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ABSTRACT 

This paper describes the use of genetic programming to 

automate the discovery of symbolic approximation formulae. 

Results are presented involving discovery of numeric 

approximation formulae to common functions, which are 

compared to Padé approximations obtained through a 

symbolic mathematics package. Based on these results, we 

consider genetic programming to be a powerful and effective 

technique for the automated discovery of symbolic 

approximation formulae. 
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1. INTRODUCTION 
Genetic Algorithms (GA) are probabilistic search algorithms 

characterized by the fact that a number N of potential 

solutions (called individuals) of the optimization problem 

simultaneously samples the search space (Holland, 1975). 

This population is modified according to the natural 

evolutionary process: after initialization, selection and 

recombination are executed in a loop until some termination 

criterion is reached. Genetic Programming (GP) uses the same 

principle as GA and the representation of the individuals is 

done by trees. Especially in control systems the ability of GP 

to generate symbolic solutions makes it an interesting 

optimization tool for many problems, e.g., symbolic 

regression is such a problem where functional dependencies 

are searched.  

This task is similar to the system identification problem, 

where the behavior of an unknown system is to be learned and 

predicted based on examples given as input-output data. 

Time-series prediction, pattern recognition and the 

classification problem also belong to this problem class (Iba, 

2019). The approximation function g(x) may be of predefined 

shape, for example a polynomial of a certain degree. In this 

case the regression simply consists of adjusting coefficients. 

Hence one is faced with a numerical optimization problem 

and all methods for numerical optimization may be applied, 

e.g., gradient methods, hill climbing methods, tabu search, 

genetic algorithms, evolution strategies. If the appearance of 

the function g(x) is unknown in advance these methods are 

not applicable. In this case GP is a perfect candidate for 

solving the problem. One specifies basic functions and 

terminals from which the approximation formula g can be 

composed and GP automatically evolves the shape and size of 

the formula.  

This paper presents a GP-based symbolic regression system 

applied to automate the discovery of approximation formulae 

to common functions. Each approximation is an expression 

that can be evaluated numerically at a number of points in a 

given range so that the relative accuracy of each 

approximation can be compared.  The next section gives an 

overview to related work; Sec. 3 explains what a symbolic 

regression is, Sec. 4 describes the regression model, Sec 5 

presents the symbolic approximation process and Sec 6 gives 

the results. Lastly, conclusions are given in Sec 7.  

2. RELATED WORK 
Approximation problem has been investigated by (Koza, 

1992; Andre & Koza, 1996; Chellapilla, 1997; Luke and 

Spector, 1997; Nordin, 1997; Ryan, Collins, & O'Neill, 8102). 

Notably, the economics exchange equation (M=PQ/V) (Koza, 

1990b) and Kepler's third law (Koza, 1990a) have been 

rediscovered from empirical data through GP symbolic 

regression. Approximation of specific functions has been 

performed by (Keane, Koza, & Rice 1993), who use genetic 

programming to find an approximation to the impulse 

response function for a linear time invariant system, and by 

(Blickle & Thiele, 1995), who derives three analytic 

approximation formulae for functions concerning 

performance of various selection schemes in genetic 

programming. 

3. SYMBOLIC REGRESSION WITH 

GENETIC PROGRAMMING 

The basic approach of using GP for symbolic regression has 

already been outlined by John Koza (Koza, 1999). The 

objective of solving a symbolic regression problem is finding 

a function that closely matches some unknown function on a 

certain interval. More formally, given an unknown function 

f(x) we want to find a function g(x) such that, where X is a set 

of values drawn from the interval, we are interested in. Note 

that we normally do not know f(x) precisely. We only know 

the set of sample points. The advantages of using GP for 

symbolic regression can be summarized as follows: 

 Size and shape of the approximation function need 

not be known in advance. 

 A small risk of over-fitting the data. 

 Arbitrary complex functions can be supported in the 

function set. Thereby allowing application specific 

knowledge to be included in the search process. 

4. THE REGRESSION MODEL  
In the regression model the individuals in the genetic 

population are compositions of primitive functions and 

terminals. The set of primitive functions used is. The set of 

terminals used is, where RPC symbolizes a random constant. 

Note that we chose the terminal and function sets so that any 

function can operate upon the result of any function or 

terminal. In this case they are all float, additionally we define 

divide by zero to be unity. Also note, all the operators have 

two operands, so the programs evolved have the form of a 

binary tree.  
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By limiting the set of functions to the arithmetic function set, 

it is possible to evolve rational polynomial approximations to 

functions, where a rational polynomial is defined as the ratio 

of two polynomial expressions. Since approximations evolved 

with the specified function set use only arithmetic operators, 

they can easily be converted to rational polynomial form by 

hand, or by using a symbolic mathematics package such as 

Maple. Approximations evolved in this manner can be 

compared to approximations obtained through other 

techniques such as padé approximations (see section 6). 

4.1 Initial Programs (Populations) 
The first step in actually performing a GP run is to initialize 

the population. There are two different methods for 

initializing tree structures in GP, namely full and grow 

(Wolfgang, 1998). The full method generates full trees of the 

given depth. The grow method generates trees of random 

structure of depth at most equal to the maximum depth. 

Diversity is valuable in GP populations. The above methods 

could result in a uniform set of structures in initial population 

because the routine is the same for all individuals. In our 

regression model we used ``ramped half-and-half'' method 

(Wolfgang, 1998) that combines the previous two methods to 

get maximum diversity in the initial population as follows: 

For i from 2 to max-initial-depth:  

1. Generate 
50

max 1initial depth

 
 

   
 % of 

the population using the ``full''  

 method  with maximum depth i.  

2. Generate 
50

max 1initial depth

 
 

   
 % of 

the population using the ``grow''  method with 

maximum depth i. 

4.2 The Fitness Function 
In regression model the fitness of a program or tree reflect the 

quality of approximation of the experimental data by a current 

expression represented by a tree. The fitness of program in the 

regression model is measured as follows. Let ( )x  be the  

program in hand and the working data stored in arrays []x  

and []y  representing input and output of test points which 

lie upon the curve we are attempting to match. The fitness of 

( )x  with respect to the data is the ratio: 

1
( ) (1)

1 | ( ( [ ]) [ ]) |
1

F n
x i y i

i





 


 

4.3 Genetic Operators 
Trees (programs) in our model evolve through the action of 

two basic genetic operators: crossover and mutation.  

Crossover (see Figure 1) is implemented as follows: 

 Select two trees randomly from the whole 

population, 

 Within each of these tress, randomly select one 

node, 

 Swap the sub-trees under the selected nodes, thus 

generating two offsprings belonging to the new 

population 

After crossover, a small number of random trees are changed 

using sub-tree mutation (see Figure 2): 

It is clear from the expression of the fitness that when  

| ( ( [ ]) [ ]) |
1

n
x i y i

i
 


 is closer to 0, we get a fitter 

program (i.e., ( )F  =1).  

 

Fig 1: Crossover Process. 
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Figure 2: The Mutation Process. 

5. THE SYMBOLIC APPROXIMATION 

PROCESS 
The following algorithm is used for symbolic regression:  

1. Start with a randomly generated population of trees 

(programs) composed of elements from the 

functional set and the terminal set. The root node of 

every tree must be restricted to a function. If a 

terminal is chosen, that node is an endpoint of the 

tree. To limit the complexity of the initial trees, an 

input parameter defines the maximum depth of the 

tree.  

2. Iteratively perform the following steps on the 

population until the termination criterion has been 

satisfied: 

a. Calculate the fitness of each tree (program) 

according to equation (1). 

b. Sort the population according to the fitness. 

c. Create a new population: 

i. In the reproduction stage kill a small percentage of 

the programs with the worst fitness. 

ii. Fill up the population with the surviving trees 

according to binary tournament selection (Thomas, 

1996).  

iii. Select a pair of trees from the current population. 

The same tree can be selected more than once to 

become a parent. Recombine sub-trees using the 

crossover operation. 

iv. with probability PC taken as 0.9. Two new 

offsprings are inserted into the new population. 
Crossover takes place starting from the second 

node, not the root, to avoid duplication of trees. 

v. With probability Pm taken as 0.3, mutate a randomly 

selected tree at a randomly selected point with a 

randomly generated sub-tree. 

3. Check the termination criterion, if not satisfied, 

perform the next iteration.  

The flowchart of the symbolic regression algorithm is shown 

in Figure 3. 

 

Fig 3: Flowchart of the Symbolic Regression Algorithm. 

6. EXPERIMENTS 
In the following we will apply the GP-symbolic regression 

algorithm for deriving approximation formulae of common 

mathematical functions. In this paper, we only present the 

results approximations to the following functions: the sin(x) 

function, the cos(x) function, the negative exponential exp (-

x), the positive exponential exp (x), and the tangent tan(x) 

function.  The functions are approximated over the interval [-

1, 1].  The training data consisted of 50 points, uniformly 

spaced over the interval of approximation. The parameter 

settings of the GP-symbolic regression algorithm are 

summarized in Table 1.  The evolved approximations are 

displayed in Table 2. 

Table 1. The Global Parameters of the GP-Symbolic 

Regression Algorithm. 

Selection method Tournament Selection 2 

Fitness equation 1 

Stop Criterion Maximum generations or perfect 

fit 

Crossover rate 0.9 
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Mutation Rate 0.3 

Population Size 500-15000 

Maximum generations 50-150 

Tree depth 10 

Error Rate 0.1-0.001 

 

Table 2. Evolved Approximations. 

Functions Evolved Approximations Fitness 

sin(x) 
1

36
( )

6

x x
P x


  0.999781 

cos(x) 

2

2 2

7 18
( )

2 18

x
P x

x

 



 0.999851 

Exp(x) 
3

3 29 27 36
( )

9 36

x x x
P x

x

   



 0.999644 

Exp(-x) 
4

2 3 4
( )

4

x x
P x

x

 



 0.988904 

Tan(x) 
5

3 515 5 3
( )

15

x x x
P x

 
  0.999554 

 

We evaluated our evolved approximations with padé 

approximations (Baker, 1975). A padé approximation to f(x) 

on [a, b] is the quotient of two polynomials Pn(x) and Qm(x) of 

degrees n and m, respectively. We use the notation Rn,m(x) to 

denote this quotient: 
( )

( ),
( )

P xnR xn m
Q xm

 . We have 

calculated all padé approximations of the approximated 

functions over the interval [-1, 1] using the Maple symbolic 

mathematics package as shown in Table 3. Tables 4 through 8 

display the numerical calculated values for each genetically 

evolved approximation and corresponding padé 

approximation. 

Table 3. Padé Approximations of the Approximated 

Functions. 

Function Padé Approximation 

Sin(x) 7 3

60( )
3,2 1 21

20

x x

R x

x







 

Cos(x) 2 415120 6900 313
( )

4,4 2 415120 660 13

x x
R x

x x

 


 
 

Exp(x) 2 1 21
5 20( )

2,3 3 3 12 31
5 20 60

x x

R x

x x x

 



  

 

Exp(-x) 3 3 12 31
5 20 60( )

3,2 2 1 21
5 20

x x x

R x

x x

  



 
 

Tan(x) 2 3

21( )
1,4 3 12 41

7 105

x x

R x

x x

 



 

 

 

Table 4. Numerical Evaluation of P1(x) and R3,2(x). 

X P1(x) R3,2(x) |P1(x)-R3,2(x)| 

-0.332000 

0.000000 

-0.106000 

0.096000 

0.058000 

-0.086000 

0.082000 

0.076000 

-0.158000 

-0.066000 

-0.319802 

0.000000 

-0.105603 

0.095705 

0.057935 

-0.085788 

0.081816 

0.075854 

-0.156685 

-0.065904 

-0.325934 

0.000000 

-0.105802 

0.095853 

0.057967 

-0.085894 

0.081908 

0.075927 

-0.157343 

-0.065952 

0.006132 

0.000000 

0.000199 

0.000148 

0.000033 

0.000106 

0.000092 

0.000073 

0.000658 

0.000048 

 

Table 5. Numerical Evaluation of P2(x) and R4,4(x). 

X P2(x) R4,4(x) |P2(x)-R4,4(x)| 

-0.044000 

-0.072000 

-0.128000 

-0.158000 

-0.106000 

-0.214000 

0.096000 

0.082000 

-0.140000 

0.148000 

0.999032 

0.997409 

0.991823 

0.987553 

0.994389 

0.977218 

0.995397 

0.996641 

0.990221 

0.989075 

0.999032 

0.997409 

0.991819 

0.987544 

0.994387 

0.977189 

0.995396 

0.996640 

0.990216 

0.989068 

0.000000 

0.000000 

0.000004 

0.000009 

0.000002 

0.000029 

0.000001 

0.000001 

0.000005 

0.000007 
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Table 6. Numerical Evaluation of P3(x) and R2,3(x). 

X P3(x) R2,3(x) |P3(x)-R2,3(x)| 

-0.066000 

0.000000 

0.044000 

-0.284000 

-0.018000 

0.076000 

0.058000 

-0.086000 

-0.426000 

0.024000 

0.936135 

1.000000 

0.956955 

0.753060 

0.982161 

1.078956 

1.059712 

0.917603 

0.654064 

1.024290 

0.936131 

1.000000 

0.956954 

0.752767 

0.982161 

1.078963 

1.059715 

0.917594 

0.653117 

1.024290 

0.000004 

0.000000 

0.000001 

0.000294 

0.000000 

0.000006 

0.000003 

0.000009 

0.000947 

0.000000 

 

7. CONCLUSIONS  
This paper has described a GP- based symbolic regression 

system to the approximation of functions and a number of 

experiments that were carried out using it. We have presented 

several successful experiments involving the application of 

genetic programming to the automated discovery of symbolic 

approximation formulae. In particular, we have presented 

positive results in applying genetic programming to the 

discovery of approximations to common functions, and have 

shown that evolved approximations can compare favorably 

with padé approximations. Based on these results, we consider 

genetic programming to be a powerful and effective technique 

for the automated discovery of approximation formulae. 

Table 7. Numerical Evaluation of P4(x) and R3,2(x). 

X P4(x) R3,2(x) |P4(x)-R3,2(x)| 

-0.066000 

-0.044000 

0.000000 

-0.044000 

-0.072000 

-0.018000 

0.058000 

0.024000 

0.082000 

0.074000 

1.068215 

1.044979 

1.000000 

1.044979 

1.074640 

1.018163 

0.943658 

0.976286 

0.921294 

0.928688 

1.068227 

1.044982 

1.000000 

1.044982 

1.074655 

1.018163 

0.943650 

0.976286 

0.921272 

0.928672 

0.000012 

0.000004 

0.000000 

0.000004 

0.000016 

0.000000 

0.000008 

0.000001 

0.000023 

0.000017 

 

 

 

Table 8. Numerical Evaluation of P5(x) and R3,2(x). 

X P5(x) R3,2(x) |P5(x)-R1,4(x)| 

-0.128000 

-0.158000 

-0.072000 

-0.106000 

0.310000 

-0.326000 

-0.086000 

-0.426000 

-0.234000 

-0.214000 

-0.128706 

-0.159334 

-0.072125 

-0.106400 

0.320503 

-0.338285 

-0.086213 

-0.454576 

-0.238411 

-0.217357 

-0.128704 

-0.159328 

-0.072125 

-0.106399 

0.320328 

-0.338062 

-0.086213 

-0.453789 

-0.238367 

-0.217328 

0.000002 

0.000006 

0.000000 

0.000001 

0.000175 

0.000223 

0.000000 

0.000787 

0.000045 

0.000029 
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