
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

1

Solutions by Optimization of the 2-Dimensional Heat

Conductivity Problem on Grid Machines using C++ and

OpenMP

Aliyu Sani Ahmad
Dept. of Comp. Science
Federal Univ, Wukari

Mu’awuya Dalhatu
Dept. of Comp. Science
Federal Univ. Wukari,

Emmanuel Masa-Ibi
Dept. of Comp. Science
Federal Univ. Wukari

Abdulrashid Aliyu
Babando

ICT Unit, Advanced
Manufacturing Tech

ABSTRACT
Optimization is a method of transforming a piece of code into

another functionally equivalent piece of code to improve code

quality and efficiency. The two most important characteristics

are the speed and size of the code. Other characteristics

include: energy required and the time it takes to compile the

code. This paper uses source code (jacobi2d.c) to provide

solutions by optimization of the 2-Dimentional heat

conductivity problem on grid machine using C++ compiler

and OpenMP (Open Multi-Processing). The paper discuss the

benefits of parallel grid computing. The grid server on which

this paper used has 10 computers, grid-01 to grid-08 have 2

cores and 2 Gigabytes memory while 09 and 10 have 8 cores

and 8 Gigabytes memory. The process of solving rectangular

2-dimensional heat conductivity problem to optimized

performance is done in number of steps from step 1 to step 4,

optimization starts in step 3 and ends in step 4. In step 4,

performance speedup of step 3 is compared with performance

speedup of step 4 and optimal (result) performance is

achieved in step 4. It is concluded that performance is

optimized with parallel processing using grid machine with

performance level -3 and large problem size.

General Terms
Performance Optimization, Serial Processing, Parallel

Processing

Keywords
High performance computing, Optimization, Parallel

Processing, thread, Grid, Heat Conductivity Problem

1. INTRODUCTION

Compilers are constantly improving in terms of the techniques

they use to optimize the code. However, they’re not perfect.

Instead of spending time manually tweaking a program, it’s

usually more fruitful to use specific features provided by the

compiler and let the compiler tweak the code. The four ways

to help the compiler optimize your code more effectively

include: (1) Write understandable and maintainable code. (2)

Use compiler directives (3) Use compiler-intrinsic functions.

And (4) Use Profile-Guided Optimization (PGO) [1] [15].

Parallel processing is the simultaneous use of multiple

computer resources to solve a computational problem and

state: A problem is broken into discrete parts that can be

solved concurrently, each part is further broken down into a

series of instructions, instructions from each part execute

simultaneously on different processors, and an overall control

mechanism is employed. Computational problem should: (1)

Be broken into discrete pieces of work that can be solved

simultaneously (2) Execute multiple program instructions at

any moment and (3) Be solved in less time with multiple

compute resources than with a single compute resource. The

compute resources are typically: A single computer with

multiple processors/cores and or an arbitrary number of such

computers connected by a network. [1]

1.1 Parallel Computers
Virtually all stand-alone computers today are parallel from a

hardware perspective, [1] they have multiple functional units

(L1 cache, L2 cache, branch, prefetch, decode, floating-point,

graphics processing (GPU), integer, etc.), they have Multiple

execution units/cores and are typically multiple hardware

threads [1]. The real world in its physical and logical, is

massively parallel: In the natural world, many complex,

interrelated events are happening at the same time, yet within

a temporal sequence. Compared to serial computing, parallel

computing is much better suited for modelling, simulating and

understanding complex real world phenomena. For instance,

imagine modelling Galaxy formation, planetary movement,

climate change, rush hour traffic, plate tectonic, weather etc.

serially, it is barely impossible or if possible it will be going

to be time consuming of back breaking task. Parallel

computing has many benefits such as: (1) Save Time and

Money: Parallel cluster can be built from cheap commodity

components because in theory, throwing more resources at a

task will shorten its time to completion, with potential cost

savings [2]. (2) Solve Larger / More Complex Problems:

Many problems are so large and/or complex that it is

impractical or impossible to solve them on a single computer

with limited memory. (3) Provide Concurrency: A single

compute resource can only do one thing at a time. Multiple

compute resources can do many things simultaneously. (4)

Make better use of Underlying Parallel Hardware: Modern

computers are parallel in architecture with multiple

processors/cores. Parallel software is specifically intended for

parallel hardware with multiple cores, threads, etc. In most

cases, serial programs run on modern computers "waste"

potential computing power.

1.2 Two Dimensional Heat Conduction
Two dimensional heat conduction refers to two processes of

heat conduction that is taking take place: the generation of

heat inside the body and the heat transfer between the body

and its environment. Therefore, the total amount of heat dQ in

a specific dV (Volume differential) corresponds to the sum of

both terms [21].

1.3 Standard Formulation of Heat

Conduction
Heat conduction is the transfer of internal thermal energy by

the collisions of microscopic particles and movement of

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

2

electrons within a body. The microscopic particles in the heat

conduction can be molecules, atoms, and electrons. Internal

energy includes kinematic and potential energy of

microscopic particles. Heat conduction is governed by the law

of heat conduction, which is also called the Fourier's law: the

time rate of heat transfer through a material is proportional to

the negative gradient in the temperature and to the area. Under

a Cartesian coordinate system, the Fourier's law for the rate of

heat transfer by conduction is expressed as, (9.1).

Where 9.1 are the rate of heat transfer, 9.1 are the heat flux,

and kx, ky, and kz are the conductivity coefficients along x-,

y-, and z-axis, and are the cross-section areas, and are the

temperature gradients along three axes of the Cartesian

coordinate system [12] [17].

1.4 Grid and Cloud Computing
Cloud computing refers to a variety of services available over

the Internet that deliver compute functionality on the service

provider’s infrastructure such as: Google Apps, Amazon EC2,

or Salesforce etc. A cloud environment may actually be

hosted on either a grid or utility computing environment. On

the other hand, a computational grid is a hardware and

software infrastructure that provides dependable, consistent,

pervasive, and inexpensive access to high-end computational

capabilities [2]. Grids enable access to shared computing

power and storage capacity from desktop computers. [2]

Virtualization is a key enabler of cloud computing. The most

prominent feature is the ability to install multiple Operating

System on different virtual machines on the same physical

machine, this provides the additional benefits of overall cost

reduction owing to the use of less hardware and consequently

less power and increases machine utilization [16]. Grid and

cloud computing are networks which abstract processing tasks

[3]. Abstraction masks the actual complex processes taking

place within a system, and presents a user with a simplified

interface with which they can interact easily. The idea is to be

able to make the system more user-friendly whilst retaining

all the benefits of more complicated processes [3] [16].

Although there is a difference in the fundamental concepts of

grid and cloud computing that does not necessarily mean they

are mutually exclusive; it is quite feasible to have a cloud

within a computational grid, as it is possible to have a

computational grid as a part of a cloud. Grids promised to

deliver computing power on demand. However, despite a

decade of active research, no viable commercial grid

computing provider has emerged. On the other hand, it is

widely believed especially in the Business World that HPC

will eventually become a commodity [14].

1.5 Open Multi-Processing
OpenMP is a Short for Open Multi-Processing it is used in

various application such as multi-threaded parallel processing,

use on shared-memory multi-processor (core) computers. It is

also used where part of program is a single thread and part is

multi-threaded [5]. OpenMP has three components namely:

directives, runtime library and environment variables [5].

1.5.1 Compiler Directives
OpenMP standard is a compiler directive driven parallel

programming system. It uses a fork-join model, so relies on a

(logically) shared memory system and a global data model

[1]. Compiler directives appear as comments in the source

code and are ignored by compilers unless otherwise stated

usually by specifying the appropriate compiler flag. The

OpenMP compiler directives was used for spawning a parallel

region, dividing blocks of code among threads, distributing

loop iterations between threads, serializing sections of code

and synchronization of work among threads. The syntax for

compiler directives used (see appendix II).

1.5.2 Run-time Library Routines
Runtime library is a collection of software programs used at

program runtime to provide one or more native program

functions or services [17]. The runtime library enables a

software program to be executed with its complete

functionality and scope by providing add-on program

resources that are essential for the primary program. OpenMP

API includes number of run-time library routines. These

routines are used for a variety of purposes such as: Setting and

querying the number of threads, Querying a thread's unique

identifier (thread ID), Querying a thread's ancestor's identifier,

initializing and terminating locks and nested locks and

Querying wall clock time and resolution etc.

The run-time library routines used such as header file

(<omp.h>), omp_get_wtime to provides a portable wall

clock timing routine, and omp_set_num_threads: to sets the

number of threads that will be used in the next parallel region

(see Appendix II)

1.5.3 Environment Variables
OpenMP environment variables were used for controlling the

execution of parallel code at run-time. The environment

variables were used to set the number of threads, specified

how loop iterations are divided, bind threads to processors,

enabled/disabled nested parallelism; setting the maximum

levels of nested parallelism, enabled/disabled dynamic

threads, set thread stack size, and set thread wait policy

1.5.4 Critical Directive
This directive specifies a region of code that must be executed

by only one thread at a time. If a thread is currently executing

inside a critical region and another thread reaches that critical

region and attempts to execute it, it will block until the first

thread exits the critical region. For the critical command used

(see Appendix II)

Fig. 1: shows OpenMP Master Thread and Parallel region

Source: [www.dartmouth.edu/classes/intro_openmp]

1.6 Memory Architectures and Parallel

Programming
OpenMP memory architecture and parallel programming.

Memory can be distributed or shared. In distributed memory:

each processor has its own memory and parallel

programming by message passing (MPI)

http://www.dartmouth.edu/classes/intro_openmp

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

3

P0 P1 P3 Pn

M0 M1 M2 Mn

Interconnect

Fig 2: Distributed Memory Architecture Source:

[www.dartmouth.edu/classes/intro_openmp]

In shared memory: processors share memory in two parallel

programming approaches known as: message passing (MPI)

and directives-based interface.

P0 P1 P3 Pn

Memory

Fig 3: Shared Memory ArchitecturevSource:

[www.dartmouth.edu/classes/intro_openmp]

OpenMP programs accomplish parallelism exclusively

through the use of threads. A thread of execution is the

smallest unit of processing that can be scheduled by an

operating system. This exist within the resources of a single

process. Without the process, they stop to exist. However, the

number of threads match the number of machine

processors/cores [5] [19].

1.7 Optimization Level
It is argue that the performance of a code must be measured

on a dedicated system [13] as used in this paper, no other user

can start a process and the user measuring the performance

only runs the minimum amount of processes [13]. All modern

compilers perform some automatic optimization when

generating code. Most compilers provide several levels of

optimization namely: -O0: No optimization, -O1:

Optimization Level 1, -O2: Optimization level 2 etc. The

higher the optimization level the higher the probability that a

debugger may have trouble dealing with the code depending

on the compiler. Some compiler documentation may indicate

that higher levels of (aggressive) optimization should be used

with caution. Therefore this paper uses –O1 to –O3

(Optimization level 1 to 3) [20].

2. LITERATURE REVIEW

2.1 Optimization
The desire for optimization is inherent to humans. The search

for extremes inspires scientists, mathematicians and the

human being in general. Methods of optimization explore

suppositions about the nature of responses to the target

function, by varying parameters and suggesting the best way

to change them. The variety of a priori suppositions

corresponds to the variety of optimization methods [2].

Optimization or mathematical programming is the selection of

a best element from some set of available alternatives.

An optimization problem consists of maximizing or

minimizing a real function by systematically choosing input

values from within an allowed set and computing the value of

the function [3]. There are many ways to improve

performance: (1) Buy Faster Hardware: the amount of

hardware to buy would be staggering but better to achieve the

same effect by modifying the Code. (2) Modify the algorithm:

For example: Searching for an element in a sorted array, the

implementation is based on a linear search which is easy to

write but when performance becomes an issue, is to replace

the linear search implemented with a binary search that

demands more complex code (3) Modify the implementation:

in doing this, you don’t change the spirit of the algorithm but

rather you shuffle lines of code around by modifying the

instruction in a different order, also modify the code

organization. (4) Use concurrency: Multi-threaded code on a

single-CPU machine to utilize hardware resources more

effectively and multi-threaded code on a multi-CPU/multi-

core machine. Time as a performance measurement, show the

time between the start and the end of an operation which is

called run time, wall-clock time, execution time etc. example

a program takes 12.5s on a Pentium 3.5GHz. Execution time

must be measured on a dedicated machine because it is used

often so that performance can be independent of the (memory)

“size” of the application [12]. For example: compressing a

1MB file takes 1 minute and compressing a 2MB file takes 2

minutes. “The performance is the same”. Performance

Rates: is measured by Timing a section of code, count how

many operations are in that section of the code and compute

the rate as the number of items divided by the measured time.

Example:

start_stopwatch();

for (i=0; i<1000000; i++)

x = y + z * a

stop_stopwatch()

• Number of Flop: 2million (1M additions, 1M

multiplications)

• Number of MFlops = 2 / time.

2.2 High Performance Computing (HPC)
High Performance Computing (HPC) has become an essential

tool in every researcher’s arsenal. Most research problems

nowadays can be simulated, clarified or experimentally tested

by using computational simulations. Since most researchers

have little-to-no knowledge in low-level computer science,

they tend to look at computer programs as extensions of their

minds and bodies instead of completely autonomous systems.

Since computers don’t work the same way as humans, the

result is usually Low Performance Computing where HPC

would be expected [4]. High performance means how fast a

machine and/or a code will run, Performance conflicts with

other concerns: (1) Correctness: aggressive optimisation can

cause problems. (2) Readability: more code is harder to follow

and modularity can hurt performance with its overhead. (3)

Portability: code that is fast on machine A can be slow on

machine B at the extreme, highly optimised code is not

portable at all, and in fact is done in hardware.

Inverse heat conduction problem has a very wide application

background. It has been applied in almost all fields of

scientific engineering, including power engineering,

aerospace engineering, metallurgical engineering, biomedical

engineering, chemical engineering, nuclear physics, geometry

optimization of equipment, and non-destructive testing. In this

paper, the authors adopts Finite Difference Method (FDM)

http://www.dartmouth.edu/classes/intro_openmp
http://www.dartmouth.edu/classes/intro_openmp

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

4

and Model Predictive Control Method (MPCM) to study the

inverse problem in the third-type boundary heat-transfer

coefficient involved in the two-dimensional unsteady heat

conduction system. They introduced the residual principle to

estimate the optimized regularization parameter in the model

prediction control method, thereby obtaining a more precise

inversion result. They uses Finite Difference Method (FDM)

for direct problem to calculate the temperature value in

various time quanta of needed discrete point as well as the

temperature field verification by time quantum, they uses

inverse problem to discuss the impact of different

measurement errors and measurement point positions on the

inverse result. As demonstrated in their empirical analysis,

they states that the proposed method remains highly precise

despite the presence of measurement errors or the close

distance of measurement point position from the boundary

angular point angle [6].

Inverse Heat Transfer Problems (IHTP) are a significant class

of inverse problems. In a heat transfer problem, if the

boundary conditions, the thermo-physical properties, the

geometrical configuration of the heated body, and the applied

heat flux are all known but the temperature distribution is

unknown, the heat transfer problem is referred to as the direct

heat transfer problem. Contrary to the direct heat transfer

problem, the inverse heat transfer problem is concerned with

the determination of the boundary conditions, the thermo

physical properties, the geometrical configuration of the

heated body, and the applied heat flux by knowing the

temperature distribution on some part of the heat conducting

body boundary. Such problems are ill-posed. The difficulty in

solving ill-posed problems results from the fact that they are

inherently unstable and very sensitive to noise and

perturbation. In this paper, the authors states that, the

development of new numerical schemes, their numerical

implementation, and their efficiency improvement is of

crucial importance. Their aim is to estimate the thermal

conductivity, the heat transfer coefficient, and the heat flux in

irregular bodies (both separately and simultaneously) using a

two dimensional inverse analysis. Their numerical procedure

consists of an elliptic grid generation technique to generate a

mesh over the irregular body and solve for the heat

conduction equation. Their paper describes a novel sensitivity

analysis scheme to compute the sensitivity of the temperatures

to variation of the thermal conductivity, the heat transfer

coefficient, and the heat flux. The sensitivity analysis scheme

allows for the solution of inverse problem without requiring

solution of adjoin equation even for a large number of

unknown variables. They use conjugate gradient method

(CGM) to minimize the difference between the computed

temperature on part of the boundary and the simulated

measured temperature distribution. Their results reveal that

the proposed algorithm is very accurate and efficient [7].

In a paper reviewed topology optimization of conductive heat

transfer problems using parametric L-systems states that, to

prevent overheating, of electronic devices that are packed in

increasingly compact space which increases the heat density

generated by their component, their architecture must be

designed with an effective cooling system. They assert that

the first task of the cooling system is to conduct the heat from

the electronic components to a heat sink, using highly

conductive material, e.g. copper or aluminium. They shows

that the availability of conductive material is limited by space

constraints and because the manufacturers always wish to

reduce the cost of such components. Consequently, properly

distributing the high conductivity material through a finite

volume becomes an important topology optimization problem.

It is stated that, generative encodings have the potential of

improving the performance of evolutionary algorithms. They

apply parametric L-systems, which can be described as

developmental recipes, to evolutionary topology optimization

of widely studied two-dimensional steady-state heat

conduction problems. They translate L- systems into

geometries using the turtle interpretation, and evaluate their

objective functions, i.e. average and maximum temperatures,

using the Finite Volume Method (FVM). The method requires

two orders of magnitude fewer function evaluations, and

yields better results in 10 out of 12 tested optimization

problems (the result is statistically significant), than a

reference method using direct encoding. Their results indicate

that the method yields designs with lower average

temperatures than the widely used and well established SIMP

(Solid Isotropic Material with Penalization) method in

optimization problems where the product of volume fraction

and the ratio of high and low conductive material is less or

equal to 1. They demonstrate the ability of the methodology to

tackle multi-objective optimization problems with relevant

temperature and manufacturing related objectives [8].

In a paper that solve problem of optimal design of cooling

elements in modern battery systems based on mathematical

model and optimization problem, they consider a simplified

model of the problem based on some set of assumptions. They

consider a simple model of two-dimensional steady-state heat

conduction described by elliptic partial differential equations

and involving a one dimensional cooling element represented

by a contour on which interface boundary conditions are

specified. They states, the problem consists in finding an

optimal shape of the cooling element which will ensure that

the solution in a given region is close (in the least squares

sense) to some prescribed target distribution. They formulate

the problem as PDE-constrained optimization and the locally

optimal contour shapes are found using a gradient-based

descent algorithm in which the Sobolev shape gradients are

obtained using methods of the shaped differential calculus.

The main novelty of their work is an accurate and efficient

approach to the evaluation of the shape gradients based on a

boundary-integral formulation which exploits certain

analytical properties of the solution and does not require grids

adapted to the contour. Their approach is thoroughly validated

and optimization results obtained in different test problems

exhibit nontrivial shapes of the computed optimal contours

[9].

In a paper “The basic Heat Transfer Search (HTS)

Algorithm”, the authors considers only one of the modes of

heat transfer (conduction, convection, and radiation) for each

generation. In their proposed algorithms, the system

molecules are considered as the search agents that interact

with each other as well as with the surrounding to a state of

the thermal equilibrium. Another improvement is the

integration of a population regenerator to reduce the

probability of local optima stagnation. The population

regenerator is applied to the solutions without improvements

for a pre-defined number of iterations. The feasibility and

effectiveness of their proposed algorithms are investigated in

23 classical benchmark functions and 30 functions extracted

from the CEC2014 test suite. They also, solve two truss

design problems to demonstrate the applicability of the

proposed algorithms. Their results show that the IHTS

algorithm is more effective as compared to the HTS

algorithm. Moreover, the Improved Heat Transfer Search

Algorithm (IHTS algorithm) provides very competitive results

as compared to the existing meta-heuristics [10].

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

5

A paper aims at improving the performance of a smart

antenna by optimizing the radiation pattern using various

approaches. It is discover that high side lobe levels in a

radiation pattern often lead to unwanted patterns of radiation,

energy wastage and reduction in the overall performance of

the antenna. Optimizing the radiation pattern was done by

obtaining the optimum weights that give a radiation pattern

with reduced side lobe level (SLL). They used Least Mean

Squares (LMS) Algorithm and Genetic Algorithm (GA) to

determine the optimal antenna parameters that would

minimize side lobe level. They carried out simulations to

determine the effect of increase in inter-element spacing on

array factor and beam-width using the optimal antenna

parameters. From the results obtained for the same number of

elements, Least Mean Square gave the better result in form of

a more reduced beam-width while Genetic Algorithm

performed better for the reduction of the side lobe level. This

translates to the reduction of radiated power wasted in side

lobes for linear arrays in antenna systems [11].

3. AIM AND OBJECTIVES
The aim of this paper is to provide solutions by optimization

using C++ compiler, OpenMP and serial version of jacobi2d

source code that solves 2-dimensional heat conductivity

problem on grid machines to optimize in order to speed up the

performance of the code. The objectives are as follows:

a) To modify the source code to reflect the boundary

conditions for a rectangular 2D problem set at top 20oC,

bottom 60oC, left 10oC and right 80oC and compute the

temperature distribution with a range of problem sizes,

report the execution time and record the run-time of the

code using different levels of compiler optimization.

b) To transform the serial version to parallel by including

timers in order to report the parallel run-time and test the

OpenMP version to establish correct operation using 1, 2,

3 and 4 threads/processors, regardless of performance.

c) To use grid machines to run performance tests with the

OpenMP implemented and increase the problem size to

provide sufficient work that demonstrate useful speedup.

d) To provide speedup results for a range of problem sizes

using up to 8 threads using optimizations level.

e) To further modify the OpenMP application to improve

the parallel performance that would provide results that

permit comparison with the one previously obtained.

4. PROBLEM STATEMENT
The generalization of optimization theory and techniques to

other formulations comprises a large area of applied

mathematics. Optimization or mathematical programming is

the selection of a best element from some set of available

alternatives. An optimization problem consists of maximizing

or minimizing a real function by systematically choosing

input values from within an allowed set and computing the

value of the function. Most of the related literature reviewed

uses mathematical modelling and techniques to provide

optimization solutions for the 2-dimesnsional heat state

transfer problem where by optimizing a code to improve its

efficiency require experiment and measuring the performance

of the code must be done on a dedicated system. Execution

time must be measured on a dedicated machine because it is

used often so that performance can be independent of the

(memory) “size” of the application. No other user can start a

process and the user measuring the performance only runs the

minimum amount of processes and should present

measurement results as averages over a few experiments.

5. METHODOLOGY
The methodology adopted for this paper is using a dedicated

grid server that has 10 computers, 01-08 of the computers has

2 cores and 2 GB memory and 09 and 10 computers has 8

cores and 8 GB memory with C++ Compiler along with

source code (jacobi2d.c) that solve a rectangular 2

dimensional heat conductivity problem to optimized the code

performance in number of steps.

6. SOLUSIONS

6.1 Experimental Setting
Top 10oC

t[i][j+1]=10

Right 60oC

t[i+1][j]=60

Bottom 80oC

t[i][j-1]=80

Left 20oC

t[i-1][j]=20

Fig 4: Rectangular 2D with top 10oC, bottom 80oC, left

20oC and right 60oC.

Figure 4 above show rectangular 2D problem with boundary

conditions set at top 10oC, bottom 80oC, left 20oC and right

60oC.

Section 1.0 (Step 1)

In this step, jacobi2d.c source code (see appendix I) that

solves 2 dimensional heat conductivity problem is modified to

reflect the boundary conditions as shown in figure 4 above.

Start timer and stop timer (tstart and tstop) was included in

order to get serial (single processor) execution time.

1.1 Execution Time of grid-01 machine

The execution time of a given task is the time spent by the

system executing that task, including the time spent executing

system services on its behalf.

Fig. 5: runtime of a single processor

Figure 5 above show the execution time of the single

processor as 183 usec.

1.2 Recoding Runtime under a Range of

Problem Size Using Different Levels of

Compiler Optimization
To execute and record the runtime under a range of problem

sizes using different level of optimization level in order to

determine what time each level would produce, optimization

level 1 to 3 (–O1 to –O3) and up to 4 No. of thread were used.

Also, grid-09, Maximum of 100,000 problem size and 0.001

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

6

maximum difference tolerance (see appendix I) were used as

indicated in the table below.

Table 1.0 Problem Size 100000

No of

Thread

Optimization level Time (USEC)

1 -O1 34

2 -O1 43

4 -O1 69

Table 1.0 above show the runtime of each thread when

optimization level 1 (-O1) was applied. The table indicate that

the higher the number of threads, the higher the amount of

time require to run.

Table 1.1 Problem Size 100000

No of

Thread

Optimization level Time (USEC)

1 -O2 30

2 -O2 39

4 -O2 54

Table 1.1 above show the runtime of each thread as

optimization level 2 (-O2) was applied. The table indicate that

as optimization level is change using same problem size there

is probability of reduction in running time.

Table 1.2: Problem Size 100000

No of

Thread

Optimization level Time (USEC)

1 -O3 21

2 -O3 33

4 -O3 28

Table 1.2 above show the runtime of each thread as

optimization level 3 (-O3) was used while compiling. The

table indicates that optimization level 3 runtime is less than

the runtime yield by level 1 (-O1) and level 2 (-O2)

respectively.

Section 2.0 (Step 2)

2.1 Modifying the Serial Version of Step 1 to

Produce Parallel Version Using OpenMP.
In this step, the serial version (see Appendix I) of step 1 was

modified, (see Appendix II) compile and tested on a platform

that has OpenMP installed to establish correct operation using

1, 2, 3 and 4 threads/processors regardless of performance

because it is not an issue.

2.2 Compiling OpenMP (Parallel Version)
OpenMP require to use the appropriate compiler flag to "turn

on" OpenMP compilations. The following command was

used to compile the parallel version. Gcc –fopenmp omp.c –o

silver on grid-09 machine using –O3 (performance level 3)

and up to 1, 2, 3 and 4 number of threads was used. For the

number of thread define, the starttime and stoptime, problem

size and maximum difference tolerance (see Appendix II).

Table 2.0 below shows the runtime.

Table 2.0: Runtime of threads

NO OF THREAD RUNTIME (USEC)

1 147.62

2 106.33

4 87.09

Table 2.0 above shows the runtime of each number of thread

as compiled with performance level 3 (-O3). Performance in

this step is not an issue.

Section 3.0 (Step 3)

3.1 Performance Test of Parallel version

Implemented in step 2.
This step uses grid machines to run performance tests with the

OpenMP created in step 2, it is require to remove most of the

print output from the code and increase the problem size to

provide sufficient work to demonstrate useful speedup.

Therefore problem size was increase to 400000 maximum.

To provide speedup results for a range of problem sizes, up to

8 number of threads were used. In calculating the speedup, the

runtime of the single processor version produced in step 1

were used and optimizations level (-O3) was applied.

3.2 Speedup

The parallel speedup of a code tells how much performance

gain is achieved by running a program in parallel on multiple

processors. Speedup means the length of time it takes a

program to run on a single processor (t1), divided by the time

it takes to run on a multiple processors (tP) or serial time (Ts)

divided by parallel time (Tp) Speedup generally ranges

between 0 and P, where P is the number of processors [20].

Therefore,

Speedup SP = t1 / tP. In calculating speedup, SP = t1 / tP

formula was applied where t1 is single processor and tP is

multiple processor. The following table shows the

performance test/speedup as compiled using the following

command.

gcc -fopenmp -O3 omp.c -o silver.c

Table 3.0 Problem Size = 400000,

No of Thread

Serial time = 183

usec

Time (USEC)

SP = t1/tp

Speedup

1 106.73 -

2 127.04 1.440

4 85.78 2.133

8 43.36 4.220

Convergence Tolerance = 0.001

Compile: -fopenmp –O3

Grid Machine = 09

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

7

Table 3.0 above presents the runtime and speedup of each

number of thread using 400,000 maximum problem size and

optimization level 3 (-O3). As table 3.0 above indicated, 1

number of thread speedup is not calculated because is not

parallel, 2 number of thread speedup is calculated because it is

parallel and the speedup = 1.440, 4 number of threads is

calculated because it is parallel and the speedup = 2.133 also 8

number of threads is calculated because it is parallel and its

speedup = 4.220. It is interpreted as the table indicated that

code performance gain is achieved as the problem size

increases from 100,000 of step 1 to 400,000 and the code was

optimized.

Section 4.0 (Step 4)
4.1 Improving Parallel Performance of Step 3.
In this step, the modified parallel code (OpenMP version) of

step 3 was further modified to improve the parallel

performance of step 3 using grid-09 machine. This step

provides results that permit comparison with results obtained

in step 3. For the critical command used (see Appendix II).

To improve the parallel performance the code (file) were

modified by including Priv_difmax and rename to step4.c,

optimization level -O3 was applied and result of this step is

compared with step 3 (see table 4.0 and fig. 6) below. For the

Priv_difmax (see Appendix II). The following table shows

the improved parallel performance of step 3 as compiled using

the following command.

gcc -fopenmp -O3 omp.c -o abaho4.c

Table 4.0 Problem Size = 400000

NO OF THREAD

Serial time = 183

usec

TIME (USEC)

SP = t1/tp

SPEEDUP

1 147.8 -

2 82.27 2.224

4 41.82 4.375

8 24.11 7.590

Convergence Tolerance = 0.001

Compile: -fopenmp –O3

Grid Machine = 09

Table 4.0 above presents the improved runtime and speedup

of parallel performance of each number of thread using

400,000 maximum problem size and optimization level 3 (-

O3). As table 4.0 above indicated, 1 number of thread

speedup is not calculated because is not parallel, 2 number of

thread speedup is calculated because it is parallel, the speedup

= 2.224, 4 number of threads is calculated because it is

parallel, the speedup = 4.375 also 8 number of threads is

calculated because it is parallel and its speedup = 7.590. It is

interpreted as the table 4.0 above shows that code improved

parallel performance gain is achieved as the problem size

increases from 100, 000 to 400,000 and the code was further

modified and optimized.

7. RESULT (OPTIMAL

PERFORMANCE)
The following table and the corresponding graph shows the

comparisons of the speed up of step 3 and step 4.

Table 4.1 Step 3 and Step 4 Speedup Comparison

No of Threads

Speedup

Step 3

Speedup

 Step 4

1 - -

2 1.440 2.224

4 2.133 4.375

8 4.220 7.590

Table 4.1 above presents the comparison of speedup of step 3

and 4. Step3 speedup is the modified version of step 2 while

speedup of step 4 is the improved parallel performance of step

3. As table 4.1 above indicated there is remarkable increase in

performance in step 4 because the code was further modified.

Fig 6: Step 3 and Step 4 Speedup Comparison

Figure 6 above is the pictorial representation of the

comparison between the speedup of step 3 and step 4 as

indicated in table 4.1 above.

8. DISCUSSION
It is observed that step 3 speedup (performance gain) is

promising because the problem size was already increased but

can we get any more improvement from the parallelism itself?

Yes when the parallel code is improved more further the

parallel performance would improve as in step 4. It is

suggested Optimization level 3 (-O3) should be applied and

maintain in determining speedup because higher levels of

optimization should be used with caution because the higher

the optimization level the higher the probability that a

debugger may have trouble dealing with the code depending

on the compiler. It is also observed that increase in number of

thread does not minimizes the execution time in step 2 after

the serial source code version is modified to parallel OpenMP

version.

9. CONCLUSION
Essential benefit of parallel processing cannot be over

emphasized. The generalization of optimization theory and

techniques to other formulations comprises a large area of

applied mathematics. An optimization problem consists of

0

2

4

6

8

2 4 8

Sp
ee

d
u

p

Number of Threads

Step 3 and Step 4 SpeedUp
Comparison

SpeedUp Step 3 SpeedUp Step 4

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

8

maximizing or minimizing a real function by systematically

choosing input values from within an allowed set and

computing the value of the function. Most of the related

literature that contribute to knowledge uses mathematical

approach to provide optimization solutions for the 2-

dimesnsional heat conduction problem. This paper uses

computer science approach to provide solutions by optimizing

the source code that solve the 2-dimensional heat conduction

problem because optimizing a code to improve its efficiency

require experiment and measuring the performance of the

code must be done on a dedicated system. Execution time

must be measured on a dedicated machine because it is used

often so that performance can be independent of the (memory)

“size” of the application. In this paper, the process started

with serial processing in step 1 to get the execution time of the

single processor, in step 2, application produce in step 1 was

modified to produce the parallel version using OpenMP

regardless of performance because it is not an issue, in step 3,

OpenMP version of step 2 was modified to test the

performance of the parallel version and to determine the

speedup, in step 4, the OpenMP version of step 3 code was

further modified to improve the parallel performance which

provides results that permit comparison with result obtained in

step 3. Optimal (Result) performance was achieved in step 4.

This concludes that parallel processing method is best and

fastest than serial, and when the code is optimized, it will

yield best performance also parallel processing is more

suitable in solving complex problem as when the problem size

increase.

10. FUTURE WORK
Speedup Extremes is suggested as future work. Extremes of

speedup happen when speedup (SP) is greater than P or SP

less than 1, this is called super-linear speedup. How can

speedup be greater than the number of processors used? The

answer usually lies with the program's memory use, with

multiple processors each processor only gets part of the

problem. How does this help? It is possible that the smaller

problem can make better use of the memory hierarchy, the

caches and the registers. The smaller partitioned problem

may fit in cache when the entire problem would not. When

super-linear speedup is achieved, it is often an indication that

the sequential code, run on one processor, had serious cache

miss problems. The most common programs that achieve

super-linear speedup are those that solve dense linear algebra

problems (often using very large matrices and data sets).

Parallel Code is slower than Sequential Code: When speedup

is less than one, it means that the parallel code runs slower

than the sequential code sometimes called slowdown. This

happens when there isn't enough computation to be done by

each processor. The overhead of creating and controlling the

parallel tasks outweighs the benefits of parallel computation

causing the code to run slower. To eliminate this problem

you can try to increase the problem size or run with fewer

processors.

11. REFERENCES
[1] B. Blaise and L. Lawrence, “Introduction to Parallel

Computing National Laboratory”. Available from:

https://computing.llnl.gov/tutorials/parallel_comp/ [Last

Accessed 14 September, 2019].

[2] L. J. Villegas, E. Castro & J. Gutiérrez 2009

“Representations in problem solving: A case study with

optimization problems”, Electronic Journal of Research

in Educational Psychology, April 2009.

[3] IGI Disseminator of Knowledge [available from:

https://www.igi-global.com/dictionary/cuckoo-search-

for-optimization-and-computational-intelligence/21383

[Last Accessed 3 January, 2020]

[4] S. Almeida, 2013 “An Introduction to High Performance

Computing”, International Journal of Modern Physics,

2013.

[5] P. Krastev, “Introduction to Parallel Computing”, FAS

Research Computing, Faculty of Arts and Sciences,

Harvard Univ.

S. Wang and R. Ni, 2019 “Solving of Two-Dimensional

Unsteady-State Heat-Transfer Inverse Problem using

Finite Difference Method and Model Prediction Control

Method”, Volume 2019, Article ID 7432138, 12 pages,

Hindawi Publishing, 2019.

[6] F. Mohebbi and M. Sellier, “Parameter Estimation in

Heat Conduction using a Two Dimensional Inverse

Analysis”, International Journal for Computational

Methods in Engineering Science and Mechanics, 2016;

http://dx.doi.org/10.1080/15502287.2016.1204034

[7] T. J. Ikonen, G. Marck, A. Sobester and A. J. Keane,

2018 “Topology Optimization of Conductive Heat

Transfer Problems using Parametric L-Systems”,

Structural and Multidisciplinary Optimization, Volume

58, Issue 5, pp. 1899-1916, 2018.

[8] X. Peng, K. Niakhai and B. Protas, “A Method for

Geometry Optimization in a Simple Model of Two-

Dimensional Heat Transfer”, 2013, available at:

https://arxiv.org/pdf/1307.1248.pdf [Last Accessed 15

January, 2020]

[9] G. G. Tejani, V. J. Savsani, V. K. Patel and S. Mirjalili,

2019“An Improved Heat Transfer Search Algorithm for

Unconstrained Optimization Problems”, Journal of

Computational Design and Engineering, Volume 6, Issue

1, pp. 13-32, 2019.

[10] J. F. Opadiji, T. O. Fajemilehin and S. A. Olatunji, 2019

“Performance Evaluation of Equally Spaced Linear

Array Antenna”, © 2019 Afr. J. Comp. & ICT – All

Rights Reserved https://afrjcict.net Vol. 12, No. 2, June

2019, pp. 19 – 29 2019.

[11] ScienceDirect: “Heat conduction” From: Finite Element

Analysis Applications, 2018. Available

at:http?//African%20Journal/Heat%20Conduction%20-

%20an%20overview%20_%20ScienceDirect%20Topics.

html [Last Accessed 5 January, 2020]

[12] C. Massimo and A. Giovani, “Grid, Cloud and

Virtualization, Computer Communication and Network”,

available at:

http://www.asecib.ase.ro/cc/carti/Grids,%20Clouds%20a

nd%20Virtualization%20%5B2010%5D.pdf [Last

Accessed 1 January, 2020]

[13] S. Karishma and M. Michele, “Cloud Computing vs.

Grid Computing”, 2011. Available at:

http://www.brighthub.com/environment/green-

computing/articles/68785.aspx [Last Accessed 1 January,

2020]

[14] B. Hadi “Compilers What Every Programmer Should

Know about Compiler Optimizations”, .2015 available

from:https://msdn.microsoft.com/en-

https://computing.llnl.gov/tutorials/parallel_comp/
https://www.igi-global.com/dictionary/cuckoo-search-for-optimization-and-computational-intelligence/21383
https://www.igi-global.com/dictionary/cuckoo-search-for-optimization-and-computational-intelligence/21383
http://dx.doi.org/10.1080/15502287.2016.1204034
https://arxiv.org/pdf/1307.1248.pdf
https://afrjcict.net/
file:///C:/Users/aliyusani/Desktop/African%20Journal/Heat%20Conduction%20-%20an%20overview%20_%20ScienceDirect%20Topics.html
file:///C:/Users/aliyusani/Desktop/African%20Journal/Heat%20Conduction%20-%20an%20overview%20_%20ScienceDirect%20Topics.html
file:///C:/Users/aliyusani/Desktop/African%20Journal/Heat%20Conduction%20-%20an%20overview%20_%20ScienceDirect%20Topics.html
http://www.asecib.ase.ro/cc/carti/Grids,%20Clouds%20and%20Virtualization%20%5B2010%5D.pdf
http://www.asecib.ase.ro/cc/carti/Grids,%20Clouds%20and%20Virtualization%20%5B2010%5D.pdf
http://www.brighthub.com/members/mmcdonough.aspx
http://www.brighthub.com/environment/green-computing/articles/68785.aspx
http://www.brighthub.com/environment/green-computing/articles/68785.aspx
https://msdn.microsoft.com/en-gb/magazine/dn904673.aspx

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

9

gb/magazine/dn904673.aspx [Last Accessed: 14

December, 2016]

[15] Clouds, Grids and Virtualisation Introduction to

OpenMP © 2012 Greenwich Univ., available from

(http://openmp.org) [Last Accessed 2 January, 2020].

[16] Clouds, Grids and Virtualisation Introduction to

OpenMP © 2012 Greenwich Univ., available from

(http://openmp.org) [Last Accessed 2 January, 2020].

[17] Techopedi Runtime Library, available from

https://www.techopedia.com/definition/17261/runtime-

library [Last Accessed 2 January, 2020]

[18] HEATED_PLATE_OPENMP “2D Steady State Heat

Equation Using OpenMP”, available from:

https://people.sc.fsu.edu/~jburkardt/c_src/heated_plate_o

penmp/heated_plate_openmp.html, [Last Accessed 13

January, 2020]

[19] RWTH, “Compute Cluster Parallel Programming

OpenMP The Jacobi Solver Revisited”, available from

https://doc.itc.rwth-

aachen.de/display/CCP/The+Jacobi+Solver+revisited

[Last Accessed 15 January, 2020]

[20] Clouds, Grids and Virtualisation Performance Measures

University of Greenwich.

[21] L. G. Blanch “Two-Dimensional Modelling of Steady

State Heat Transfer in Solids with use of Spreadsheet

(MS EXCEL)”, Thermo-energetical Master Thesis, Dept.

Mech. Eng. and Com. Sci., Bielsko Univ., Bielsko-Biała,

Poland, Spring 2011

12. APPENDIX I

Serial Version of Jacobi2d Source Code

http://openmp.org/
https://www.techopedia.com/definition/17261/runtime-library
https://www.techopedia.com/definition/17261/runtime-library
https://people.sc.fsu.edu/~jburkardt/c_src/heated_plate_openmp/heated_plate_openmp.html
https://people.sc.fsu.edu/~jburkardt/c_src/heated_plate_openmp/heated_plate_openmp.html
https://doc.itc.rwth-aachen.de/display/CCP
https://doc.itc.rwth-aachen.de/display/CCP/OpenMP
https://doc.itc.rwth-aachen.de/display/CCP/The+Jacobi+Solver+revisited
https://doc.itc.rwth-aachen.de/display/CCP/The+Jacobi+Solver+revisited
https://doc.itc.rwth-aachen.de/display/CCP/The+Jacobi+Solver+revisited

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

10

13. APPENDIX II

Parallel Version (OpenMP) of Jacobi2d Source Code

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

11

IJCATM : www.ijcaonline.org

