
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

29

Automated Discovery of Symbolic Approximation

Formulae using Genetic Programming

Mohamed M. Khatib
Faculty of Informatics Engineering

Aleppo University, Syria

ABSTRACT

This paper describes the use of genetic programming to

automate the discovery of symbolic approximation formulae.

Results are presented involving discovery of numeric

approximation formulae to common functions, which are

compared to Padé approximations obtained through a

symbolic mathematics package. Based on these results, we

consider genetic programming to be a powerful and effective

technique for the automated discovery of symbolic

approximation formulae.

Keywords
Genetic Programming, Padé approximations, Symbolic

Regression

1. INTRODUCTION
Genetic Algorithms (GA) are probabilistic search algorithms

characterized by the fact that a number N of potential

solutions (called individuals) of the optimization problem

simultaneously samples the search space (Holland, 1975).

This population is modified according to the natural

evolutionary process: after initialization, selection and

recombination are executed in a loop until some termination

criterion is reached. Genetic Programming (GP) uses the same

principle as GA and the representation of the individuals is

done by trees. Especially in control systems the ability of GP

to generate symbolic solutions makes it an interesting

optimization tool for many problems, e.g., symbolic

regression is such a problem where functional dependencies

are searched.

This task is similar to the system identification problem,

where the behavior of an unknown system is to be learned and

predicted based on examples given as input-output data.

Time-series prediction, pattern recognition and the

classification problem also belong to this problem class (Iba,

2019). The approximation function g(x) may be of predefined

shape, for example a polynomial of a certain degree. In this

case the regression simply consists of adjusting coefficients.

Hence one is faced with a numerical optimization problem

and all methods for numerical optimization may be applied,

e.g., gradient methods, hill climbing methods, tabu search,

genetic algorithms, evolution strategies. If the appearance of

the function g(x) is unknown in advance these methods are

not applicable. In this case GP is a perfect candidate for

solving the problem. One specifies basic functions and

terminals from which the approximation formula g can be

composed and GP automatically evolves the shape and size of

the formula.

This paper presents a GP-based symbolic regression system

applied to automate the discovery of approximation formulae

to common functions. Each approximation is an expression

that can be evaluated numerically at a number of points in a

given range so that the relative accuracy of each

approximation can be compared. The next section gives an

overview to related work; Sec. 3 explains what a symbolic

regression is, Sec. 4 describes the regression model, Sec 5

presents the symbolic approximation process and Sec 6 gives

the results. Lastly, conclusions are given in Sec 7.

2. RELATED WORK
Approximation problem has been investigated by (Koza,

1992; Andre & Koza, 1996; Chellapilla, 1997; Luke and

Spector, 1997; Nordin, 1997; Ryan, Collins, & O'Neill, 8102).

Notably, the economics exchange equation (M=PQ/V) (Koza,

1990b) and Kepler's third law (Koza, 1990a) have been

rediscovered from empirical data through GP symbolic

regression. Approximation of specific functions has been

performed by (Keane, Koza, & Rice 1993), who use genetic

programming to find an approximation to the impulse

response function for a linear time invariant system, and by

(Blickle & Thiele, 1995), who derives three analytic

approximation formulae for functions concerning

performance of various selection schemes in genetic

programming.

3. SYMBOLIC REGRESSION WITH

GENETIC PROGRAMMING

The basic approach of using GP for symbolic regression has

already been outlined by John Koza (Koza, 1999). The

objective of solving a symbolic regression problem is finding

a function that closely matches some unknown function on a

certain interval. More formally, given an unknown function

f(x) we want to find a function g(x) such that, where X is a set

of values drawn from the interval, we are interested in. Note

that we normally do not know f(x) precisely. We only know

the set of sample points. The advantages of using GP for

symbolic regression can be summarized as follows:

 Size and shape of the approximation function need

not be known in advance.

 A small risk of over-fitting the data.

 Arbitrary complex functions can be supported in the

function set. Thereby allowing application specific

knowledge to be included in the search process.

4. THE REGRESSION MODEL
In the regression model the individuals in the genetic

population are compositions of primitive functions and

terminals. The set of primitive functions used is. The set of

terminals used is, where RPC symbolizes a random constant.

Note that we chose the terminal and function sets so that any

function can operate upon the result of any function or

terminal. In this case they are all float, additionally we define

divide by zero to be unity. Also note, all the operators have

two operands, so the programs evolved have the form of a

binary tree.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

30

By limiting the set of functions to the arithmetic function set,

it is possible to evolve rational polynomial approximations to

functions, where a rational polynomial is defined as the ratio

of two polynomial expressions. Since approximations evolved

with the specified function set use only arithmetic operators,

they can easily be converted to rational polynomial form by

hand, or by using a symbolic mathematics package such as

Maple. Approximations evolved in this manner can be

compared to approximations obtained through other

techniques such as padé approximations (see section 6).

4.1 Initial Programs (Populations)
The first step in actually performing a GP run is to initialize

the population. There are two different methods for

initializing tree structures in GP, namely full and grow

(Wolfgang, 1998). The full method generates full trees of the

given depth. The grow method generates trees of random

structure of depth at most equal to the maximum depth.

Diversity is valuable in GP populations. The above methods

could result in a uniform set of structures in initial population

because the routine is the same for all individuals. In our

regression model we used ``ramped half-and-half'' method

(Wolfgang, 1998) that combines the previous two methods to

get maximum diversity in the initial population as follows:

For i from 2 to max-initial-depth:

1. Generate
50

max 1initial depth

 % of

the population using the ``full''

 method with maximum depth i.

2. Generate
50

max 1initial depth

 % of

the population using the ``grow'' method with

maximum depth i.

4.2 The Fitness Function
In regression model the fitness of a program or tree reflect the

quality of approximation of the experimental data by a current

expression represented by a tree. The fitness of program in the

regression model is measured as follows. Let ()x be the

program in hand and the working data stored in arrays []x

and []y representing input and output of test points which

lie upon the curve we are attempting to match. The fitness of

()x with respect to the data is the ratio:

1
() (1)

1 | (([]) []) |
1

F n
x i y i

i

4.3 Genetic Operators
Trees (programs) in our model evolve through the action of

two basic genetic operators: crossover and mutation.

Crossover (see Figure 1) is implemented as follows:

 Select two trees randomly from the whole

population,

 Within each of these tress, randomly select one

node,

 Swap the sub-trees under the selected nodes, thus

generating two offsprings belonging to the new

population

After crossover, a small number of random trees are changed

using sub-tree mutation (see Figure 2):

It is clear from the expression of the fitness that when

| (([]) []) |
1

n
x i y i

i

 is closer to 0, we get a fitter

program (i.e., ()F =1).

Fig 1: Crossover Process.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

31

Figure 2: The Mutation Process.

5. THE SYMBOLIC APPROXIMATION

PROCESS
The following algorithm is used for symbolic regression:

1. Start with a randomly generated population of trees

(programs) composed of elements from the

functional set and the terminal set. The root node of

every tree must be restricted to a function. If a

terminal is chosen, that node is an endpoint of the

tree. To limit the complexity of the initial trees, an

input parameter defines the maximum depth of the

tree.

2. Iteratively perform the following steps on the

population until the termination criterion has been

satisfied:

a. Calculate the fitness of each tree (program)

according to equation (1).

b. Sort the population according to the fitness.

c. Create a new population:

i. In the reproduction stage kill a small percentage of

the programs with the worst fitness.

ii. Fill up the population with the surviving trees

according to binary tournament selection (Thomas,

1996).

iii. Select a pair of trees from the current population.

The same tree can be selected more than once to

become a parent. Recombine sub-trees using the

crossover operation.

iv. with probability PC taken as 0.9. Two new

offsprings are inserted into the new population.
Crossover takes place starting from the second

node, not the root, to avoid duplication of trees.

v. With probability Pm taken as 0.3, mutate a randomly

selected tree at a randomly selected point with a

randomly generated sub-tree.

3. Check the termination criterion, if not satisfied,

perform the next iteration.

The flowchart of the symbolic regression algorithm is shown

in Figure 3.

Fig 3: Flowchart of the Symbolic Regression Algorithm.

6. EXPERIMENTS
In the following we will apply the GP-symbolic regression

algorithm for deriving approximation formulae of common

mathematical functions. In this paper, we only present the

results approximations to the following functions: the sin(x)

function, the cos(x) function, the negative exponential exp (-

x), the positive exponential exp (x), and the tangent tan(x)

function. The functions are approximated over the interval [-

1, 1]. The training data consisted of 50 points, uniformly

spaced over the interval of approximation. The parameter

settings of the GP-symbolic regression algorithm are

summarized in Table 1. The evolved approximations are

displayed in Table 2.

Table 1. The Global Parameters of the GP-Symbolic

Regression Algorithm.

Selection method Tournament Selection 2

Fitness equation 1

Stop Criterion Maximum generations or perfect

fit

Crossover rate 0.9

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

32

Mutation Rate 0.3

Population Size 500-15000

Maximum generations 50-150

Tree depth 10

Error Rate 0.1-0.001

Table 2. Evolved Approximations.

Functions Evolved Approximations Fitness

sin(x)
1

36
()

6

x x
P x

 0.999781

cos(x)

2

2 2

7 18
()

2 18

x
P x

x

 0.999851

Exp(x)
3

3 29 27 36
()

9 36

x x x
P x

x

 0.999644

Exp(-x)
4

2 3 4
()

4

x x
P x

x

 0.988904

Tan(x)
5

3 515 5 3
()

15

x x x
P x

 0.999554

We evaluated our evolved approximations with padé

approximations (Baker, 1975). A padé approximation to f(x)

on [a, b] is the quotient of two polynomials Pn(x) and Qm(x) of

degrees n and m, respectively. We use the notation Rn,m(x) to

denote this quotient:
()

(),
()

P xnR xn m
Q xm

 . We have

calculated all padé approximations of the approximated

functions over the interval [-1, 1] using the Maple symbolic

mathematics package as shown in Table 3. Tables 4 through 8

display the numerical calculated values for each genetically

evolved approximation and corresponding padé

approximation.

Table 3. Padé Approximations of the Approximated

Functions.

Function Padé Approximation

Sin(x) 7 3

60()
3,2 1 21

20

x x

R x

x

Cos(x) 2 415120 6900 313
()

4,4 2 415120 660 13

x x
R x

x x

Exp(x) 2 1 21
5 20()

2,3 3 3 12 31
5 20 60

x x

R x

x x x

Exp(-x) 3 3 12 31
5 20 60()

3,2 2 1 21
5 20

x x x

R x

x x

Tan(x) 2 3

21()
1,4 3 12 41

7 105

x x

R x

x x

Table 4. Numerical Evaluation of P1(x) and R3,2(x).

X P1(x) R3,2(x) |P1(x)-R3,2(x)|

-0.332000

0.000000

-0.106000

0.096000

0.058000

-0.086000

0.082000

0.076000

-0.158000

-0.066000

-0.319802

0.000000

-0.105603

0.095705

0.057935

-0.085788

0.081816

0.075854

-0.156685

-0.065904

-0.325934

0.000000

-0.105802

0.095853

0.057967

-0.085894

0.081908

0.075927

-0.157343

-0.065952

0.006132

0.000000

0.000199

0.000148

0.000033

0.000106

0.000092

0.000073

0.000658

0.000048

Table 5. Numerical Evaluation of P2(x) and R4,4(x).

X P2(x) R4,4(x) |P2(x)-R4,4(x)|

-0.044000

-0.072000

-0.128000

-0.158000

-0.106000

-0.214000

0.096000

0.082000

-0.140000

0.148000

0.999032

0.997409

0.991823

0.987553

0.994389

0.977218

0.995397

0.996641

0.990221

0.989075

0.999032

0.997409

0.991819

0.987544

0.994387

0.977189

0.995396

0.996640

0.990216

0.989068

0.000000

0.000000

0.000004

0.000009

0.000002

0.000029

0.000001

0.000001

0.000005

0.000007

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

33

Table 6. Numerical Evaluation of P3(x) and R2,3(x).

X P3(x) R2,3(x) |P3(x)-R2,3(x)|

-0.066000

0.000000

0.044000

-0.284000

-0.018000

0.076000

0.058000

-0.086000

-0.426000

0.024000

0.936135

1.000000

0.956955

0.753060

0.982161

1.078956

1.059712

0.917603

0.654064

1.024290

0.936131

1.000000

0.956954

0.752767

0.982161

1.078963

1.059715

0.917594

0.653117

1.024290

0.000004

0.000000

0.000001

0.000294

0.000000

0.000006

0.000003

0.000009

0.000947

0.000000

7. CONCLUSIONS
This paper has described a GP- based symbolic regression

system to the approximation of functions and a number of

experiments that were carried out using it. We have presented

several successful experiments involving the application of

genetic programming to the automated discovery of symbolic

approximation formulae. In particular, we have presented

positive results in applying genetic programming to the

discovery of approximations to common functions, and have

shown that evolved approximations can compare favorably

with padé approximations. Based on these results, we consider

genetic programming to be a powerful and effective technique

for the automated discovery of approximation formulae.

Table 7. Numerical Evaluation of P4(x) and R3,2(x).

X P4(x) R3,2(x) |P4(x)-R3,2(x)|

-0.066000

-0.044000

0.000000

-0.044000

-0.072000

-0.018000

0.058000

0.024000

0.082000

0.074000

1.068215

1.044979

1.000000

1.044979

1.074640

1.018163

0.943658

0.976286

0.921294

0.928688

1.068227

1.044982

1.000000

1.044982

1.074655

1.018163

0.943650

0.976286

0.921272

0.928672

0.000012

0.000004

0.000000

0.000004

0.000016

0.000000

0.000008

0.000001

0.000023

0.000017

Table 8. Numerical Evaluation of P5(x) and R3,2(x).

X P5(x) R3,2(x) |P5(x)-R1,4(x)|

-0.128000

-0.158000

-0.072000

-0.106000

0.310000

-0.326000

-0.086000

-0.426000

-0.234000

-0.214000

-0.128706

-0.159334

-0.072125

-0.106400

0.320503

-0.338285

-0.086213

-0.454576

-0.238411

-0.217357

-0.128704

-0.159328

-0.072125

-0.106399

0.320328

-0.338062

-0.086213

-0.453789

-0.238367

-0.217328

0.000002

0.000006

0.000000

0.000001

0.000175

0.000223

0.000000

0.000787

0.000045

0.000029

8. REFERENCES
[1] Andre, D. & Koza, J. R. (1996) Parallel Genetic

Programming: A scalable implementation using the

transputer network architecture. In P. J. Angeline and K.

E. Kinnear, Jr. (eds.), Advances in Genetic Programming

2, 317-338. Cambridge, MA: MIT Press.

[2] Andre, D. & Koza, J. R. (1996) Parallel Genetic

Programming: A scalable implementation using the

transputer network architecture. In P. J. Angeline and K.

E. Kinnear, Jr. (eds.), Advances in Genetic Programming

2, 317-338. Cambridge, MA: MIT Press.

[3] Baker, G. A (1975) Essentials of Padé Approximants.

New York: Academic Press.

[4] Blickle, T. & Thiele, L. (1995) A Comparison of

Selection Schemes Used in Genetic Algorithms. TIK-

Report 11, TIK Institut fur Technische Informatik und

Kommunikationsnetze, Computer Engineering and

Networks Laboratory, ETH, Swiss Federal Institute of

Technology.

[5] Chellapilla, K. (1997) Evolving Computer Programs

without Subtree Crossover. IEEE Transactions on

Evolutionary Computation 1(3):209-216.

[6] Faires, D. & Burden, R. (1998) Numerical Methods,

Brooks/Cole Publishing Company, USA.

[7] Holland, J. H. (1975) Adaptation in Natural and

Artificial Systems. Ann Arbor, Michigan: The University

of Michigan Press.

[8] Iba, H., Kurita, T., de Garis, H., & Sato, T. (8102)

System identification using structured genetic

algorithms. In Stefanie Forrest, editor, Proceedings of the

Fifth International Conference on Genetic Algorithms,

pages 279-286, San Mateo, CA, Morgan Kaufmann

Publishers.

[9] Keane, M. A., Koza, J. R. & Rice, J. P. (1993) Finding

an impulse response function using genetic

programming. In Proceedings of the 1993 American

Control Conference, 3:2345-2350.

[10] Koza, J. R. (1990a) Genetic Programming: A paradigm

for genetically breeding populations of computer

programs to solve problems. Stanford University

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 13, April 2020

34

Computer Science Department technical report STAN-

CS-90-1314.

[11] Koza, J. R. (1990b). A Genetic Approach to Econometric

Modeling. Presented at Sixth World Congress of the

Econometric Society, Barcelona, Spain.

[12] Koza, J. R. (1992). Genetic Programming: On the

Programming of Computers by Means of Natural

Selection. Cambridge, MA: MIT Press.

[13] Koza, J.R., Bennett III, F.H. Andre, D. and Keane, M.A.

(1999), “Genetic Programming III: Darwinian Invention

and Problem Solving”, Morgan Kaufmann.

[14] Luke, S. & Spector, L. (1997) A Comparison of

Crossover and Mutation in Genetic Programming. In J.

R. Koza, K. Deb, M. Dorigo, D. B. Fogel, M. Garzon, H.

Iba, and R. L. Riolo (eds.), Genetic Programming 1997:

Proceedings of the Second Annual Conference, 240-248.

San Mateo, CA: Morgan Kaufmann.

[15] Nordin, P. (1997) Evolutionary Program Induction of

Binary Machine Code and its Applications. PhD thesis,

der Universitat Dortmund am Fachereich Informatik.

[16] Ryan, C., Collins, J. & O'Neill, M. (8102). Grammatical

Evolution: evolving programs for an arbitrary language.

In W. Banzhaf, R. Poli, M. Schoenauer, and T. C.

Fogarty (eds.), Proceedings of the First European

Workshop on Genetic Programming, 1391:83-95. New

York: Springer-Verlag.

[17] Thomas, B. (1996) Evolutionary Algorithms in Theory

and Practice. Oxford University Press, Inc.

[18] Wolfgang, B., Peter, N., Robert, E. K., & Frank, D. F.

(1998) Genetic Programming- an introduction: on the

automatic evolution of computer programs and its

applications. Morgan Kaufmann Publishers, San

Francisco.

IJCATM : www.ijcaonline.org

