $\gamma_{w n}$ - set. Hence $2\left|R_{1}\right| \geq|H \cup J| \cup|S|$, resulting in $\gamma_{w n}(G) \geq\left\lfloor\frac{\gamma_{t}(G)+\gamma_{c}(G)}{2}\right\rfloor$.
One can easily check for $C_{p} p \geq 5$, which gives a contradiction.
Theorem 2.16: Let T be a tree which is not a star, then $\gamma_{w n}(T) \geq \frac{\gamma_{\cot }(T)}{\gamma_{\text {Res }}(T)}+\delta$.

Proof: Suppose $T=K_{1, n}$. Then $\gamma_{w n}(T)=1<\left|\frac{\gamma_{c o t}(T)}{\gamma_{\text {Res }}(T)}+\delta\right|$. Hence $T \neq K_{1, n}$. Let S be a minimal dominating set of T. Suppose the subgraph $\langle V-S\rangle$ has no isolate then S itself is a $\gamma_{c o t}-$ set of T. Otherwise there exist a set $R \subseteq V(T)-S$
with $\operatorname{deg}\left(v_{j}\right)=0, \forall v_{j} \in R$. Add $\left\{v_{j}\right\} \subseteq V(T)-S$ to $\{R\}$, so that $S \cup R$ forms a $\gamma_{c o t}-$ set.Suppose $V_{1}=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{n}\right\}$ be the set of end vertices in T.Now $\forall v_{i} \in V(T)-\left\{S \cup V_{1}\right\}$ is adjacent to at least one vertex of $S \cup V_{1}$ and at least one vertex of $V(T)-\left\{S \cup V_{1}\right\}$. Then $\left\{S \cup V_{1}\right\} \quad$ is a $\quad \gamma_{\text {Res }}-s e t$ of T. Suppose $D=\left\{v_{1}, v_{2}, \ldots \ldots \ldots, v_{m}\right\} \subseteq V[n(T)]$ and $\operatorname{deg}\left(v_{m}\right) \leq \operatorname{deg}\left(v_{k}\right)$, $\forall v_{k} \in V[n(T)]-D \quad$ and $\forall v_{m} \in D$ such that $N\left[v_{m}\right]=$ $V[n(T)]$. Then D forms a $\gamma_{w n}-$ set of T. Clearly $|D| . \mid S \cup$ $V_{1}\left|-\delta \geq|S \cup R|\right.$ resulting into $\gamma_{w n}(T) \geq \frac{\gamma_{c o t}(T)}{\gamma_{\text {Res }}(T)}+\delta$.

3. REFERENCES

[1] F. Harary, Graph Theory, Addison-Wesley, Reading Mass, 1974.
[2] F. Harary and T. W. Haynes, Double domination in graphs, Ars combin, Vol-55, 2000, 201-213
[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graph, Marcell Dekker, INC-1998.
[4] T. W. Haynes, S. T. Hedetniemi, P. J. Slater (Eds), Domination in graph: Advanced Topics, Marcel Dekker, INC, New York, 1998.
[5] V.R. Kulli, Theory of domination in Graphs, Viswa international publications, 2010.
[6] V R. Kulli and M. H. Muddebihal Lict and Litact graph of a graphs, journal of analysis and computation, Vol-2, 2006, 133-143.
[7] M. H. Muddebihal and Geetadevi Baburao, weak line domination in graph theory, IJRAR Vol-6, 2019, 129133.
[8] E. Sampathkumar and Puspa Latha, strong weak domination number and domination balance in graph, Discrete Math, Vol-161, 1996, 235-242.

