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ABSTRACT
The study of continues type of shell-crossing singularity and strong
shell-focusing singularity in dust collapse in absence of cosmolog-
ical constant. We find that for change of the scaling function sin-
gularity can change, physically initial data can lead to weak singu-
larity. Although the free rescaling choice is simplest method for
proving simultaneous singularity and being purely mathematical
analysis.
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1. INTRODUCTION
Tolman-Bondi model describe the gravitational collapse of spher-
ically symmetric dust matter distribution. Tolaman-Bondi model
matched to Schwarzschild exterior where all gij are functions of
C∞ type. Since Tolaman-Bondi model is spherically symmetric
that implies that the initial density and velocity profile are only
functions of radial co-ordinate r. Collapse in Tolman-Bondi model
is pressureless, that mean every particular shell of dust with finite
radius will collapse through its Schwarzschild radius.

For homogeneous matter(dust)- Oppenheimer-Snyder [1] all the
matter shells become singular at the same time and thus there is
no shell-crossing at all. The proper time for inhomogeneous matter
distribution depends on radius (comoving co-ordinate) r, As shell-
crossings are not genuine curvature singularities, nearby shell of
matter operate developing momentary density singularity, where
Kretschmann curvature scalar cloud blow up, this can be removed
through extension of spacetime. However, shell-crossing are invert-
ible in continual collapse of weakly charge spherically dust mat-
ter distributions [2]. The inner shells are more weakly bound then
outer shells-and thus the inner collapse is slower then outer shell
collapse, thereby leading weak singularity where volume element
dose not converge.

In real objects density and pressure are very large, this may be
reason of occurrence of weak singularity. In Tolman-Bondi model
shell-crossing singularities is not general singularity and it is re-
movable. However, detailed analysis by Szekeres and Lum [3] con-
sidered that newtonian and relativistic spherically symmetric matter
distribution, and they suggested that following notes;

(1) Jacobi fields approach the singularity having finite limits,
(2) The boundary region can be transformed by a C1 transforma-

tions.

The purpose here to show that shell-crossing singularity also de-
pends on scaling function.

2. TOLMAN-BONDI SPACETIME
As already mentioned, the Tolman model represents a distribution
of pressureless matter(dust) that is spherically symmetric, but inho-
mogeneous in the radial direction. It is written in comoving coor-
dinate, so that gtt = −1, and Gti = 0(i = 1, 2, 3), and the tangent
vector of the particles of matter is uα ≡ (1, 0, 0, 0), which means
that coordinate time,t, is also the proper time of the particles. The
cosmological constant, Λ, will be neglected throughout this paper.
In addition, geometric units such that G = 1 and c = 1 will be
used throughout. Thus the metric is,

ds2 = −dt2 + e−2ν(t,r)dr2 +R2dΩ2, (1)
dΩ2 ≡ dθ2 + sin2θdφ2, (2)

together with the stress-energy tensor for dust:

Tij = ρ(t, r)uiuj = ρδtiδ
t
j , (3)

whereui = δit is 4-velocity of dust element and ρ(t, r) the energy
density.

With the metric (1), the independent non-vanishing Einstein tensor
components are

Gtt =
[−Re2ν(2R′ν ′ + 2R′′ +R′2R−1)− 2ṘνR+ 1 + Ṙ2]

R2
,

(4)

Grt =
−2(Ṙ′ +R′ν̇)

R
, (5)

Grr =
e−2ν(2R̈R+ Ṙ2 + 1)−R′2

R2
, (6)

Gθθ = sin−2θGφφ = R(Ṙν̇ +R′ν ′′e2ν ,+

R′′e2ν − R̈+ ν̈R− ν̇2R), (7)

where dot and prime denote partial differentiation with respect to t
and r, respectively.

7



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.15, April 2020

Introduction new auxiliary functions

k(t, r) = e2νR′2 − 1, (8)

F (t, r) = R(Ṙ2 + k). (9)

Einstein’s equations simplify greatly to

Ṙ2 =
2m

R
+ k, (10)

k̇ = 0, (11)

Ḟ = 0, (12)

with the restriction

F ′ = 4πR2R′Ttt. (13)

The metric (1) with e2ν = [1 + k(r)]/R′2, together with Equa-
tions (10) and (13), fully determine the Tolman-Bondi family of
solutions, and has following parametric solutions;

elliptic, k < 0

(t− a0) =
F

2(−k3/2)
(β − sinβ), R =

F

2(−k)
(1− cosβ);

parabolic,k = 0

R =

[
9F (t− a0)2

4

]1/3

;

hyperbolic, k > 0

R =
F

2k
(coshβ − 1), (sinhβ − β) =

2k3/2(t− a0)

F
.

They all emerge from the big bang at t = a(r), and expansion
rate is positive ,Ṙ > 0, thus the areal radius of each shell of mat-
ter at r = const is increasing. In elliptic, expansion reach to the
maximum size and then suddenly start collapsing, and terminating
in big crunch. in hyperbolic, expansion is continuous and inden-
fitely, in parabolic model, that is marginal cases, since their ex-
tension in vague way decreases to zero at maximum(infinite) time.
The hyperbolic and elliptic cases can easily be shown to reduce to
the parabolic model form for β → 0, i.e. as t → a0, so that all
three cases have the same demeanor at very early times. alike, near
the big crunch in elliptic models, when β → 2π, the behavior ap-
proaches that of a collapsing parabolic model. It is entirely possible
for all three types of evolution to obtain within different domain in
the same model.

The density is given by

ρ =
F ′

R2R′
, (14)

and the Kretschmann scalar is[4]

K = RhijkRhijk = − 3F ′2

R4R′2
− 8F ′F

R5R′
+

24m2

R6
, (15)

where Rhijk is the Riemann tensors.

The functions, F , k, and a0, are all arbitrary functions of the coor-
dinate radius r. The function F (r) is equal to twice the efficacious
mass of matter, m.

3. SHELL-CROSSING SINGULARITY
In the Tolman-Bondi model metric, shell-crossing(weak) singular-
ities are defined by [4]

R′ = 0 and R > 0. (16)

Also, it is known as at R = 0 = R′, as shell-focusing singularity
occurs, different from shell-crossing singularity, this is central shell
focusing singularity and it dose not admit any metric extension
through in and the spactime is therefor geodesically incomplete. It
has been shown that shell-focusing singularity can be naked [2, 6]
and gravitationally strong as finite physical volume are crushed to
zero at center singularity [7]. Here the discussion on weak shell-
crossing singularity as defined by equation (16). As shell-crossing
on which R′ = 0, and where the density ρ, diverges.

In this section the author use the coordinate freedom left in rescal-
ing the radial coordinate, and we define new scaling function R.
Let a[t] be an increasing function with constant C satisfying the
condition C ≥ max | a[t] |2n+1, therefore new scaling function,

R(r, t) =
1

2n+ 1
[C + (r − a[t])2n+1], n = 1, 2, 3, ... (17)

For parabolic region k = 0, The boundary between an elliptic and
a hyperbolic region deserves special consideration since the param-
eter β is not valid there. For the radial derivative of R with respect
to r and t are

R′(r, t) = (r − a[t])2n, (18)

Ṙ(r, t) = −(r − a[t])2nȧ[t]. (19)

Here a[t] is an increasing function and in equation (19), Ṙ < 0,
this is collapse condition throughout the evolution with a[t] > 0.
With the formalism for spherical collapse, we can consider now
continual collapse with

R(r, t) =
1

2n+ 1
[C + (r − a[t])2n+1],

R′(r, t) = (r − a[t])2n.

At tmax andR(r, 0) = [C+r2n] is always positive at initial epoch.

and

r → 0 as Max | a[t] |2n+1→ C,

this gives genuine strong curvature singularity that can not be re-
moved with any kind of space extension.

Then what we show here by changing scaling function, for
arbitrary stage of collapse, corresponding to R′ = (r − a[t])2n

with a[t] an increasing function, there exists a continues type of
shell-crossing singularity.

In the case of marginally bound collapse, the Einstein field equa-
tions (10) to (13) they are solved to obtain, Pθ = Pr = 0 and there
are solve obtain

Ṙ2 =
2m

R
and R′ = (r − a[t])2n,

where F is mass function which is always positive throughout the
collapse. Thus the continuous type of shell-crossing singularity and
central shell-focusing singularity because from (15), the density
keeps diverging continuously.
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Fig. 1. The behaviour of R′, defined in equation (18).

4. CONCLUSION
In the present study of spherically symmetric collapse it was observ
that both the shell-crossing and shell-focusing singularities occur
simultaneously. The shell-focusing curvature singularity is genuine
singularity, where as the shell-crossing singularity can be prevented
by excluding cosmological constant. Also the rescaling dose not
prevent shell-crossing singularity, that is it occur continuously with
the parameter R(r, t). However this is a purely mathematical inter-
pretation can be attached.
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