
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

12

Implementing Median Filter on Heterogeneous

Architectures

Iyad Katib
King Abdul Aziz University, KSA

ABSTRACT
The Median Filter (MF) is considered one of the

computationally intensive problems in the image processing

domain. MF can be implemented on heterogeneous clusters

consisting of CPUs, Nvidia GPUs, and Xeon-Phi coprocessors

(MIC) architectures. This heterogeneity adds more

complexity to the problem and is considered a challenging

one. This paper deploys a speed-based scheduling strategy to

implement the MF on a heterogeneous cluster. The strategy is

used to schedule tasks on heterogeneous architectures based

on their speed. Basically, suitable parallel computing

paradigms such as OpenMP, and CUDA can be used on

individual architectures to perform sample set of tasks. Then,

the actual number of tasks will be assigned to each one based

on its actual speed. The MF operation can be implemented

such that the total run time will be significantly improved in

comparison to pure CPU-based implementation. The paper

shows that the speedup factor is significantly improved when

using CPU, GPU, and Xeon-Phi. The paper then shows how

the different cluster structures can process different 4K frame

rates per second.

Keywords
Heterogeneous Architectures, Median Filter, Scheduling of

Tasks.

1. INTRODUCTION
The median filter is one of the well-known approaches used to

perform a high degree of noise reduction in an image. It is

normally used before performing more complex algorithms on

images such as edge detection. The median filter is considered

a non-linear digital filtering technique. It is very useful in

reducing salt and paper noise and speckle noise. The major

advantage of the median filter is that it preserves the edges.

The median filter is calculated by replacing each pixel with

the median of a window surrounding this pixel. The radius „r‟

of the window is a parameter to the filter. Thus, the pixel Pi,j

is replaced by the median of the set defined as {Pi-r, j-r ,…,

Pi+r, j+r}. This set is sorted and the item of index 2r2 + 2r is

the median [1]. The median filter can operate on a single-

color channel. For RGB support, each channel should be

processed separately.

Due to the importance of the median filter, many attempts to

optimize it has been performed [2], [3], [4], [5]. The median

filter is a corner stone of all higher-level image-processing

applications, and yet is computationally intensive. It has also

been revisited from a targeted hardware approach due to its

requirement in real-time image processing and portable

cameras which have the need for an efficient ASIC to perform

the filter [6]. Real-time vision systems always tend to use

hardware solutions [7], [8].

The MF is considered computationally intensive problem

specially when used in filtering video streaming. Applying

the MF with r =5 on a video stream of only one second in 4K

resolution (3840 x 2880) with a frame rate of 30 fps means

that it is required to perform 329,763,000 sorting operations.

Each operation will work on 121 data items. This means that

the MF is approaching one billion sorting operations for each

3 seconds of 4k video stream.

This paper introduces a novel parallel implementation to the

median filter on heterogeneous architectures. The

implementation will use traditional CPUs, Nvidia GPGPUs,

and Xeon-Phi coprocessors. Furthermore, the scheduling

strategy developed in [9] will be deployed to assign

workloads to different types of architectures based on its

speed.

The rest of the paper is organized as follows: section 2

discusses the task dependency analysis of the parallel median

filter. Section 3 shows how to use the speed-based scheduling

strategy in solving the median filter. Section 4 presents the

numerical results of the implementation. Section 5 presents

the conclusion and directions for future work.

2. TASK DEPENDENCY ANALYSIS
Having an image of row x column pixels, the median filter

sequential operation can be described as follows:

1) Start with an initial pixel position Pi, j and a radius

„r‟ value in pixels such that i = j = r+1. For

example, r = 2 means a window of size (2r +1) x

(2r+1) pixels, i.e., 5 x 5 pixels. The initial window

starts from P1, 1 and ends up with P5, 5. In general,

for a pixel position P i, j, the window will start from

pixel position Pi-r, j-r and will end up with pixel

position Pi+ r, j+ r.

2) Determine the median of the set consisting of (2r +

1)2 elements. This can be achieved by sorting the

one-dimensional array of elements and finding the

median element which is the element of index 2r2 +

2r.

3) Put the value of the median element in pixel

position Pi, j.

4) Slide the window horizontally to a new pixel

position Pi, j+1 and then repeat steps from 1 to 3 till

the pixel position Pi, column-r which indicates the last

possible window in the row.

5) Slide the window vertically to a new row and repeat

sliding window technique.

6) The process ends when the median of pixel position

P row-r, column-r is calculated.

Having a look at the operation of the median filter, it is found

that the sorting operation can be repeated in parallel which

means the possibility of parallel implementation. Since each

sorting operation will have a set of data items to work on, then

multiple threads can be activated to perform multiple sorting

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

13

operations simultaneously. The parallel implementation of

the median filter can be as in Fig. 1.

Parallel Median Filter

For each pixel position Pi, j do

Sort the values of the pixel positions ranging from Pi-r, j-r to P

i+r, j+r

Select the middle one in the sorted list

Replace the pixel value with the middle one

End

Fig. 1: Parallel Median Filter Pseudo Code

Consequently, the time required to implement the parallel

sorting depends mainly on the sorting algorithm used. The

time required to perform the parallel sorting is equivalent to

the time needed to perform sorting operation on one window

having (2r +1)2 items. In this paper, insertion sort will be used

to avoid memory contentions associated with assigning

extraneous buffers for the parallel implementation of the

sorting operation. Hence, O(n log(n)) is considered the

complexity of the sorting algorithm [10]. Of course, different

sorting approaches can be used such as merge sort, quick sort,

etc. [11], [12].

3. USING SCHEDULING STRATEGY

TO SOLVE THE MF
According to the speed-based scheduling strategy described in

[9], the main program MedianFilterTaskScheduler divides

the problem space into smaller subspaces called chunks. Each

chunk consists of a set of tasks. The chunk will run on the

corresponding architecture. If the architecture is not able to

process at least one chunk in a time less than the total run time

of the fastest architecture, then this architecture will be

excluded. Fig. 2 shows the pseudo code of the task scheduler

used to schedule the MF operations on different architectures.

Having the total problem space and the speed of each

architecture in processing a single chunk, the scheduling

strategy will assign the chunks that will be provided to each

architecture. Problem space here is the number of sorting

operations required. This depends on many factors such as

the video stream time, frames per second, and the resolution

of the image. Workload distribution will be assigned to each

architecture with a start index and end index of the sorting

operation.

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝒆𝒅𝒊𝒂𝒏𝑭𝒊𝒍𝒕𝒆𝒓𝑻𝒂𝒔𝒌𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒆𝒓

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, , Frames] ; input the frames

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑟

4. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑟𝑜𝑤, column ; resolution of the image

5. 𝑩𝑬𝑮𝑰𝑵

6.
𝑡 𝑡1, … , 𝑡𝑝

← 𝑙𝑜𝑎𝑑 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑕𝑢𝑛𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎𝑟𝑐𝑕𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠

7. 𝑡𝑚𝑖𝑛 ← 𝑀𝐼𝑁𝑖=1
𝑝 𝑡𝑖 ; find the smallest run time

8. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝

9. 𝑰𝑭 ti ≤ 𝑡𝑚𝑖𝑛 𝑻𝑯𝑬𝑵

10.
𝑅𝑖 ← 𝑃𝑟𝑜𝑏𝑙𝑒𝑚_𝑆𝑝𝑎𝑐𝑒/ 𝑡 𝑖 ; find the weight of each

architecture

11. 𝑬𝑳𝑺𝑬

12.
𝑅𝑖 ← 0 ; this architecture is very slow and will be

ignored

13. 𝑬𝑵𝑫

14. 𝑬𝑵𝑫

15. 𝑅𝑡𝑜𝑡𝑎𝑙 ← 𝑅1 + 𝑅2 + ⋯ + 𝑅𝑝 ; sum the weights

16.
𝑅𝑢 ← 𝑃𝑟𝑜𝑏𝑙𝑒𝑚_𝑆𝑝𝑎𝑐𝑒 / 𝑅𝑡𝑜𝑡𝑎𝑙 ; find the tasks assigned to each

weight unit

17. 𝑜𝑓𝑓𝑠𝑒𝑡 = 0

18. 𝑠𝑡𝑎𝑟𝑡𝑖 = 0

19. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝

20.
𝐶𝑖 = 𝑅𝑖 ∗ 𝑅𝑢 ; sorting operations (tasks) assigned to

architecture

21.
𝑠𝑡𝑎𝑟𝑡𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡 ; determine the start index of

tasks

22. 𝑒𝑛𝑑𝑖 = 𝑠𝑡𝑎𝑟𝑡𝑖 + 𝐶𝑖 – 1 ; determine the end index of tasks

23. 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐶𝑖

24.
𝑀𝑒𝑑𝑖𝑎𝑛
← 𝑺𝑷𝑨𝑾𝑵 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚𝑖(𝑟, 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛, 𝐶𝑖 , 𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑒𝑛𝑑𝑖)

25. 𝑬𝑵𝑫

26. 𝒓𝒆𝒕𝒖𝒓𝒏 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝐹𝑟𝑎𝑚𝑒𝑠

27. 𝑬𝑵𝑫

Fig. 2: Scheduling routine pseudo code to assign

workloads to architectures

4. EXPERIMENTAL RESULTS
In this section the results of implementing the MF on different

architectures will be shown. Currently, an HPC cluster has

492 CPU nodes (11,808 cores), 2 GPGPU nodes, and 2 MIC

nodes exist on “Aziz” cluster at King Abdulaziz University,

KSA. All the experiments on the traditional CPU and Xeon-

Phi systems have been implemented using Intel Composer

Studio 2017 with OpenMP-enabled. GPU experiments are

implemented using CUDA 9. Traditional CPU has dual Intel

x86_64 processors each has 12-core processors running at 2.4

GHz, 96 GB memory, and Centos (Linux) operating system.

Xeon-Phi node has a total of 60 active cores and the processor

is running at 1GHz. GPGPU node is equipped with NVidia

K20 GPU card having a total global memory of 5120 MB, and

2496 CUDA cores.

Applying the MF on (3840 x 2880) 4K image will be

investigated. Also, the speed of the MF with r = 5 will be

checked. Video images with different frame rates will be

investigated such as 15, 24, and 30 fps. Insertion sort will be

used as a basic sorting algorithm. Parallel instances of the

insertion sort will be concurrently activated. Chunk size will

depend on the number of frames per second. Table 1 shows

the speed of different architectures in processing one second

of video stream with different frame rates. It is found that

CPU can process 30 4K frames in 167 seconds which means

that it is impossible to use it alone to process real-time video

streaming. The ratio for each architecture will be as shown in

Table 2. This ratio will be used to assign different workloads

to each architecture.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

14

For 30 fps video, The CPU will take the responsibility of

processing around 32.2% of the workload while the GPU will

take the responsibility of 42.8% and the MIC will take the

responsibility of processing 25.0% of the workload. The MF

can filter a one-minute video streaming of a 4K image, 30 fps

(329,763,000 x 60 sorting operations) in 2.79 hours when

using one traditional CPU. Implementing the MF on CPU,

GPU, and MIC results in 3156 sec. for the same video, which

means a speedup factor of more than 3X is achieved when

compared to pure CPU implementation. Chunk size here is

equivalent to the number of sorting operations needed to

process one second video streaming. Chunks assigned to each

architecture based on its speed and the speedup factor S are

listed in Table 3.

In order to reduce the total time required to process video

streaming, the chunk size should be reduced. The chunk size

can be selected to be a specific number of sorting operations.

Processing power should be able to process all the sorting

operations of one second video stream in only one second.

For example; 329,763,000 sorting operations (mentioned

earlier in this paper) should be performed in one second to

support real-time video streaming applications. Table 4

shows the maximum number of sorting operations that can be

implemented in one second by each architecture.

Consequently, a chunk size 6,107,955 sorting operations can

be implemented in one second on a cluster comprising of one

CPU, one GPU, and one MIC. Table 5 shows the

heterogeneous cluster structure having equal number of CPUs,

GPUs, and MICs required to apply MF on real-time video

streaming for 4K image with different frame rates.

Table 1: MF Run Time on Different Architectures (1 Sec.

Video)

fps r tCPU

(Sec.)

tGPU

(Sec.)

tMIC

(Sec.)

30 5 167.577 126.278 216.2

24 5 135.369 100.161 173.236

15 5 83.7992 63.8055 109.542

Table 2: Percentage of the Architectures

fps # of Sorting

Operations

per second

CPU

Ratio

GPU

Ratio

MIC

Ratio

30 329,763,000 32.2% 42.8% 25.0%

24 263,810,400 31.9% 43.1% 25.0%

15 164,881,500 32.5% 42.6% 24.9%

Table 3: Speedup factor for One Min Video Stream

(chunk size = No. of sorting operations in one second)

fps CPU

Time

Chunks Assigned CPU+

GPU+

MIC

S

CPU GPU MIC

30 10,054 18 25 17 3,156 3.18

24 8,122 10 13 7 1,353 6

15 5,028 10 13 7 838 6

Table 4: Max. No. of Sorting Operations per Sec. for CPU,

GPU, and MIC

Arch. Max. No. of Sorting Operations per Sec.

CPU 1,948,824

GPU 2,633,863

MIC 1,525,268

Table 5: Heterogeneous Cluster Structure with Equivalent

No. of Nodes of each Architecture Type

fps Heterogeneous Cluster Structure

Total # of

Nodes

of Nodes for Each

Arch. Type (CPU,

GPU, and MIC)

30 162 54

24 132 44

15 81 27

The MF experiment has been conducted on different number

of nodes as shown in Table 6. Since “Aziz” has a limited

number of GPU and MIC nodes on the cluster, it is obvious

that as the number of CPU nodes increases, the number of

frames that can be processed in a second increases. As seen,

165 CPU nodes (3960 cores) are needed in addition to 2

Nvidia GPU nodes and 2 Xeon-Phi nodes to process real-time

video streaming of 30 4K frames per second. 15 fps can be

processed using 81 CPU nodes (1944 cores) in addition to 2

Nvidia GPGPU nodes and 2 Xeon-Phi nodes.

Table 6: MF Experimental Results Using Different No. of

CPU Nodes

Cluster Structure Processed fps

CPU GPU MIC

2 2 2 1

19 2 2 4

53 2 2 10

81 2 2 15

132 2 2 24

165 2 2 30

5. CONCLUSION
The MF implementation on heterogeneous architectures can

significantly improve the speed of its operation. The time

required to perform median filtering depends mainly on the

number and type of architectures used to perform the sorting

operations. Proper scheduling strategy and suitable parallel

computing paradigms are used to perform the MF function. In

order to provide real-time MF operation on video streaming,

more hardware should be deployed to reduce the processing

time of sorting operations. In doing so, the frame should be

divided among many architectures such that the time required

to process it is reduced. Future work may include the use of

different sorting technique that may result in reducing the

total time required to perform the MF functionality. The

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

15

proposed MF implementation on heterogeneous architectures

can be used either in real-time or off-line applications. This

paper is considered a step towards a complete system to solve

computationally intensive problems of image processing

domain on HPC clusters comprising of heterogeneous

architectures.

6. ACKNOWLEDGEMENT
Computation for the work described in this paper was

supported by King Abdulaziz University‟s High Performance

Computing Center (Aziz Supercomputer)

(http://hpc.kau.edu.sa).

7. REFERENCES
[1] D. S. Richards, “VLSI Median Filters,” IEEE Trans.

Acoust., 1990.

[2] S. Perreault and P. Hébert, “Median filtering in constant

time,” IEEE Trans. Image Process., 2007.

[3] G. Gupta, “Algorithm for Image Processing Using

Improved Median Filter and Comparison of Mean,

Median and Improved Median Filter,” Int. J. Soft

Comput., 2011.

[4] K. Verma, B. Kumar Singh, and A. S. Thokec, “An

enhancement in adaptive median filter for edge

preservation,” in Procedia Computer Science, 2015.

[5] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang, “Filter

pruning via geometric median for deep convolutional

neural networks acceleration,” in Proceedings of the

IEEE Computer Society Conference on Computer Vision

and Pattern Recognition, 2019.

[6] R. Medhat, H. M. Faheem, and M. E. Khaleefa,

“Efficient parallel architecture of median filter,” in

Proceedings of the 9th IASTED International Conference

on Parallel and Distributed Computing and Networks,

PDCN 2010, 2010.

[7] N. A. Sabour, H. M. Faheem, and M. E. Khalifa, “Multi-

agent based framework for target tracking using a real

time vision system,” in 2008 International Conference on

Computer Engineering & Systems, 2008, pp. 355–363.

[8] M. Fayez, H. M. Faheem, I. Katib, and N. R. Aljohani,

“Real-time Image Scanning Framework Using GPGPU-

Face Detection Case Study,” in Proceedings of the

International Conference on Image Processing, Computer

Vision, and Pattern Recognition (IPCV), 2016, p. 147.

[9] H. M.Faheem and B. König-Ries, “A New Scheduling

Strategy for Solving the Motif Finding Problem on

Heterogeneous Architectures,” Int. J. Comput. Appl.,

2014.

[10] Y. Yang, P. Yu, and Y. Gan, “Experimental study on the

five sort algorithms,” in 2011 2nd International

Conference on Mechanic Automation and Control

Engineering, MACE 2011 - Proceedings, 2011.

[11] M. McCool, A. D. Robison, and J. Reinders, “Merge

Sort,” in Structured Parallel Programming, 2012.

[12] H. M. Mahmoud, “Quick Sort,” in Sorting, 2011.

IJCATM : www.ijcaonline.org

http://hpc.kau.edu.sa/

