
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.12, April 2020

Graph Isomorphism Algorithm using Pieces Patching
Puzzle Technique (ppp − Technique)

Mohammad Alhashmi
Department of Computer and Information Systems

College of Business
PAAET Kuwait

Abdulaziz Alroomi
Department of Computer and Information Systems

College of Business
PAAET Kuwait

ABSTRACT
This paper proposes a novel technique for a polynomial time al-
gorithm to detect an existence of isomorphism between two un-
labeled graphs that is fast and accurate for the mass majority of
large random graphs. This technique, namely ppp− Technique,
is based on cutting the first graph into large sub-graphs to mimic
the pieces (or patches) of a puzzle that have to be patched to
their correct places (or matches) on the second graph. It is a dif-
ficult process to draw the borders of each patch for best results.
In other words, deciding the sizes of the patches is an optimiza-
tion problem. Clearly, the larger these patches are, the faster the
algorithm can decide whether an isomorphism exists. The greedy
concept has been applied in the process of creating patches which
led to high efficiency. The time complexity of the proposed algo-
rithm is O(n3 log n) . Examples that clarify the process of con-
structing the patches from one graph and matching them to the
places in the other one are shown. The algorithm is tested with
many graphs with different sizes of nodes and different densi-
ties of connecting edges which gave complete accurate results.

General Terms
Computer Science, Algorithms, Graphs

Keywords
Unlabeled Graphs, Random Graphs, Graph Matching, Isomor-
phism

1. INTRODUCTION
Graph Isomorphism (GI), a problem of deciding whether two
graphs are similar under certain conditions, is among the most im-
portant challenges of graph processing [1] and is a vital problem
in the field of Computer Science. Because of its significant role in
a large variety of applications today such as image matching, bio-
chemistry, and information retrieval [2], scientists and researchers
have been trying to find an easy solution to this problem for more
than 40 years and no one succeeded fully yet [3] [4]. Therefor, it
remains one of many unresolved computational problems with un-
known complexity status such as those from Garey and Johnsons
list dating back to 1979 [5].

Problems are categorized into two groups according the complexity
theory, namely P and NP-complete [4], based on the time needed
to solve these problems when their sizes grow large. Simply, when
the size of a given problem increases and the time of the solving
algorithm grows only polynomially, then it is considered an easy
problem and belongs to the category P denoting deterministic poly-
nomial time solution. On the other hand, and with the increase of
the size of the problem, when the time an algorithm needs to find a
solution increases exponentially then this problem is considered a
hard and difficult one. For some of these hard problems with expo-
nential time complexity, such as the boolean satisfiability problem
(SAT), knapsack problem, and hamiltonian path problem, scientists
have been able to provide non-deterministic polynomial time algo-
rithms. These types of problems are said to be NP-complete. For the
GI problem, neither scientists could prove them to be NP-complete,
nor anyone have been able to provide a solution in polynomial time
[6]. That is why researchers are still trying to come up with new
algorithms in the hope that one day they find a polynomial time
solution.

The proposed solution mimics the process of solving puzzles by
patching the different pieces in their correct places on the image.
The difficulty in this process arises when a piece independently
may correctly be patched to many places on the image. This diffi-
culty increases as the number of such pieces increase.

1.1 Graph Definitions
Solving the GI problem is by finding a one to one mapping (a bi-
jection) between the nodes of the two graphs such that the relations
(adjacencies) are preserved [7].

Objects in real world can be represented with graphs, where a graph
consists of vertices (or nodes) that represent the different parts of
the object and edges that connect the nodes which represent the
relations between these different parts of the object.

Due to this representation of objects, graph isomorphism or graph
matching algorithms in general were applied on a variety of fields
such as Computational Biology, Chemistry, Information Retrieval
and Medicine [8]. Using graph representation made it easy for very
large systems to benefit from graph isomorphism algorithms such
as the analysis of protein to protein interaction in complex biologi-
cal systems [9].

1

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.12, April 2020

Fig. 1. Sample Graphs Representations

When a node is connected to another one, they are called neighbors
or one is a child of the other. A degree of a node is equal to the
number of neighbors or children connected to it. This is the sim-
plest representation of objects and the type of these graphs is called
unlabeled graphs.

There are many other categories and types of graphs based on
a set of given values that are assigned to nodes and/or edges.
Some of these types are: labeled graphs, directed graphs, and
undirected graphs. For another categorization of graphs based on
the topology of the graph connectivity, i.e. the way the nodes are
connected via edges, we have many different types of graphs. Ex-
amples of that are regular graphs where every node in the graph
has the same degree and complete graphs where every node is
connected to every other node in the graph. When the whole graph
is one piece, it is called a connected graph. Figure 1 shows exam-
ples of different categories and types of graphs.

A graph G = (V,E) is represented by a set V of vertices (or
nodes) and a set E of edges. Given two graphs G1 = (V1, E1)
and G2 = (V2, E2), then the graph isomorphism (GI) problem is
to find a bijection function f : V1 → V2 such that (u, v) ∈ E1 iff
(f(u), f(v)) ∈ E2 . The technique that tries to find whether the
function f is available is explained next.

1.2 Pieces Patching Puzzle Technique (ppp-Technique)
The graph isomorphism detection process is performed mimicking
the puzzle solving process. Instead of pursuing random trial and er-
ror, an educated trial and error is followed in trying to match the dif-
ferent patches against the original image. This approach of the algo-
rithm is named Pieces Patching Puzzle Technique (ppp-Technique).

Given two unlabeled graphs G1 = (V1, E1) and G2 = (V2, E2),
G2 is considered the original image and patches (subgraphs) are
create from G1. The process then starts by trying to patch these
subgraphs correctly onto G2. The next section shows the process of
creating the patches followed by a section explaining the technique
of patching them against the original graph.

2. THE PPP-TECHNIQUE
2.1 Definitions
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), first G1

is cut into patches (subgraphs of G1) where each Patch (subgraph)
is a star graph. Star graphs are those with a central vertex where
every other vertex (a child) in the graph is connected only to this
central vertex [10] as shown in Figure 2(A). A variation of a star
graph is proposed here by relaxing the definition of the star graph
and is called pseudo-star graph. A pseudo-star graph has a central
vertex that is connected to all children vertices but also allowing
the children to have additional connections among themselves such
as the one shown in Figure 2(B).

Since the algorithm works on unlabeled graphs, the only data avail-
able about the graphs is the degree of the vertices and the connect-
ing edges. The degree of a vertex v denoted by deg(v), is the num-
ber of vertices (children) it is connected to via edges. Each patch
p (or pseudo-star graph) created is assigned an integer number as
a patch label (pl). Let pl(pi) = m where m is an integer denot-
ing the patch label for pi. The integer m is constructed by accu-
mulating the degrees of the children of the central vertex of patch
pi or simply of the children of patch pi in a special way that will
be explained. Each patch is also given another label which is the
central vertex (cv) in it. Let cv(pi) = c, then c denotes the num-
ber of the central vertex in patch pi. For example, pl(p1) = 332
and cv(p1) = 6 where p1 is one possible patch that is created
from the unlabeled graph of Figure 3. Notice that p1 is a pseudo-
star graph with the central vertex being vertex 6, i.e, cv(p1) = 6.
The integer 332 represents the degrees of the children of vertex 6
(vertices 4, 7, and 5) from left to right in descending order. No-
tice that deg(v4) = 3, deg(v5) = 2, and deg(v7) = 3. Likewise,
pl(p2) = 21 and cv(p2) = 2.

The patches may consist of only a central vertex and only one child
or even they may consist of only the central vertex alone. Figure 3
shows a third patch with pl = 2 and cv = 10. After creating all
possible patches, there may be single vertices that are considered
tiny patches and are given pl = 0, i.e. the central vertex has zero
children as far as patches are concerned.

There are 3 edges crossing or outgoing from p1. One connecting
v4 with v3, another connecting v7 with v8, and the last connecting
v7 with v9. These edges are considered as special ones and each
of them is denoted by patch crossing edge (pce) and is given a
label. A label of a special edge connecting vi with vj is denoted by
pcel(vi, vj) = qr where q = deg(vi) and r = deg(vj). Hence,
pcel(v4, v3) = 32 , pcel(v7, v8) = 32 , and pcel(v7, v9) = 31.

For the implementation of the algorithm, which is done in Java, two
important issues are to be mentioned here about patch labels pl′s
and patch crossing edge labels pcel′s such as pl(p1) = 332 and
pcel(v4, v3) = 32 in the example above. First, the integers 332
and 32 may get very huge in large graphs with degrees of some
nodes being in hundreds or thousands or more. In this case, pl may
be with hundreds or thousands of digits where integers are not sup-
ported with this magnitude on most computer systems. Therefore,
the integers 332 and 32 are dealt with as strings ”332” and ”32” to
have enough width. Furthermore, normal sorting for strings consid-
ers for example the string ”23456” less than ”53”. Hence, a class
Patch is implemented to perform a special sorting order for the
patch labels so that ”23456” is considered larger than ”53” to be
able to apply the greedy concept that is explained in the next Sec-
tion.

2

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.12, April 2020

Fig. 2. Star and Pseudo-Star Graphs

2.2 Creating Patches and Patch Crossing Edges
Given an unlabeled graph G = (V,E) such as the one shown in
Figure 3, we create a set of patches P = {p1, p2, ..., pn} in the
following way.

The greedy heuristic or concept that has been used in many algo-
rithms to solve a variety of problems [11] [12] [13] [14] [15] led
to solutions close to optimal in acceptable time. In this paper, the
greedy concept is applied in creating the patches so that later on
in the process of finding matches for these patches they are tried
in the order of their creation. The first patch created is the first en-
countered with maximum pl. Then the second patch is created and
so on and so forth.

In the example of Figure 3, the first patch p1 is one with a cen-
tral vertex of the highest degree. That patch would be either the one
with central vertex v6 and its children v4, v5, and v7 or the one (not
shown) with central vertex v7 and its children v6, v8, and v9. So
in this case p1 is created with pl(p1) = 332 and cv(p1) = 6 along
with the 3 crossing edges with pcel(v4, v3) = 32 , pcel(v7, v8) =
32 , and pcel(v7, v9) = 31. The next patch will be created finding
a central vertex with highest degree among the remaining vertices
that are not already included in any patch as well as its children. No-
tice that v4 and v7 are the next highest degree vertices but they have
already been included in p1. Also notice that vertices v3 and v8 can
not be next even though their degrees are as that of v2 because some
of their children are already included in previously created patches.
So interference is not allowed among the patches. Thus, v2 is the
next choice and p2 is created with pl(p2) = 21 and cv(p2) = 2
along with one crossing edge with pcel(v3, v4) = 23. Next, p3
is one with pl(p3) = 2 and cv(p3) = 10 along with one cross-
ing edge with pcel(v8, v7) = 23. The remaining single vertices
are considered patches as well and are labeled with pl = 0 . So
in Figure 3, v9 alone is considered p4 and hence pl(p4) = 0 and
cv(p4) = 9 along with one crossing edge where pcel(v9, v7) = 13.

2.3 Finding Matches for the Patches
Given two graphs G1 = (V1, E1) and G2 = (V2, E2), patches
are created from G1 as explained in Section 2.2. These patches are
subgraphs in G1 that have to be found in G2. This is a difficult
process since subgraph isomorphism is NP-complete [16] [17].

Suppose that the set P = {p1, p2, p3, p4} of patches is created for
the graph G1 as shown in Figure 4. The algorithm tries now to find

Fig. 3. Creating Patches (pseudo-star graphs)

Fig. 4. Finding Matches in Graph G2 for the Patches of Graph G1

matches for each member in the set of patches P on the second
graph G2. The patches will be tested against graph G2 in descend-
ing order of their pl′s. So the first one will be p1 with pl(p1) = 332.
The mapping or patching process is explained on Figure 4.

Notice that the vertices of graph G2 are renumbered in different
order. Recall that cv(p1) = 6, i.e. the central vertex for p1 is v6 and
pl(p1) = 332. First, v1 in G2 is verified whether it is a candidate
place to patch p1. Clearly it is not a candidate. Next, v2 in G2 is
verified and so on until v4 in G2 is found to be a candidate place
for p1. But after testing the labels of patch crossing edges of p1,
inconsistency is found because p1 has 3 outgoing edges with pcel′s
32, 33, and 23 that do not have matching pcel′s in G2 centered in
v4. Therefore, the algorithm continues to find a candidate match for
p1 until one is found and proceeds to the next patch or it exhaust all
possibilities for p1 and declare absence of isomorphism. The next
candidate is v5 in G2 and it is a full match.

All vertices of p1 in G1 are mapped to their corresponding ones of
G2. The mapping from G1 to G2 is as follows: 6 → 5 , 4 → 7,
5→ 6 , and 7→ 4. So p1 is patched to a tentative correct place on
G2.

Next, a try is made to find a match on G2 for the patch p2 of G1.
Since the algorithm is recursive, if all possibilities are exhausted
here, it retracts and tries to find the next possible match for the
previous patch and so on.

3

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.12, April 2020

Table 1. Graphs Categories (100
randomly generated graphs for each

category
No. of Nodes Density No. of Edges

6 40 6
6 70 10
7 30 6
7 60 12
10 25 11
10 50 22
10 75 33
25 25 74
25 50 150
25 75 225
50 25 306
50 50 612
50 75 918

100 25 1237
100 50 2475
100 75 3712
200 25 4975
200 50 9950
200 75 14925
500 25 31187
500 50 62375
500 75 93562

1000 25 124875
1000 50 249750
1000 75 374625
2500 25 780937
2500 50 1561875
2500 75 2342812
5000 25 3124375
5000 50 6248750
5000 75 9373125

Only the vertices in G2 that are not mapped yet are tested, i.e. ex-
cluding the vertices 4, 5, 6, and 7. A match in G2 with central vertex
v9 is found and the mapping is done as shown in Figure 4.

The algorithm continues to find the rest of matches. If all possibili-
ties are exhausted in the first level without finding a proper match,
the absence of an isomorphism is declared. Otherwise, the recur-
sive algorithm continues to find all possible matches that may lead
to the existence of an isomorphism.

3. TESTING RESULTS
The testing is done on Windows 7 64-bit OS on a Laptop with the
processor Intel(R) Core(TM) i7 cpu with 4GB of RAM. Hundred
graphs of small, medium, and large graphs of different categories-
sizes and densities have been randomly created. Unfortunately, due
to the constraint of the 4GB RAM, a maximum size of 5000 node-
graphs were created. Table 1 shows the categories of these created
graphs. Notice that loading time of graph details are excluded from
the execution times shown in the tables.

To test the algorithm for isomorphic graphs, each graph in all cate-
gories is compared with a copy of itself after scrambling the node
numbering in the copied graph. So 100 tests were done for each cat-
egory and full accurate results were obtained. Tables 2 and 3 show
the timing of these results.

Table 2. Average no. of patches created and average
time in microseconds for comparing isomorphic

graphs
No. of Nodes Density Avg Time Avg Patches

6 40 164.7 2.4
6 70 146.1 1.5
7 30 179.8 3.1
7 60 133.4 1.9
10 25 172.2 4.0
10 50 205.3 2.7
10 75 209.8 1.6
25 25 418.5 6.2
25 50 531.7 3.7
25 75 593.8 2.2
50 25 850.6 8.2
50 50 1139.3 4.7
50 75 1277.1 2.8

100 25 1838.5 10.3
100 50 2469.7 5.5
100 75 3456.6 3.3

Table 3. Average no. of patches created and average
time in Milliseconds/Seconds for comparing

isomorphic graphs
No. of Nodes Density Avg Time Avg Patches

200 25 3.8 m. sec 12.7
200 50 9.6 m. sec 6.6
200 75 19.3 m. sec 3.7
500 25 38.5 m. sec 15.7
500 50 110.8 m. sec 7.9
500 75 221.9 m. sec 4.5

1000 25 231.2 m. sec 18.7
1000 50 761.2 m. sec 9.1
1000 75 1578.2 m. sec 5.1
2500 25 3.7 sec 22.4
2500 50 17.2 sec 10.7
2500 75 38.7 sec 5.9
5000 25 28.1 sec 24.9
5000 50 105.1 sec 11.7
5000 75 246.6 sec 6.5

For comparing different graphs, expectedly non-isomorphic ones,
198 tests were done for each category, 99 times comparing the first
graph to each of the other 99 graphs in the category and 99 times
comparing the fiftieth graph to each of the other 99 graphs in the
category. Tables 4 and 5 show the timing of these results.

In some categories, comparing supposedly different graphs, the al-
gorithm declared them to be isomorphic. These graphs have been
manually tested and found to be in fact isomorphic. Hence, they
have been excluded from the average timing of Table 4. Table 6
shows the categories and the number of randomly generated iso-
morphic graphs that were expected to be non-isomorphic.

Notice from Figure 5 that the denser the graphs are the less number
of patches are created by the algorithm. The reason is that a lot of
nodes in dense graphs generated by the random graph generator
with size n will have degrees close to n − 1 or equal to it. Due
to the greedy concept, these nodes will be used as the centers of
the first patches created. Recall from Section 2.2 that when a patch
is created, then all children of that patch are excluded from any
further patches created which leads to less remaining patches.

4

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.12, April 2020

Table 4. Average no. of patches created and average
time in microseconds for comparing

non-isomorphic graphs
No. of Nodes Density Avg Time Avg Patches

6 40 124.4 3.0
6 70 103.3 1.0
7 30 93.9 3.0
7 60 107.5 2.0
10 25 109.9 4.0
10 50 132.5 2.0
10 75 144.2 2.0
25 25 234.1 7.0
25 50 300.5 3.5
25 75 346.1 2.5
50 25 405.0 7.0
50 50 602.6 4.5
50 75 875.5 3.0

100 25 1175.7 10.0
100 50 1888.6 5.5
100 75 3125.0 3.0

Table 5. Average no. of patches created and average
time in Milliseconds/Seconds for comparing

non-isomorphic graphs
No. of Nodes Density Avg Time Avg Patches

200 25 3.0 m. sec 13.5
200 50 8.4 m. sec 7.5
200 75 18.1 m. sec 4.5
500 25 34.9 m. sec 16.5
500 50 108.5 m. sec 8.0
500 75 219.3 m. sec 4.0

1000 25 224.1 m. sec 19.5
1000 50 750.5 m. sec 10.0
1000 75 1563.6 m. sec 5.0
2500 25 3.72 sec 22.5
2500 50 17.3 sec 10.5
2500 75 38.7 sec 6.0
5000 25 26.5 sec 24.5
5000 50 105.0 sec 12.5
5000 75 244.0 sec 6.5

Table 6. Number of randomly generated
graphs that happened to be isomorphic in

some categories
Nodes Density Edges No. of Graphs

6 40% 6 18
6 70% 10 26
7 30% 6 34
7 60% 12 1

10 75% 33 5

Notice that execution time shown in Figure 6 and Figure 7 is little
more than that of Figure 8 and Figure 9 respectively. That is be-
cause in the case of comparing non isomorphic graphs, at a certain
level of finding a match, all possibilities are exhausted before ex-
amining all nodes and the algorithm stops to declare the result. On
the other hand, in the case of comparing isomorphic graphs, many
retractions occur but all nodes are examined and a match is found
at the end along with the mapping that is done to all nodes from the
first graph to the other.

Fig. 5. Number of Created Patches

Fig. 6. Timing for Small to Medium Size Isomorphic Graphs

In any of these mentioned figures and for a certain graph size, the
execution time shown increases as the density increases. This may
lead to a claim of contradiction to what is mentioned in the ab-
stract that ”the larger the created patches are, the faster the algo-
rithm is” since larger patches means less number of these patches
in a graph and hence should lead to a faster execution. That is true
when graphs under testing have fixed densities. But more dense
graphs lead to more number of checks and comparisons to nodes
and edges.

4. THE ALGORITHM
Given two graphs G and H which are represented by two dimen-
sional matrices, Algorithm 1 decides whether G and H are iso-
morphic. The algorithm assumes that the given graphs are of same
number of vertices.

5

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.12, April 2020

Algorithm 1 PPP Isomorphism Detection Algorithm
1: procedure TESTFORISOMORPHISM(G , H)
2: availableGNodes = all v ∈ G // global variable
3: availableHNodes = all v ∈H // global variable
4: patchesSet = createPatchesInGraphG
5: if findMatchesInHForPatchesInG(p1, ppatchesSetSize) =

true then
6: G and H are isomorphic
7: else
8: G and H are NOT isomorphic
9: end if

10: end procedure
11:
12: procedure CREATEPATCHESINGRAPHG
13: Compute deg(vi) ∀ vi ∈ G
14: Compute patchLabel ∀ v ∈ G
15: Sort all patchLabel′s in G in descending order
16: pSet = empty
17: while availableGNodes not empty do
18: Create a patch pi centered with a node of highest

patchLabel available
19: Remove this node along with all nodes in this pi from

AvailableGNodes
20: Add the created Patch pi to pSet
21: end while
22: return pSet
23: end procedure
24:
25: procedure FINDMATCHESINHFORPATCHESING(pstart ,

pend)
26: if start = end then
27: if findMatch(pstart) = true then
28: return true
29: else
30: Add all v ∈ p of the last found match back to

availableHNodes
31: return false
32: end if
33: else
34: if findMatch(pstart) = true then
35: if findMatchesInHForPatchesInG(pstart+1 , pend

) then
36: return true
37: else
38: return false
39: end if
40: else
41: return false
42: end if
43: end if
44: end procedure
45:
46: procedure FINDMATCH(pi)
47: find in H a match for patch pi from availableHNodes
48: if matchFound and pcel′s of pi are preserved then
49: remove all v in the found match from

availableHNodes
50: return true
51: else
52: return false
53: end if
54: end procedure

Fig. 7. Timing for Large Size Isomorphic Graphs

Fig. 8. Timing for Small to Medium Size non-Isomorphic Graphs

5. CONCLUSION
An algorithm with a new approach namely, ppp − Technique,
that is fast and efficient to solve the isomorphism problem for ran-
dom unlabeled graphs that are found in many applications today
was presented. Unlabeled graphs were targeted here because these
types of graphs have the least amount of heuristics that can aid the
process of isomorphism detection. We believe that researchers will
find this technique as a new window to be further experimented
and improved in the hope of finding a solution to the troublesome
problem- Graph Isomprphism.

6. REFERENCES

[1] M. Zaslavskiy, F. Bach, and J.-P. Vert, “A path following al-
gorithm for the graph matching problem,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 31, no. 12,
pp. 2227–2242, 2008.

6

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.12, April 2020

Fig. 9. Timing for Large Size non-Isomorphic Graphs

[2] K. Liu, Y. Zhang, K. Lu, X. Wang, X. Wang, and G. Tian,
“Mapeff: An effective graph isomorphism agorithm based on
the discrete-time quantum walk,” Entropy, vol. 21, no. 6, p.
569, 2019.

[3] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty years
of graph matching in pattern recognition,” International jour-
nal of pattern recognition and artificial intelligence, vol. 18,
no. 03, pp. 265–298, 2004.

[4] A. Dawar and K. Khan, “Constructing hard examples for
graph isomorphism,” arXiv preprint arXiv:1809.08154, 2018.

[5] L. Babai, A. Dawar, P. Schweitzer, and J. Torán, “The graph
isomorphism problem (dagstuhl seminar 15511),” in Dagstuhl
Reports, vol. 5, no. 12. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2016.

[6] G. L. Miller, “Graph isomorphism, general remarks,” Journal
of Computer and System Sciences, vol. 18, no. 2, pp. 128–142,
1979.

[7] B. D. McKay and A. Piperno, “Practical graph isomorphism,
ii,” Journal of Symbolic Computation, vol. 60, pp. 94–112,
2014.

[8] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis, “Match-
ing node embeddings for graph similarity,” in Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

[9] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro,
“A subgraph isomorphism algorithm and its application to
biochemical data,” BMC bioinformatics, vol. 14, no. S7, p.
S13, 2013.

[10] S. B. Akers, “The star graph: An attractive alternative to the
n-cube,” in Proc. Int’l Conf. Parallel Processing., 1987, 1987.

[11] M. Verma and S. Sharma, “A greedy approach for coverage
hole detection and restoration in wireless sensor networks,”
Wireless Personal Communications, vol. 101, no. 1, pp. 75–
86, 2018.

[12] H. Joudrier and F. Thiard, “A greedy approach for a rolling
stock management problem using multi-interval constraint
propagation,” Annals of Operations Research, vol. 271, no. 2,
pp. 1165–1183, 2018.

[13] Y. Duan, J. Wu, and H. Zheng, “A greedy approach for car-
pool scheduling optimisation in smart cities,” International

Journal of Parallel, Emergent and Distributed Systems, pp.
1–15, 2018.

[14] E. Oh and C. Woo, “Performance analysis of dynamic chan-
nel allocation based on the greedy approach for orthogonal
frequency-division multiple access downlink systems,” Inter-
national Journal of Communication Systems, vol. 25, no. 7,
pp. 953–961, 2012.

[15] N. Meghanathan, “A greedy algorithm for neighborhood
overlap-based community detection,” Algorithms, vol. 9,
no. 1, p. 8, 2016.

[16] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “An im-
proved algorithm for matching large graphs,” in 3rd IAPR-
TC15 workshop on graph-based representations in pattern
recognition, 2001, pp. 149–159.

[17] C. McCreesh, P. Prosser, C. Solnon, and J. Trimble, “When
subgraph isomorphism is really hard, and why this matters for
graph databases,” Journal of Artificial Intelligence Research,
vol. 61, pp. 723–759, 2018.

7

	 INTRODUCTION
	 Graph Definitions
	 Pieces Patching Puzzle Technique (ppp-Technique)

	THE ppp-TECHNIQUE
	Definitions
	 Creating Patches and Patch Crossing Edges
	Finding Matches for the Patches

	TESTING RESULTS
	THE ALGORITHM
	CONCLUSION
	References

