
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 15, April 2020

10

An Enhanced Non-Cryptographic Hash Function

Vivian Akoto-Adjepong
University of Energy and Natural

Resources
Department of Computer Science

and Informatics
P. O. Box 214 Sunyani, Ghana

Michael Asante
Kwame Nkrumah University of

Science and Technology
Department of Computer Science
Private Mail Bag, KNUST, Kumasi,

Ghana

Steve Okyere-Gyamfi
Christian Service University

College
Department of Computer Science

and Information Technology
P. O. Box 3110 Kumasi, Ghana

ABSTRACT

How to store information for it to be searched and retrieved

efficiently is one of the fundamental problems in computer

science. There exists sequential search that support operation

such as INSERT, DELETE and RETRIVAL in O (n log (n))

expected time in operations. Therefore in many applications

where these operations are needed, hashing provides a way to

reduce expected time to O (1).There are many different types

of hashing algorithms or functions such as cryptographic hash

functions, non-cryptographic hash function, checksums and

cyclic redundancy checks. Non-cryptographic hash functions

(NCHFs) take a string as input and compute an integer output

(hash index) representing the position in memory the string is

to be stored. The desirable property of a hash function is that

the outputs are evenly distributed across the domain of

possible outputs, especially for inputs that are similar. Non-

cryptographic hash functions have an immense number of

applications, ranging from compilers and databases to

videogames, computer networks, etc. A suitable hash function

and strategy must be used for specific applications. This will

help efficient use of memory space and access time.

The most essential features of non-cryptographic hash

functions is its % distribution, number of collisions,

performance, % avalanche and quality which are the

properties of the hash function. Basing on the properties

assessed using a test suite; the results clearly demonstrated

that: the proposed hash function that was developed had better

properties as compared to other hash functions.

General Terms
Algorithms and functions.

Keywords

Non Cryptographic Hash Function, % distribution, number of

collisions, performance, % avalanche and quality.

1. INTRODUCTION
One basic problem in computer science is how to efficiently

search and retrieve stored information.

There exists sequential search that support INSERTION,

DELETION and RETRIVAL operations in expected time of

O (n log (n)). Therefore in applications where INSERTION,

DELETION and RETRIVAL are needed, using hash

algorithms help to minimize expected time to O (1).

Hashing is used to store and retrieve information in databases.

This deals with key attributes or properties and make use of

each individual character numbers in the data or key. To

implement keyed tables, hashing is a recommended technique

[1][2].

Algorithm for lists, trees and stacks takes time proportional to

the data size, i.e., O (n).

In order to locate and retrieve information, hashing is a

recommended scheme because is effective and efficient [18].

A suitable hash function and strategy must be used to solve

particular problems or for specific application. This will help

efficient use of memory space and reduce access time.

There exist different types of hash algorithms such as non-

cryptographic hash algorithms or functions, cryptographic

hash algorithms or functions, checksums and cyclic

redundancy checks [1][3].

Independent of the inputs of a hash functions, they are

optimized to work very well in different scenarios. The

criteria for optimization is based on the assertion that, with

hash functions, there should be equal probability with the

generation of each output and a little change in inputs, must

result in a huge change in outputs [17].

The main focus of study is non-cryptographic hash functions.

Non cryptographic hash algorithms or functions (NCHFs)

take its input as string and compute an integer output (hash

index) which represent the position in memory the string is to

be stored. One of the important properties of hash functions is

the even distribution of outputs across the space allocated or

domain, especially for similar inputs.

NCHF’s are functions that are designed not to withstand an

attacker’s effort unlike cryptographic hash functions which is

designed to withstand an attacker’s effort but are much

slower. Therefore, NCHF’s are faster at the expense of it not

able to withstand attackers’ effort. NCHFs are used in a

number of applications, ranging from databases and compilers

to videogames, dictionaries, computer networks, hash tables

and other data structures involved in most programming

languages. Fast lookup that is found in hash tables are used by

numerous network applications [16].

Such hash functions as stated above are: Pearson hash, FNV

hash, Bob Jenkins hash, murmur hash, city hash, buz hash etc.

[1] [3] [4].

In computing, memory usage and return time are very

important resources to consider in running an application.

This is dependent on the particular hash function one chooses

to solve a problem.

2. REVIEW OF LITERATURE
Below is a discussion of some popular non-cryptographic

hash functions.

2.1 Bob Jenkins hash function
Jenkins is known to be designing hash functions for table

lookup. Bob Jenkins created a multi byte keyed function

which is made up of a collection of non-cryptographic hash

functions. This function can be used to detect data that are

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 15, April 2020

11

similar in a database and as checksums.

There exist variants of bob Jenkins hash functions such as

Jenkins's one at a time hash, lookup2, lookup3 and

spookyHash.

There are three fundamental stages in Bob Jenkins hash

function:

 Combining key length and initialization value to set

up an initial state.

 Mixing of bits of the keys in 12 byte increments.

 Processing of remaining bytes of the key.

2.1.1 Jenkins's one at a time hash
This hash function is the first variant of Bob Jenkins hash

function. It was formally published in 1997. The function has

three stages as stated above. The One-at-a-Time hash is a

considerably simpler algorithm of his design. It quickly

reaches avalanche and performs very well. It has been used in

several high level scripting languages for their associative

array data type as the hash function. Some few bits are mixed

weakly in the input data as compared to bits that made up the

output hash. By default, the programming language Perl, uses

Bob Jenkins one at a time hash but can be implemented by the

use of Sip hash.

2.1.1.1 Lookup2
This function succeeded Bob Jenkins one at a time hash. The

lookup2 function is also known as (My Hash). This function

is now obsolete because of the other functions that Jenkins has

released. It is used in many applications [5].

Lookup2 is found in the following applications:

 SPIN model checker: this checker is for detecting

error. Researchers Dillinger and Manolios in a paper

about this program noted that lookup2 hash function

is commonly used in implementing bloom filters

and hash tables [6].

 Netfilter firewall component of Linux: this has

taken the place of a collision sensitive function that

existed earlier [7].

 Jenkins hash function was used in solving the kalah

game application, instead of a more commonly used

Zobrist hashing technique that was used; the speed

of Jenkins hash on kalahboards and the rule of

kalah game which causes a radical alter of the board

when performance is low negates the importance of

Zobrist incremental hash function [8].

2.1.1.2 Lookup3
Lookup3 hash takes in input data in 12 byte chunks. This is

very useful when the simplicity of the function is not as useful

as speed. For large data, improved speed will be very useful

but how complex a function is can cause consequences in

speed.

The hashlittle function for a given length and initialization

value provided, computes a hash of a single key. For each

mixing iteration, the function reduces the key length by 12

bytes. A part of the function that is most computationally

expensive is the mixing of the bits of a given key. When a key

reaches a length less or equal than 12 bytes the remaining bits

are mixed within the hash function after it is extracted [9].

2.1.1.3 SpookyHash
In 2011, Bob Jenkins brought into the system a 128 bit hash

known as SpookyHash. SpookyHash is faster compared to

lookup3. SpookyHash is a non-cryptographic hash function

released into the public domain. It produces 128 bit keys for

array byte of any length. 64-bit and 32-bit hash values can

also be produce at a similar speed.

The Spooky Hash allows a 128 bit seed. It is given a name

SpookyHash because it was released on Halloween.

Reasons to use spookyHash

 spookyHash is fast - For keys that are short it is one byte

per cycle, this comes with 30 cycles of cost for startup.

For long keys, it is three bytes per cycle, this occupies

only one core.

 spookyHash is good - avalanche is achieved for one(1)-

bit and two(2)-bit inputs. It is designed to work for any

kind or type of key that is made to be like list of arrays of

bytes or array of bytes.

When not to use spookyHash

 When there involve an attacker: The reason is that,

spooky Hash is not cryptographic. When a digest is

given, an attacker who is resourceful can create a tool

which can give a message that is modified having an

equal hash as the message originally sent. Such tools

written can be used by an opponent who is not

resourceful to perform their actions.

 Another case not to use spooky Hash is that Big-endian

machines are not in support of its new implementations.

Good result can be produced when run on big endians

but the results will differ from the use of little endian

machines. By default, machines which do not read

unaligned data cannot also run spooky hash.

For keys that are long, the inner loop of the

SpookyHash:Mix(),takes in 8 byte input data, performs xor

operation, and another XOR operation, rotation, and then

addition.

Whereas Spooky::Mix() handles keys that are long well, it

needs four repetitions for mixing finally, and contribute to

huge starting cost which makes keys that are short costive.

Therefore ShortHash helps in producing a shorter key of 128

bit hash which has a small cost of startup, and Spooky::End()

help minimize the mixing cost that is final [10].

2.2 Murmur hash function
This is a function that is generally suitable for table lookup

[11]. This exist in various variants and was created in 2008 by

Austin Appleby.

The name is from operations which is simple in sequence and

performs a thorough mixing of the bits of a given value: x *=

m; x = rotate_left(x,r), performs multiplication and then

rotation. This is repeated for about 15 times by using good

values for m and r and the value of x will then pseudo

randomize. The use of multiplication and rotation has some

small weakness when they are used in creating hash functions.

Therefore multiplication, shift and XOR operators are

recommended for use.

When comparism was made between MurmurHash and other

common hash functions, murmur hash had a good

performance in the distribution of keys [12]. The earlier

MurmurHash2 produces 32bit or 64bit hash value.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 15, April 2020

12

Two variations of Murmur hash generate 64bit values. That is

MurmurHash64A, designed for 64bit processors, and

MurmurHash64B, designed for 32bit processors [13].

Someone who uses MurmurHash2A saw a little bug in the

C++ implementation, which causes the C and C++ variants to

give different hashes for keys, which the size does not

conform to multiples of four. The bug was fixed and the code

was updated.

Other people also saw a bug in MurmurHash2: this was that

because, the 4byte code was repeated a lot of times, it had a

high collision chance. This problem was not a problem that

could be fixed but does not cause much problem. While this

bug was under investigation there emerged a new mix

function that was an improvement on the earlier function and

was published as MurmurHash3. The current version of

MurmurHash, MurmurHash3, produces 32bit or 128bit hash

value.

Murmurhash3’s performance is better than MurmurHash2.

There was no repetitive flaw, had variants in 32bits, 64bits

and 128bits for x86 and x64 machines. The 128bit x64 variant

is much faster (that is over five gigabytes per second on 3

gigahertz core 2).

Murmurhash3 passed all test but failed avalanche [11].

2.3 Buz hash function
Buz hash function produces up to 232 hash values that are

different, but this function uses a lot of Pascal initialization

code. In some programming languages, the pascal

initialization is done in the code itself; therefore, there will be

no need for an initialization call.

For Buz hash function as in pkp hash function, added noise is

from a random table, but in pkp hash function, it is from

characters in an array. Buz hash uses set of 32bit random

aliases for every character bit. Because of this, each bit

location have one-half of its aliases having one and the other

having zero, and these are saved in a table. During hashing,

the random aliases of every character bit is XOR-ed. XOR-ing

have the chance of inverting every character bit by 50%.

For the Java buz hash, it works for keys that have short length

than 65 key bits: this is because it was designed for such keys.

Most programs are not limited much because of this because

most programs uses character bits less than 64 [14].

Buz function was improved by Robert Uzgalis. This hash

function is effective and efficient but the pascal initialization

code makes it a little cumbersome. [15]

3. METHODOLOGY
The proposed hash function requires a common initial value

and an offset. It uses bitwise operators such as shift, bitwise

AND, bitwise XOR and bitwise OR. All these are mixed up

with the individual characters of the word to be hashed.

3.1 Steps for mixing individual characters

of a word
 For the mixing of individual characters, the ASCII

value of the new character (ANC) is left shift with

the hash value from previous mix (HPM) which

initially holds the offset, and the result is stored as

intermediate result 1 (IR1).

 The initial value is mixed with the HPM using the AND

operator and the result is stored as intermediate

result 2 (IR2).

 IR1 exclusive-OR (XOR) IR2 and the result is stored as

intermediate result 3 (IR3).

 HPM is left shift with the initial value and the result is

stored as intermediate result 4 (IR4).

 IR3 is OR-ed with IR4 and the resulting value is stored

as intermediate result 5 (IR5).

 ASCII value of the new character (ANC) is XOR-ed

with the initial value and the resulting value is

stored as intermediate result 6 (IR6).

 IR5 and IR6 are XOR-ed and the resulting value is kept

in the HPM.

3.2 Summation
This mixing of individual characters is done until the length of

the array is reached, and the results represent the final hash

used to determine the memory location where the data is to be

saved or stored.

This memory address or location is calculated by finding

modulo of the hash value using the hash table size.

The individual characters are mixed well enough to help

achieve avalanche, better distribution, reduced collision,

quality and better the performance of the hash function.

The following abbreviations are used in the module and

flowchart of the proposed hash function:

 HPM: Hash value from previous mix. This initially

holds the offset.

 ANC: ASCII value for the next character

 IR: Intermediate representation.

 PICM: Module of Proposed hash function individual

character mixing (PICM)

 FHV: Final hash value

 MI: Memory index

Fig. 1 and Fig. 2 shows a module of the proposed hash

function individual character mixing (VICM) and a flowchart

of how the proposed hash function works respectively.

4. IMPLEMENTATION
The research strategy used was experimental research and the

approach was quantitative in nature.

NCHFs were run on the A TEST SUITE using data (keys) to

check the various popular non-cryptographic hash functions

%distribution, number of collisions, performance, %avalanche

and quality.

This test suite uses the separate chaining collision resolution

strategy to resolve collisions.

Data was run several (50) times on the test suite and the

results were collected for further analysis.

The hash function’s (Bob Jenkins, Murmur, Buz and the

proposed hash functions) properties were compared and

results were recorded for further analysis.

5. ANALYSIS AND DISCUSSION
The analysis and discussion was done by considering how the

various hash functions performed when their properties were

tested.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 15, April 2020

13

5.1 Percentage Distribution
When the hash table is well distributed, it helps in efficient

use of memory space allocated for the hash table. As

proportion of areas that are unused in the hash table increases,

it does not reduce search cost. This results in wasting

memory.

This means that, the proposed hash function efficiently make

use of memory space allocated to the hash table with an

average % distribution of 42.3%, followed by Bob Jenkins of

41.0%, 40.3% for Buz and 34.9% hash table distribution for

Murmur hash function as shown in Fig. 3. To make efficient

use of memory space when running applications, the proposed

hash will be the best option to use followed by Bob Jenkins,

Buz and Murmur hash function.

5.2 Number of Collisions
The total number of operations that is required to resolve

collision (i.e. collision resolution strategies) linearly scales to

the number of keys mapping to the same slot or bucket. More

collisions results in degrading the performance or the

efficiency of the hash function significantly. Non

cryptographic hash functions deals with operations such as

insertion, find or look up, delete and update of data. When

there are much collisions, there will be much time involve in

performing these operations which will surely degrade the

efficiency and effectiveness of the hash function and will

result in increased return time and wasting memory space.

The smaller the number of collisions a hash function

generates, the faster and more efficient it is. When there is

less number of collisions, it will help result in efficient use of

memory space and also contribute to reduced return time

when operations such as saving, updating, finding and

deleting are performed. This is because the time needed to

resolve collision using collision resolution strategy will

reduce.

On the average, the proposed hash function had the lowest

number of collisions of 15, followed by Bob Jenkins with 16

number of collisions, 17 number of collisions for Buz and

Murmur hash function recording the highest number of

collisions of 22 as shown in Fig. 4. This shows that the

proposed hash function will help make efficient use of

memory space and reduce return time when used to run

applications. This will help increase work output or

productivity followed by Bob Jenkins, Buz and then Murmur

hash function.

5.3 Performance or speed
Some hash algorithms or functions are cumbersome ie.

Computationally expensive, the amount of time (and, in some

cases, memory) taken to compute the hash may be

burdensome. Speed is measured objectively by using number

of lines of code and CPU benchmark. Also, when there are a

lot of collisions and operations are performed in that

particular location, it can contribute to increase in time spent

in performing the operations and this contribute to reduced

work output or productivity. But when collisions are less

when a particular hash function is used to store data, it helps

to reduce return time and this contributes to increase in

productivity or work output.

On the average, the proposed hash function had a better

performance of 1249ms, followed by Buz hash function with

1289ms, 45132ms for Murmur hash function and 46041ms for

Bob Jenkins hash function as shown in Fig. 5.

Therefore when speed is a priority in running applications that

uses hash functions, the proposed hash function is the best,

followed by Buz, Murmur and then Bob Jenkins hash

function.

This is because Bob Jenkins hash function consists of an

offset, initial value and a lot of loops for mixing (individual

characters of the key). This consists of a lengthy code than

any of the hash functions resulting in spending a lot of time to

hash a key.

Murmur hash function consist of an offset, initial value and

loops for mixing (individual characters of the key) but not as

lengthy as Bob Jenkins hash function.

Buz hash function consist of an offset and requires more

Pascal initialization code that comes from a randomized table

and mixing (individual characters of the key) using bitwise

operators which is quite simple.

The proposed hash function consist of an offset, an initial

value and mixing (individual characters of the key) using

bitwise operators, which is more simpler and will require less

time to hash a key.

5.4 Percentage Avalanche
A hash function achieve avalanche if the resulting hash index

or value is widely different if a single key bit differs.

Percentage avalanche aids distribution of data because keys

that are similar will not end up having similar or same hash

values. A hash function that have good percentage avalanche

distributes hash values in a uniform manner and this will help

minimize the number of collisions and fill the hash table more

evenly.

Higher percentage avalanche contribute to reduced return time

and efficient use of memory space. This is because, it help

spread data in memory and time needed to resolve collision

and perform operations such as save, update, find and delete

will reduce.

For Percentage avalanche, both Buz and Proposed hash

function had 100% throughout. This means that, every bit of

the key changed the hash value, followed by Bob Jenkins hash

function with a percentage of 85.6% and Murmur hash

function with 27.9% which is the lowest percentage avalanche

for all length of characters as shown in Fig. 6.This means that

both Buz and proposed hash function can help reduce return

time more than Murmur and Bob Jenkins hash.

5.5 Quality
Actually, a good hash function has quality between 0.95 and

1.05. If the quality is high, it means the function has a

degraded performance and is not efficient. If the quality is

less, it means the function has a good performance and is

more efficient.

The quality of a hash function is based on other properties like

number of collision, percentage distribution etc.

On the average, proposed hash function was more quality with

a value of 0.99, followed by Bob Jenkins hash function with

1.02, Buz hash function with 1.04 and 1.23 for Murmur hash

function as shown in Fig. 7. Based on the values recorded, the

proposed hash function can help reduce return time and make

efficient use of memory space hence help increase work

output.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 15, April 2020

14

Table 1. A table of hash functions and the various properties

 Properties of hash functions

P
er

ce
n

ta
g

e

d
is

tr
ib

u
ti

o
n

 (
%

)

N
u

m
b

er
 o

f

co
ll

is
io

n
s

P
er

fo
rm

a
n

ce
 o

r

sp
ee

d
 (

m
s)

P
er

ce
n

ta
g

e

a
v

a
la

n
ch

e
(%

)

Q
u

a
li

ty

H
a

sh
 F

u
n

ct
io

n
s

Bob

Jenkins

41.0 16 46041 85.6 1.02

Murmur 34.9 22 45132 27.9 1.23

Buz 40.3 17 1289 100 1.04

Proposed 42.3 15 1249 100 0.99

Fig. 1 A module of the proposed hash function individual character mixing (PICM)

HPM

ANC

 IV

HPM

HPM

 IV

ANC

 IV IR2 IR1

 IR4
 IR3

 IR5 IR6

 HPM

<<

<<

 ^

&

 ӏ ^

^

 FLOW

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 15, April 2020

15

Fig. 2: A flowchart of how the proposed hash function

works.

Fig. 3: A graph of percentage distribution of hash

functions

Fig. 4: A graph of number of collisions of hash function

0

5

10

15

20

25

30

35

40

45

Bob
Jenkins

Murmur Buz Proposed

 P

er
ce

n
ta

g
e

 d
is

tr
ib

u
ti

o
n

(%
)

Hash functions

A GRAPH OF PERCENTAGE

DISTRIBUTION OF HASH FUNCTIONS

0

5

10

15

20

25

Bob
Jenkins

Murmur Buz Proposed

N
u

m
b

er

o
f

 c
o

ll
is

io
n

s

 Hash functions

GRAPH OF NUMBER OF COLLISIONS

OF HASH FUNCTIONS

END

START

WORD

LENGTH

REACHED?

PICM

FHV

MI

FHV MOD TABLE

SIZE

NO

YES

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 15, April 2020

16

Fig. 5: A graph of the performance of hash functions

Fig. 6: A graph of the percentage avalanche of hash

functions

Fig. 7: A graph of the quality of hash functions

6. CONCLUSION
The most essential features of non-cryptographic hash

functions is its percentage distribution (which shows how

evenly data is spread out in the memory space allocated for

the data to be stored or the hash table), number of collisions

(which shows the number of keys or data that hashes to the

same address space), performance or speed (which shows how

fast the hash function can consume input), % avalanche (deals

with how each individual key bit, contribute to a change in

hash value produced) and quality (which tests the quality of

hash function based on the various properties), which are the

properties of non-cryptographic hash functions.

Percentage distribution help to make efficient use of memory

space when running applications, when data is well

distributed in memory space allocated. The proposed hash had

the best distribution followed by Bob Jenkins, Buz and

Murmur hash function.

For number of collisions which when less for a particular non-

cryptographic hash function, it help to make efficient use of

memory space and reduce return time, and when used to run

applications, contribute to increased work output or

productivity, The proposed hash had the lowest followed by

Bob Jenkins, Buz and then Murmur hash function.

Also, for performance or speed when less for a particular hash

function, it help to reduce return time when used to store data

and contribute to increase in productivity or work output. The

proposed hash function had a better performance followed by

Buz hash function, Murmur and Bob Jenkins hash function.

Therefore when speed is a priority in running applications that

uses hash functions, the proposed hash function is the best,

followed by Buz, Murmur and then Bob Jenkins hash

function.

For percentage avalanche which when high contribute to

reduced return time and efficient use of memory space, Buz

and the proposed hash function had the highest. This means

that both Buz and the proposed hash function can help reduce

return time more than Murmur and Bob Jenkins hash.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

Bob
Jenkins

Murmur Buz Proposed

P

er
fo

rm
a

n
c
e

(t
/m

s)

 Hash Functions

GRAPH OF THE PERFORMANCE OF

HASH FUNCTIONS

0

20

40

60

80

100

120

Bob Jenkins Murmur Buz Proposed
Hash functions

GRAPH OF THE PERCENTAGE

AVALANCHE OF HASH FUNCTIONS

%
 A

v
a
la

n
ch

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bob
Jenkins

Murmur Buz Proposed

 Q
u

a
li

ty

 Hash functions

GRAPH OF THE QUALITY OF

HASH FUNCTIONS

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 15, April 2020

17

For quality which is dependent on all the other properties. The

lower the value, the better the hash function. It depicts how

effective and efficient a hash function is in terms of reduced

return time and efficient use of memory space, which help to

increase work output when used to run applications, the

proposed hash function had the lowest value, followed by Bob

Jenkins hash function, Buz hash function and then Murmur

hash function. This means that the proposed hash function is

the most effective.

Based on the properties examined, the results clearly

demonstrated that, the proposed hash function had better

properties which means that it is more effective and efficient

to use to run applications as compared to Bob Jenkins,

Murmur and Buz hash functions.

7. ACKNOWLEGDEMENT
Our thanks to the almighty God and all who contributed in

diverse ways to make this paper a success.

8. REFERENCES
[1] Singh, M. and Garg, D. 2009. Choosing best hashing

strategies, IEEE International advanced computing

conference (IACC’09), p 50.

[2] Walker, H. M. 1998. Abstract Data Types, Clarendon

Press, 4th Edition: pp. 129-143.

[3] Kumar, C. K. and Suyambulingom, C. Modification on

Non Cryptographic Hash Function. International Journal

of Computational Engineering Research (IJCER) ISSN:

2250-3005. National Conference on Architecture,

Software system and Green computing: p. 29

[4] Zobel, J., Heinz, S. and Williams, H. E. 2001. In-

memory hash tables for accumulating text vocabularies.

Information processing letters: pp. 271,272.

[5] Bob, J. 1997. Hash functions. Dr. Dobbs Journal.

[6] Dillinger, C. Peter, Manolios, Panagiotis. 2004. Fast and

accurate bitstate verification for SPIN. Proc. 11th

International SPIN Workshop on Model Checking

Software, pp. 57-75.

[7] Ayuso, N. and Pablo. 2006. Netfilter’s connection

tracking system. (PDF). Login 31(3), pp. 34-38.

[8] Irving, G., Donkers, J. and Uiterwijk J. 2008. 6*6 LOA

is solved: kalah. (PDF), ICGA Journal: pp. 234-237.

[9] Lalanne, C., Muralidharan, S. and Lysaght, M. 2015. An

OpenCL design of the Bob Jenkins lookup3 hash

function using the Xilinx TM SDAccelTM Development

Environment. ICHEC White Paper, July 16, pp. 2,3.

[10] Bob, J. 2012. SpookyHash: a 128-bit noncryptographic

hash. Retrieved Dec 12, 2017

[11] Couceiro et al." (PDF) (in (Portuguese)). 13 January

2017.

[12] Tanjent. 2008. MurmurHash first announcement.

Tanjent.livejournal.com. Retrieved 13 January 2017.

[13] Adam. 2010. MurmurHash2-160.

Simonhf.wordpress.com. Retrieved 13 January 2017.

[14] Uzgalis, R.1995. Contact: buz@cs.aukuni.ac.nz

[15] Uzgalis,R.2009.”A very efficient java hash algorithm, ba

sed on the BuzHash algoritm by RobertUzgalis (http://w

ww.serve.net/buz/hash.adt/java.000.html)

[16] Dobai, R. and Korenek, J. 2015. Evolution of Non-

Cryptographic Hash Function Pairs for FPGA-Based

Network Applications. IEEE Symposium Series on

Computational Intelligence, p. 1219.

[17] Estebanez, C., Saez, Y., Recio, G., and Isasi, P. 2014.

Automatic design of noncryptographic hash functions

using genetic programming. Computational Intelligence,

vol. 30, no. 4. doi:10.1002/coin.12033, pp. 798–831.

[18] Coremen, T. H., Leiserson, C. E. and Stein, R. L.

“Introduction to Algorithms,” 2nd edition, PHI, Chapter

11.

IJCATM : www.ijcaonline.org

