
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.18, April 2020

Mind Overflow: A Process Proposal for Decomposing
Monolithic Applications in Microservices

Tcharles Pereira da Silva
Applied computing graduate program (PPGCA),

University of Vale do Rio dos Sinos,
São Leopoldo, RS, Brazil

Kleinner Farias
Applied computing graduate program (PPGCA),

University of Vale do Rio dos Sinos,
São Leopoldo, RS, Brazil

ABSTRACT
Constant changes made by different developer profiles turn
legacy applications into monolithic ones. Although it is a
known issue, little has been done to mitigate it. This pa-
per proposes Mind Overflow, a process to guide the decom-
position of a monolithic application to a microservice archi-
tecture. With Mind Overflow, researchers and developers ben-
efit from the use of consolidated design patterns, architec-
tures, and technologies through a comprehensive decomposition
workflow. The case study showed promising results, indicat-
ing that Mind Overflow is feasible to break down monolithic
to a microservice-based architecture, including reducing cyclo-
matic complexity and producing highly cohesive microservices.

General Terms
Software system, Software maintenance

Keywords
Decomposition process, software architecture

1. INTRODUCTION
Modern software systems or legacy applications undergo various
changes throughout their lifecycle, which are usually performed by
different developers [17]. These legacy applications are built and
maintained in increasingly fast-changing business environments
in industry [20]. Usually, unstable requirements and rapidly ad-
vancing information technologies are ever-present characteristics
of projects in real-world settings. These constant changes made by
different developer profiles turn legacy applications into monolithic
ones. Typically, these changes impact on various features of sys-
tems under maintenance [3], and developers often have to compare
different versions of system design created [12]. Empirical stud-
ies demonstrate that these integrations and maintenance are time-
consuming and error prone [5][8][9][10].
Although several techniques help monolithic application code to be
error-free [2][22], this is not synonymous with easy-to-maintain ap-
plications. Typically, by satisfying customers’ business needs with-
out error, applications are delivered, in turn completing the devel-
opment cycle.
An application considered legacy in a company, usually suffers
from technical managers and maintainers, because it was developed

using techniques that are not being used by the current developers
of the company; however, such a solution is still vital and valuable
to the business of those who use it [1]. While this issue of main-
taining legacy applications is well known, little has been done to
mitigate it. The use of microservice-based architectures has shown
promise in this regard. Microservice can be defined as an applica-
tion composed of small features (or services) that take into consid-
eration the business context, that is autonomous and independent in
its execution and publication, doing this in an automated way and
that can communicate with each other, besides providing endpoints
to the external environment of its limits [11].
This work, therefore, proposes Mind Overflow, a proposal of tech-
nology and framework agnostic process, which aims to guide the
decomposition of a monolithic application to a microservices ar-
chitecture through a systematic sequence of small decompositions.
Using Mind Overflow, researchers and developers benefit from
the use of well-matched design patterns, architectures, and tech-
nologies through an understandable and consistent workflow. Mind
Overflow differentials are as follows: (1) definition of a software
re-engineering process based on iterations that can evolve incre-
mentally; and (2) introduction of a workflow of decomposition of
monolithic architectures, seeking to modulate the main responsi-
bilities of the microservices application. The case study showed
promising results, indicating that Mind Overflow is feasible to
break down monolithic to microservice-based architectures, includ-
ing reducing cyclomatic complexity and producing highly cohesive
microservices.
This paper is organized as follows: Section 2 presents the funda-
mental concepts for understanding the work. Section 3 covers re-
lated work. Section 4 presents the proposed work. Section 5 de-
scribes the evaluation and how the results were analyzed. Section 6
discusses the conclusions and future work.

2. BACKGROUND
This section aims to outline the main concepts required to under-
stand the proposed process.

2.1 Software Architecture
The styles and architectural patterns used in systems should be
driven by the actual demands and specific qualities, meeting and
exceeding the expectations of their use [22]. Avoiding excessive
use of patterns and styles becomes as fundamental as applying the
architecture correctly. A good basis to guide the choice of these

1



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.18, April 2020

styles and patterns is to justify their purpose for the solution based
on functional requirements, otherwise, they should be eliminated
from the system.
Architectural layers. This architectural standard supports N lay-
ers and is commonly used in web, enterprise, and desktop applica-
tions. The basic mode of use of this standard is three layers: user
interface, application layer, and infrastructure layer. Being a good
practice premise of this pattern, a layer should only interact with its
layer or layers below it, thus avoiding calls to higher layers [22].
The proposed process in this work has the premise that the gener-
ated systems use a layered architecture.
Service Oriented Architecture. A proposal for the implementa-
tion of SOA is the use of a hexagonal architecture, which has
adapters for data entry, which can be REST, SOAP and messaging
through messaging services. With entry points that can be distinct,
they all direct requests to a common point that would be the appli-
cation layer, which subsequently directs them to the domain model
for business and purpose-based processing for that request [22].
Event Oriented Architecture. According to Vernon [22], it is a
standard capable of promoting the production, detection, consump-
tion, and reaction to events. These events are not intended to sim-
ply be decorative technical notifications, but rather represent the
occurrences of business process activities that will be routed to all
reception points of these activities, which will normally perform
other activities arising from the identified initial activity. To receive
this notification, whether it is synchronous or asynchronous, the
producer and consumer standard are used, allowing different appli-
cations to communicate with each other from the chain of events.
The process developed in this paper uses the producer and con-
sumer standard for communication between microservices, where
each application acts with a different domain responsibility.

2.2 Domain-Driven Design
The Domain-Driven Design (DDD) software development ap-
proach, created by Eric Evans [7], comes to assist in the way soft-
ware expresses the solution for the business, so that the models
generated explicitly demonstrate the intended purpose of the busi-
ness. DDD puts domain experts and developers on a level playing
field as a cohesive and united team, making the software that is
developed makes sense for the business, not just the coders, with
centralized business knowledge source code and no longer in select
groups of people, which are usually the developers.
Ubiquitous language. According to Evans [7], one of the biggest
problems in building software is the poor understanding of business
goals motivated by improper communication between business ex-
perts and developers. For domain experts, technical implementa-
tion and design terms are not easily understood, as their view of the
business and how it works often uses domain-specific jargon. De-
velopers who master the technical terms and design terms have a
hard time understanding the objectives and understanding of what
is being addressed by the experts, as a system is usually discussed
and seen only at the implementation level by developers, without
talking about the huge amount of translations applied to the lan-
guage of the experts turn the language of the developer. Developers
who work in various parts of the business usually create their con-
cepts about the meaning of terms, often making no sense to the
business itself.
Bounded context. It limits the scope of understanding and imple-
mentation of a particular model to its participation with the busi-
ness. Each delimited context is defined as a ubiquitous language
that should be known to all team members [7]. All responsibilities
of the model must be well defined and its understanding of the other

contexts must be defined, although knowledge of translations and
integrations between the delimited contexts is somewhat separate.
For the implementations of this work, a microservice will always
be treated in bounded context form.
Context map. According to Vernon [22], a context map defines
how bounded contexts will communicate with each other, giving a
global context about the business solution. Relationships between
the contexts delimited in the context map can be classified and
translated according to the alignment between the teams. For this
work, the context map will be generated from Event Storming, a
technique created by Brandoline [4], which is defined as the first
part of the proposed process, having the communications identified
as event responses following of business activities.
Domain events. The domain event is defined by publishing activ-
ities in the form of notifications by publishers to their subscribers,
which may be from the application itself or from other applications
that are subscribed to receive notifications [22]. The process pro-
posal of this work considers domain events as part of the stage and
its understanding is fundamental for the elaboration of user stories
from Event Storming.

3. RELATED WORK
This section provides a comparative analysis of related work. The
objective of the analysis is to enrich the process that will be elab-
orated based on the studies already done on the decomposition of
monolithic applications in microservices.

3.1 Selection criteria
This work used Google Scholar as a database, researching the
theme of decomposition of monolithic systems for a microservice
architecture through the keywords “microservice” and “monolith”.
After the first survey on the subject of decomposition for microser-
vices, only works that aimed to approach or construct or restructure
applications for microservices using some kind of technique, pro-
cess or methodology were filtered. A second filter used was the
consideration of articles published from 2015 to 2019, due to mi-
croservices being a very recent theme.

3.2 Work analysis
This performs a comparative analysis of five works that explore the
theme of decomposition of monolithic systems for microservices,
either by technique, process or methodology, in order to identify
what are the common criteria between the works.
Levcovitz et al. [16] proposed a technique for the decomposition of
monolithic systems into small cohesive and independent services.
The technique was applied to a banking system that had about
750,000 lines of source code, 2 million bank accounts, operating
approximately 2 million daily authorizations. As a premise for the
work, the flow of a simple iteration into the decomposed system is
part of the user interface, reaching a facade that is responsible for
assigning the request to the application business functions. From
the business function, one or more business functions can be called
chained and can use one or more database tables, each business
function being classified in an area, which the article treats as an or-
ganizational unit. The technique consists of six steps: the first step
is to identify subsystems according to business areas and database
tables; The second step creates a graph of dependencies between
facades, one or more business functions, and database tables. In the
third step, based on the generated dependency graph, the links be-
tween facade and table of the database are mapped; In the fourth
step, for each subsystem identified in the first step, the facades that

2



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.18, April 2020

are related to the subsystem database tables are mapped; The fifth
step is responsible for identifying and evaluating candidates to fol-
low in the decomposition. In the last step, an API Gateway is cre-
ated that acts as an orchestrator of requests for microservices, en-
abling client access to the server, in order to ensure transparency
for users.
Knoche & Hasselbring [15] present an application modernization
technique based on the decomposition of legacy systems for a mi-
croservices architecture. The legacy system used for the foundation
and application of the technique is a client management system de-
veloped in Cobol with over one million lines of code, started in
the 1970s and 1980s. The proposed modernization technique is di-
vided into five steps, which are: (1) the first step is to identify the
domain services that will provide the functionality expected by cus-
tomers, after that, an analysis is made to identify the application
entry points, which are any form of access used by other applica-
tions; (2) the second step is to implement the facades in the form of
adapters to receive the requests, always considering that these im-
plementations must guarantee the same behavior of the operations
already performed by the system, and to have this guarantee, the
team used software testing techniques, generating reliability in the
expected processing in the implementations; (3) for the third step,
the client applications are migrated to the newly created facades.
Thus, no longer accessing the legacy application directly, limiting
entry points through facades; (4) the fourth step establishes the in-
ternal facades of the application, in order to organize the function-
ality requests for internal facades, and no longer for other function-
alities.
Gysel et al. [13] propose a tool for decomposition of monolithic
applications in microservices, based on the experiences of various
software architects. With a catalog containing 16 decomposition
criteria, classified into four categories, the tool works on a user-
supplied input in JSON format, which can be: a relationship entity
model based on the pattern database, entities, and aggregates mod-
eling Domain-Driven Design or a use case template. The four cat-
egories for the criteria are: cohesion, compatibility, constraints and
communication. Each criterion is formatted with a template very
similar to that used in agile practices, containing information such
as: identification and name; description; specification artifacts in
the system; literature references, category and characteristics.
Gysel et al. [13] propose a tool for the decomposition of mono-
lithic applications in microservices, based on the experiences of
various software architects. With a catalog containing 16 decom-
position criteria, classified into four categories, the tool works on
user-supplied input in JSON format, which can be: a relationship
entity model based on the pattern database, entities, and aggregates
modeling Domain-Driven Design or a use case template. The four
categories for the criteria are cohesion, compatibility, constraints,
and communication. Each criterion is formatted with a template
very similar to that used in agile practices, containing information
such as identification and name; description; specification artifacts
in the system; literature references, category, and characteristics.
Escobar et al. [6] propose a process that helps the developer to
decompose a monolithic application in microservices, through di-
agrams resulting from data layer analysis belonging to each Enter-
prise Java Beans (EJB) through clustering. The process is divided
into three steps: the first layer called data injection, which deals
with the processing of application source code, resulting in a KDM
metamodel that is used as input for the next step; For the second
stage, the classes, interfaces, and methods present in the metamodel
generated by the first stage are identified, which are classified into
two possible clusters that are EJB cluster and microservice cluster.

3.3 Comparative analysis of the works
This section will compare the works presented in section 3.3. Some
criteria were elaborated for comparison purposes: main contribu-
tion; evaluation method; evaluation context; type of technique; mi-
croservice granularity and tool.
Table 1 provides an overview of the interplay between related work
and comparative criteria. Regarding the main contributions, only
the work of Gysel [13] proposed a tool for the decomposition of
monolithic systems in microservices. The works of Levcovitz [16],
Knoche [15] and Escobar [6] contribute to the creation of a process
to perform the decomposition. The work of Rocha [21] proposes
the use of an algorithm to perform the decomposition.
For the evaluation methods of the selected papers, all papers pre-
sented a case study of their proposals. In [13], in addition to the
case study presented, a survey was also performed to ascertain the
quality resulting from the proposed tool. The work environments
of [13] and [6] were academia and industry, while the works of Lev-
covitz [16], Knoche [15] and Rocha [21] were applied exclusively
in the industry. Of the selected articles, only the works of [13] and
[6] used clustering forms in the development of the tool. Only the
works by Rocha [21] and [6] allow configuration of the granularity
in which microservices will be generated. Only the work of [13]
presented a system for the decomposition of monolithic systems
for microservices, whereas [6] brought a prototype.

3.4 Research opportunities
Identified through the analysis of the articles in section 3.3, the re-
search opportunities raised by this paper are: (1) the creation of
more processes and algorithms that guide software developers and
architects in the microservices decomposition stage; (2) the appli-
cation of decomposition independent of the contribution of work
so that it can be evaluated by academia and industry, thus having
parity of results that can be evaluated; (3) prototyping of model
applications, representing coding standards, architectures used and
technologies that contribute to the development and evaluation of
results. From these opportunities, this work develops a process as a
guide for the researcher and developer in decomposing their target
application, the evaluation will be through a case study described
in section 5.1.

4. PROPOSED APPROACH
This section introduces Mind Overflow, a technology-agnostic pro-
cess, and a framework that aims to guide the decomposition of a
monolithic application to a microservices architecture through a se-
quence of decomposition systematic.

4.1 Overview
Figure 1 presents an overview of the proposed approach, which
consists of four steps: (1) Event Storming; (2) story storage and pri-
oritization; (3) implementation of microservice; and (4) integration
with the monolithic. This approach utilizes emerging techniques
and methodologies, including Domain-Driven Design, Agile Meth-
ods, and Event Storming. Each step is described below.
Step 1: Perform Event Storming. This step focuses on gather-
ing requirements and their specifications. The Event Storming tech-
nique was used for this purpose. Created by Brandoline [4], to en-
gage the technical team and domain experts, the technique is char-
acterized by the use of colored stickers in a chronologically and
linearly organized discussion space, where the purpose is to un-
derstand of business processes. Usually, this storming activity is

3



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.18, April 2020

Articles
Main Evaluation Evaluation Technique Granularity Tool

contribution method context type of microservices

A
lg

or
ith

m

A
rc

hi
te

ct
ur

e

To
ol

Pr
oc

es
s

C
as

e
st

ud
y

C
on

tr
ol

le
d

E
xp

er
im

en
t

R
es

ea
rc

h

In
du

st
ry

A
ca

de
m

y

C
lu

st
er

in
g

It
is

co
nfi

gu
ra

bl
e

ID
E

Pl
ug

in

Pr
ot

ot
yp

e

Sy
st

em

Gysel et al.[13] - - + - + - + + + + - - - +
Levcovitz et al. [16] - - - + + - - + - - - - - -
Knoche & Hasselbring [15] - - - + + - - + - - - - - -
Rocha [21] + - - - + - - + - - + - - -
Escobar et al. [6] - - - + + - - + + + + - + -
Legend: Not supported (-), Supported (+)

Table 1. : An analysis of the related work based on comparative criteria

Fig. 1: An overview of the proposed approach.

divided not only in one day but in a few days so that what is being
proposed is rethought by the participants, aiming at the maturity
and effectiveness of the business ideas of the organization. For the
proposed process, at this stage the following objectives must be
achieved through Event Storming:

(1) Event Identification: are events that must be named in the past,
when a product is created in the application, this event should
be named as, for example, ProductCreated;

(2) Command Identification: it is the executions preceding the
events that cause them to be triggered. Following the exam-
ple, a command for the ProductCreated event could be the Cre-
ateProduct command;

(3) Microservice Identification: The goal of each microservice re-
sulting from the application of this process is for each applica-
tion domain, along with its sub-domains, to be present in one
place, so that the language used in the domain is understood by
all team members without ubiquity. Remembering that there
may be communication between domains, this will be seen in
the implementation step, when the event triggering part is ex-
plained;

(4) Story Creation: already with the defined events and the identi-
fied microservices, it is necessary to identify the behavior and

flows that the business has. For each story, commands are ex-
ecuted and events are triggered for a purpose, and these steps
are documented, it is the definition of a story.

Depending on the size and breadth of the monolithic application,
hundreds of stories can be identified, which can make mapping the
entire business unfeasible. The proposed process aims to be a fa-
cilitator. Thus, it is advisable to prioritize the core migration of the
business in the first instance, along with the stories that are most
relevant in the migration to microservices. Subsequently, the same
process can be applied again for missing parts, without impact on
what has already been worked on. Figure 2 describes the first step
of Mind Overflow. With these objectives achieved, Step 2 will be
performed.

Fig. 2: Step 1: event storming

Step 2: Story Storage and Prioritization. Once stories are iden-
tified, they should be stored in a repository, also known as agile
as Backlog. This repository can be from an excel spreadsheet to
a task management application. The purpose of the Backlog is to
store all pending tasks that will be performed in the next Sprints.
Backlog tends to increase with the lifetime of the software. Thus,
the activities belonging to him should always be prioritized by how
much they will add to the business of the organization, also con-
sidering the cost for its development. If the organization does not
have a method for classifying activities, this work suggests weigh-
ing these activities according to the perception of the team or the
Product Owner. For this, the values 1, 2, 3, 5, 8, 13 and 21 can
be considered, something similar to Planning Poker. Activities that
have the highest added value should be prioritized. Prioritization of
activities is not the process proposal, i.e., the organization is free to

4



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.18, April 2020

classify the activities that will be considered for the next step. Fig-
ure 3 describes the second step of Mind Overflow. With the stories
classified, described and defined as Sprint, Step 3 is performed.

Fig. 3: Step 2: storage and prioritization

Step 3: Implementation. For the implementation stage, some as-
sumptions must be made for the continuity of the microservice con-
struction project. It is critical that the microservice team is aligned
with the ubiquitous language used in the application domain, and
that they have understood the purpose for which the microservice
is being created. This can be achieved at planning meetings if
the company follows the Scrum methodology. The solution design
shall follow an MVC layered architecture model. Another highly
recommended approach is for the microservice to be built to pro-
vide API’s, that is, it has resources made available through HTTP
requests, whether authorized requests or not, depending on the rules
of each microservice. Another suggested feature is the execution of
periodic commands programmed by the application itself, thus, the
application is independent of the operating system configuration to
execute its chrons, routines executed repeatedly over a certain time.
Figure 4 shows the code structure of a feature developed based on
Mind Overflow.

Fig. 4: Example feature implemented using Mind Overflow approach

With these assumptions satisfied, the development is divided into
five phases shown in Figure 5 and described below:

(1) Feature creation: the idea is that each user story becomes a
class-like feature for the microservice, keeping centrally and
representing all story responsibilities through the execution of
jobs and operations. Ideally, there is only one public method
in the feature that will be responsible for calling the other fea-
tures, so with a nomenclature that expresses the purpose of this
feature, it is possible for any developer to easily understand
what are the impacts on changing a particular feature. flow and
what’s contained in this small business approach, thus becom-
ing a code that teaches the reader what the domain’s charac-
teristics are, without the need for deep debugging of function-
ality. A feature can also trigger events and be called through

event reception and through controllers (which can be trig-
gered through REST requests and periodic task crons);

(2) Job creation: The main purpose of the job is to be responsible
for a restricted execution that has only one responsibility in the
system flow. Here should be considered the principle of Single
Responsibility, i.e., this job should have only one reason to ex-
ist and also the Open-Closed standard, which is when a class
must be closed for change. This way the code is highly de-
coupled, making it possible to use mocks for unit tests, which
should be created at job level. As a suggestion, a job should
not call other jobs or invoke events for traceability and code
standardization;

(3) Operations creation: so that there is no code duplication
where features normally call the same jobs, the concept of
operation is created. An operation should contain only calls
to jobs, remembering that these calls, if changed, will impact
other features that use this operation. As a suggestion, an oper-
ation should not fire events nor trigger other operations for the
sake of traceability and code standardization;

(4) Event shooting: as this is an agnostic process to framework
and programming language, it is up to the process user to
choose a technology that has the possibility of triggering events
through messaging services, such as RabbitMQ. The events
triggered here are the same raised by Event Storming at the be-
ginning of the process. The goal with the triggering of events
by the application is that it is possible to partition and recog-
nize underlying flows both by the application itself and in other
applications that will be listening to the indication of a partic-
ular event, then take some systematic action, thus becoming a
system. characterized reactive to events;

(5) Event reception: as in triggering events, the technology used
by the implementers of the process must be able to communi-
cate through messaging services such as RabbitMQ. When the
microservice identifies an event to which it subscribes, the ap-
plication should fire an implemented feature for this behavior.
As described earlier, this new feature can launch a new event,
thus forming a chain of executions that will satisfy some busi-
ness feature.

Step 4: Integration with Monolithic. To integrate with the mono-
lithic system incrementally and transparently, it will be necessary
to develop an API Gateway, which will be responsible for receiving
all monolithic application requests, and then directing to the given
target microservice. For this first approach, the REST architecture
will be used to perform requests by the monolithic system using the
HTTP protocol. Once the API Gateway endpoints are defined, and
these endpoints are directed to the already implemented microser-
vices, the adaptation in the monolithic system is initiated so that
the requests can be performed transparently, no longer depending
on the legacy, but on the new implemented microservices. Figure 6
shows an example of API Gateway integration.

4.2 Main features and approach
The approach developed in this paper has the following characteris-
tics: (1) be agnostic to the framework and programming language;
(2) business visibility through source code; (3) be based on good
software development practices, which are widely targeted today
by organizations such as Clean Code [18] and SOLID [19]; (4) easy
maintenance due to separation of responsibilities and rapid identi-
fication of execution flow; (5) naturally delivers an almost ready
structure if the organization wishes to further minimize microser-
vice, bringing it to the level of functionality, whether it be a feature,

5



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.18, April 2020

Fig. 6: Step 4: Integration with monolithic via API Gateway

a job or an operation; (6) horizontal scale viability of microservices
using load balancer in infrastructure; (7) mastery of domain terms
and language by all team members, as there are no business team
translations for the development team; (8) allow the use of more
than one programming language to better solve the business de-
mand for microservices; (9) possibility of optimization and changes
in the business process due to the rapid analysis from the impacts
that they would generate; and, finally, (10) all jobs have unit tests,
which are highly decoupled but cohesive to microservice.

4.3 Assumptions for use
For it to be successfully applied, some assumptions must be met:
(1) use a language in the object-oriented paradigm for the creation
of microservices; (2) possibility to change the monolithic applica-
tion code to provide incremental and continuous advancement with
the created microservices; (3) availability and accessibility to busi-
ness specialists to assist in the definition of business processes; (4)
definition of a ubiquitous language according to the microservices
contexts and scopes, so that there are no translation from the busi-
ness team to the development team; (5) developers with moderate
knowledge of SOLID principles, particularly in relation to open-
closed principle [19]; and (6) use or development of a framework
for triggering and receiving events for communication between ap-
plications, preferably adopting some messaging software as a basis,
for example, RabbitMQ.

5. EVALUATION
For the evaluation of this work, the case study methodology was
used through the development of a monolithic application that was
decomposed through the application of the Mind Overflow process.

5.1 Target application
For the case study, a monolithic e-commerce application created by
the author was developed. Table 2 lists the features that are part of
the monolithic application and will be broken down with the Mind
Overflow process.
To obtain the desired decomposition model, the monolithic appli-
cation was analyzed and, through good design and implementa-
tion practices, a new architecture involving microservices was im-
plemented. This architecture, called “Desired Refactored Applica-
tion,” was compared to the result of applying the Mind Overflow
process. That is, the desired refactored application will be com-
pared to the refactored application using Mind Overflow. Figure 7
shows how modules were organized and the use of microservices
for each application.

Fig. 7: Applications developed in this work

5.2 Technologies used
The technologies used for the three applications created were se-
lected by the author based on the development experience gained
after years of work in the field. Because the process approached as
a focus of the study is agnostic to specific technologies, the tools
mentioned here are not restrictive for process application and anal-
ysis:

— Monolithic: The monolithic application was developed using
PHP 7.2, Laravel 5.8, Mysql 5.7, Docker 19.03.

— Desired refactored application: The desired refactored appli-
cation was developed using PHP 7.2, Laravel 5.8 for the frontend
application, Lumen 6.0 for the microservices, php-amqplib 2.10,
Mysql 5.7, Docker 19.03 and RabbitMQ 3.7.

— Application refactored through Mind Overflow: The refac-
tored application through Mind Overflow was developed using
PHP 7.2, Laravel 5.8 for the frontend application, Lumen 6.0 for
microservices, php-amqplib 2.10, Mysql 5.7, Docker 19.03 and
RabbitMQ 3.7.

5.3 Metrics
Metrics used. Eight metrics were selected to allow assessment
of different facets of applications, including lines of code, object-
oriented programming (OOP) concepts, coupling, complexity, and
bugs. Table 2 presents the selected metrics. These metrics were
accounted for using the phpmetrics tool, which is an open-source
project (https://phpmetrics.org). To perform the comparative anal-
ysis between the desired application and the generated application,
distance calculations were used [14] between the desired applica-
tion and the application generated by Mind Overflow. The distance
represents the difference between the values presented by the met-
rics for the refactored application generated and refactored applica-
tion through Mind Overflow.

5.4 Results
Table 3 presents the obtained results, considering two Catalog
and Sales microservices. These microservices were chosen because
they are representative to the others. Results will be displayed fol-
lowing the order of presentation of the metric groups.
Line of Code (LOC). Using the proposed approach helped to
produce the desired functionality by achieving a distance of less
than 50% in both microservices, as well as achieving the desired
functionality. In the microservice Catalog, the distance represented
38.68% (294/760) of the desired code. In the microservice Sales,
distance presented a higher value of 49.27% (643/1305). Code line
removals can be done to get code as close as possible to the desired
application. Mind Overflow was effective in terms of lines of code.
OOP. Through the proposal, the value of the class and method met-
rics increased concerning the desired application. Considering the

6



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.18, April 2020

Group Metric Description
LOC Lines of code Measure the size of a computer program by counting the number of lines in the text of the program source code.

OOP Classes Number of classes in a computer program using object oriented programming.
Methods Number of methods of a computer program using object-oriented programming.

Coupling
Afferent coupling average Represents the count of how many different classes refer to the current class by fields or parameters.

If this number is high, this class has a high chance of being stable, reducing the risk of coupling.

Efferent coupling average Represents the count of how many different classes the current class references by fields or parameters.
If a class has high efferent coupling, it means that it depends on many classes.

Complexity
Average cyclomatic complexity per class Count of the number of independent paths that can be executed for each method. The result of cyclomatic

complexity indicates how many tests need to be performed to verify all possible flows.

Relative average system complexity Metric composed of complexity within and between functions. It measures the complexity of
system design in terms of function calls, parameter passing, and data usage.

Bugs Average bug per class
Based on the number of operators (method names, arithmetic operators) and the number of operands.
Halstead metrics give you an idea of how complex individual lines of code (or instructions) are.
Halstead Bugs attempts to estimate the number of bugs that may be in a specific code snippet.

Table 2. : The metrics used in the evaluation.

metric number of classes, for the Catalog microservice, the dis-
tance represented 88.89% (24/27). In the microservice Sales, the
distance obtained was 108.70% (50/46). In the metric number of
methods, for the Catalog microservice, the distance represented
36.25% (29/80). For the micro-service of distance selling, it repre-
sented 50% (65/130). One possible reason why both metrics have
increased is due to the use of the open and close responsibility
principles for the creation of features and jobs, which are specific
responsibility, creating a class for each responsibility, and conse-
quently, method (s) for these classes. The benefit of using this stan-
dard will be seen in the complexity metrics.
Coupling. Both evaluated microservices obtained an increase in
afferent and efferent couplings to the desired application. For the
afferent coupling mean metric, in the Catalog microservice, the dis-
tance represented 120.83% (0.58/0.48). In the microservice Sales,
the calculated distance was 113.43% (0.76/0.67). In the metric re-
ferring to the efferent coupling average, for the Catalog microser-
vice, the distance represented 21.62% (0.4/1.85). For the microser-
vice of sales, the distance represented 24.88% (0.53/2.13). Increas-
ing the average value of the afferent coupling results in an increase
in the chances of the class being stable, reducing coupling risks.
The increase in efferent coupling means that a class depends on a
larger number of classes, and for both microservices, this value is
less than 50%, Mind Overflow is considered effective in terms of
coupling.
Complexity. Through the Mind Overflow process, all assessed
complexity metrics achieved their average reductions. For the mean
cyclomatic complexity by class, in the Catalog microservice, the
distance represented 13.89% (0.2/1.44). In the microservice of
Sales, the calculated distance was 21.02% (0.37/1.76). In the av-
erage system relative complexity metric, the Catalog microservice
presented a distance of 50.25% (16.27/32.38). For the micro sales
service, the calculated distance was 70.67% (30.58/43.27). By re-
ducing complexity, ease of maintainability is achieved, so Mind
Overflow is considered effective in terms of complexity.
Bugs. The average bug metric value per class has decreased for
both microservices. For the Catalog and Sales microservice, the
distance represented 50% (0.01/0.02 and 0.02/0.04). By reducing
the metric, Mind Overflow is considered effective in terms of bugs.

6. CONCLUSIONS AND FUTURE WORKS
This paper presented Mind Overflow, which is an approach sup-
ported by a technology-agnostic process and framework to guide
the decomposition of a monolithic application to a microservices
architecture through a sequence of decomposition. Researchers and
developers can benefit from the proposed approach to use it as a
basis for new decomposition approaches as well as a technique for

decomposing monolithic applications, respectively. The initial as-
sessment of the approach through a case study showed promising
results, in particular, it highlighted that the approach is feasible for
decomposing monolithic to microservice-based architectures, in-
cluding reducing cyclomatic complexity and producing highly co-
hesive microservices. As future work, we intend to conduct new
case studies to improve the assessment and understand the strengths
and improvements of the approach.
Finally, Mind Overflow is expected to serve as a basis for new work
to emerge from it, serving as a starting point. Finally, we hope
that the results discussed throughout this article can encourage
practitioners to use the proposed approach. Besides, this work can
be the first step for a more ambitious agenda on how to refactor
monolithic applications into better-modularized ones.

7. ACKNOWLEDGMENTS
We also thank CNPq grant 313285/2018-7 for partially funding this
research.

8. REFERENCES

[1] Keith Bennett. Legacy systems: Coping with success. IEEE
software, 12(1):19–23, 1995.

[2] Keith H Bennett and Václav T Rajlich. Software maintenance
and evolution: a roadmap. In Proceedings of the Conference
on the Future of Software Engineering, pages 73–87, 2000.

[3] Vinicius Bischoff, Kleinner Farias, Lucian José Gonçales, and
Jorge Luis Victória Barbosa. Integration of feature models: A
systematic mapping study. Information and Software Technol-
ogy, 105:209–225, 2019.

[4] Alberto Brandolini. Introducing event storming. Available at:
goo.gl/GMzzDv [Last accessed: 8 July 2017], 2013.

[5] Leandro Ferreira D’Avila, Kleinner Farias, and Jorge
Luis Victria Barbosa. Effects of contextual information on
maintenance effort: A controlled experiment. Journal of Sys-
tems and Software, 159, 2020.

[6] Daniel Escobar, Diana Cárdenas, Rolando Amarillo, Eddie
Castro, Kelly Garcés, Carlos Parra, and Rubby Casallas. To-
wards the understanding and evolution of monolithic appli-
cations as microservices. In XLII Latin American Computing
Conference (CLEI), pages 1–11. IEEE, 2016.

[7] Eric Evans. Domain-driven design: tackling complexity in the
heart of software. Addison-Wesley Professional, 2004.

7



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.18, April 2020

Group Metric Catalog Sales
Desired Generated Dist. Desired Generated Dist.

LOC Lines of code 760 1054 294 1305 1948 643

OOP Classes 27 51 24 46 96 50
Methods 80 109 29 130 195 65

Coupling Afferent coupling average 0,48 1,06 0,58 0,67 1,43 0,76
Efferent coupling average 1,85 2,25 0,4 2,13 2,66 0,53

Complexity Average cyclomatic complexity per class 1,44 1,24 0,2 1,76 1,39 0,37
Relative average system complexity 32,38 16,11 16,27 43,27 12,69 30,58

Bugs Average bug per class 0,02 0,01 0,01 0,04 0,02 0,02
Table 3. : The obtained results.

[8] Kleinner Farias. Empirical evaluation of effort on composing
design models. In 2010 ACM/IEEE 32nd International Con-
ference on Software Engineering, volume 2, pages 405–408.
IEEE, 2010.

[9] Kleinner Farias, Alessandro Garcia, and Carlos Lucena. Ef-
fects of stability on model composition effort: an exploratory
study. Software & Systems Modeling, 13(4):1473–1494, 2014.

[10] Kleinner Farias, Alessandro Garcia, Jon Whittle, and Carlos
Lucena. Analyzing the effort of composing design models
of large-scale software in industrial case studies. In Interna-
tional Conference on Model Driven Engineering Languages
and Systems, pages 639–655. Springer, 2013.

[11] Martin Fowler and James Lewis. Microservices. Viittattu,
28:2015, 2014.

[12] Lucian José Gonçales, Kleinner Farias, Toacy Cavalcante De
Oliveira, and Murilo Scholl. Comparison of software design
models: An extended systematic mapping study. ACM Com-
puting Surveys (CSUR), 52(3):1–41, 2019.

[13] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and
Olaf Zimmermann. Service cutter: A systematic approach to
service decomposition. In European Conference on Service-
Oriented and Cloud Computing, pages 185–200. Springer,
2016.

[14] Diane Kelly. A study of design characteristics in evolving
software using stability as a criterion. IEEE Transactions on
Software Engineering, 32(5):315–329, 2006.

[15] Holger Knoche and Wilhelm Hasselbring. Using microser-
vices for legacy software modernization. IEEE Software,
35(3):44–49, 2018.

[16] Alessandra Levcovitz, Ricardo Terra, and Marco Tulio
Valente. Towards a technique for extracting microser-
vices from monolithic enterprise systems. arXiv preprint
arXiv:1605.03175, 2016.

[17] Edson M Lucas, Toacy C Oliveira, Kleinner Farias, and
Paulo SC Alencar. Collabrdl: A language to coordinate col-
laborative reuse. Journal of Systems and Software, 131:505–
527, 2017.

[18] Robert C Martin. Clean code: a handbook of agile software
craftsmanship. Pearson Education, 2009.

[19] Robert C Martin. Clean architecture: a craftsman’s guide to
software structure and design. Prentice Hall Press, 2017.

[20] Anderson Oliveira, Vinicius Bischoff, Lucian José Gonçales,
Kleinner Farias, and Matheus Segalotto. Brcode: An interpre-
tive model-driven engineering approach for enterprise appli-
cations. Computers in Industry, 96:86–97, 2018.

[21] Diego Pereira da Rocha. Monólise: Uma técnica para
decomposição de aplicações monolı́ticas em microsserviços.
Master’s thesis, 2018.

[22] Vaughn Vernon. Implementing domain-driven design.
Addison-Wesley, 2013.

8



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.18, April 2020

Fig. 5: Step 3: Implementation

9


	Introduction
	Background
	Software Architecture
	Domain-Driven Design

	Related work
	Selection criteria
	Work analysis
	Comparative analysis of the works
	Research opportunities

	Proposed Approach
	Overview
	Main features and approach
	Assumptions for use

	Evaluation
	Target application
	Technologies used
	Metrics
	Results

	Conclusions and Future Works
	Acknowledgments
	References

