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ABSTRACT 
The Median Filter (MF) is considered one of the 

computationally intensive problems in the image processing 

domain.  MF can be implemented on heterogeneous clusters 

consisting of CPUs, Nvidia GPUs, and Xeon-Phi coprocessors 

(MIC) architectures.  This heterogeneity adds more 

complexity to the problem and is considered a challenging 

one.  This paper deploys a speed-based scheduling strategy to 

implement the MF on a heterogeneous cluster. The strategy is 

used to schedule tasks on heterogeneous architectures based 

on their speed.  Basically, suitable parallel computing 

paradigms such as OpenMP, and CUDA can be used on 

individual architectures to perform sample set of tasks. Then, 

the actual number of tasks will be assigned to each one based 

on its actual speed. The MF operation can be implemented 

such that the total run time will be significantly improved in 

comparison to pure CPU-based implementation.  The paper 

shows that the speedup factor is significantly improved when 

using CPU, GPU, and Xeon-Phi.  The paper then shows how 

the different cluster structures can process different 4K frame 

rates per second.  

Keywords 
Heterogeneous Architectures, Median Filter, Scheduling of 

Tasks. 

1. INTRODUCTION 
The median filter is one of the well-known approaches used to 

perform a high degree of noise reduction in an image. It is 

normally used before performing more complex algorithms on 

images such as edge detection. The median filter is considered 

a non-linear digital filtering technique. It is very useful in 

reducing salt and paper noise and speckle noise.  The major 

advantage of the median filter is that it preserves the edges. 

The median filter is calculated by replacing each pixel with 

the median of a window surrounding this pixel. The radius „r‟ 

of the window is a parameter to the filter. Thus, the pixel Pi,j 

is replaced by the median of the set defined as {Pi-r, j-r ,…, 

Pi+r, j+r}. This set is sorted and the item of index 2r2 + 2r is 

the median [1]. The median filter can operate on a single-

color channel. For RGB support, each channel should be 

processed separately.  

Due to the importance of the median filter, many attempts to 

optimize it has been performed [2], [3], [4], [5].  The median 

filter is a corner stone of all higher-level image-processing 

applications, and yet is computationally intensive. It has also 

been revisited from a targeted hardware approach due to its 

requirement in real-time image processing and portable 

cameras which have the need for an efficient ASIC to perform 

the filter [6]. Real-time vision systems always tend to use 

hardware solutions [7], [8]. 

The MF is considered computationally intensive problem 

specially when used in filtering video streaming.  Applying 

the MF with r =5 on a video stream of only one second in 4K 

resolution (3840 x 2880) with a frame rate of 30 fps means 

that it is required to perform 329,763,000 sorting operations.  

Each operation will work on 121 data items. This means that 

the MF is approaching one billion sorting operations for each 

3 seconds of 4k video stream.  

This paper introduces a novel parallel implementation to the 

median filter on heterogeneous architectures.  The 

implementation will use traditional CPUs, Nvidia GPGPUs, 

and Xeon-Phi coprocessors.  Furthermore, the scheduling 

strategy developed in [9] will be deployed to assign 

workloads to different types of architectures based on its 

speed.  

The rest of the paper is organized as follows: section 2 

discusses the task dependency analysis of the parallel median 

filter. Section 3 shows how to use the speed-based scheduling 

strategy in solving the median filter.  Section 4 presents the 

numerical results of the implementation. Section 5 presents 

the conclusion and directions for future work. 

2. TASK DEPENDENCY ANALYSIS 
Having an image of row x column pixels, the median filter 

sequential operation can be described as follows: 

1) Start with an initial pixel position Pi, j and a radius 

„r‟ value in pixels such that i = j = r+1.  For 

example, r = 2 means a window of size (2r +1) x 

(2r+1) pixels, i.e., 5 x 5 pixels.  The initial window 

starts from P1, 1 and ends up with P5, 5. In general, 

for a pixel position P i, j, the window will start from 

pixel position Pi-r, j-r and will end up with pixel 

position Pi+ r, j+ r. 

2) Determine the median of the set consisting of (2r + 

1)2 elements. This can be achieved by sorting the 

one-dimensional array of elements and finding the 

median element which is the element of index 2r2 + 

2r. 

3) Put the value of the median element in pixel 

position Pi, j. 

4) Slide the window horizontally to a new pixel 

position Pi, j+1 and then repeat steps from 1 to 3 till 

the pixel position Pi, column-r which indicates the last 

possible window in the row. 

5) Slide the window vertically to a new row and repeat 

sliding window technique. 

6) The process ends when the median of pixel position 

P row-r, column-r is calculated. 

Having a look at the operation of the median filter, it is found  

that the sorting operation can be repeated in parallel which 

means the possibility of parallel implementation. Since each 

sorting operation will have a set of data items to work on, then 

multiple threads can be activated to perform multiple sorting 
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operations simultaneously.  The parallel implementation of 

the median filter can be as in Fig. 1. 

Parallel Median Filter 

For each pixel position Pi, j do 

Sort the values of the pixel positions ranging from Pi-r, j-r to P 

i+r, j+r 

Select the middle one in the sorted list 

Replace the pixel value with the middle one 

End 

Fig. 1: Parallel Median Filter Pseudo Code 

Consequently, the time required to implement the parallel 

sorting depends mainly on the sorting algorithm used. The 

time required to perform the parallel sorting is equivalent to 

the time needed to perform sorting operation on one window 

having (2r +1)2 items. In this paper, insertion sort will be used 

to avoid memory contentions associated with assigning 

extraneous buffers for the parallel implementation of the 

sorting operation.  Hence, O(n log(n)) is considered the 

complexity of the sorting algorithm [10]. Of course, different 

sorting approaches can be used such as merge sort, quick sort, 

etc. [11], [12]. 

3. USING SCHEDULING STRATEGY 

TO SOLVE THE MF  
According to the speed-based scheduling strategy described in 

[9], the main program MedianFilterTaskScheduler divides 

the problem space into smaller subspaces called chunks. Each 

chunk consists of a set of tasks.  The chunk will run on the 

corresponding architecture. If the architecture is not able to 

process at least one chunk in a time less than the total run time 

of the fastest architecture, then this architecture will be 

excluded.   Fig. 2 shows the pseudo code of the task scheduler 

used to schedule the MF operations on different architectures. 

Having the total problem space and the speed of each 

architecture in processing a single chunk, the scheduling 

strategy will assign the chunks that will be provided to each 

architecture.  Problem space here is the number of sorting 

operations required.  This depends on many factors such as 

the video stream time, frames per second, and the resolution 

of the image. Workload distribution will be assigned to each 

architecture with a start index and end index of the sorting 

operation. 

1. 𝑷𝑹𝑶𝑮𝑹𝑨𝑴 𝑴𝒆𝒅𝒊𝒂𝒏𝑭𝒊𝒍𝒕𝒆𝒓𝑻𝒂𝒔𝒌𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒆𝒓  

2. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑆[1, , Frames] ; input the frames  

3. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑟  

4. 𝐼𝑛𝑝𝑢𝑡 ∶ 𝑟𝑜𝑤, column ; resolution of the image 

5. 𝑩𝑬𝑮𝑰𝑵  

6. 
𝑡 𝑡1, … , 𝑡𝑝 

← 𝑙𝑜𝑎𝑑 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑕𝑢𝑛𝑘 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟  𝑎𝑟𝑐𝑕𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒𝑠 

7. 𝑡𝑚𝑖𝑛 ← 𝑀𝐼𝑁𝑖=1
𝑝  𝑡𝑖  ; find the smallest run time   

8. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝 

9.  𝑰𝑭 ti ≤ 𝑡𝑚𝑖𝑛  𝑻𝑯𝑬𝑵 

10.  
𝑅𝑖 ←  𝑃𝑟𝑜𝑏𝑙𝑒𝑚_𝑆𝑝𝑎𝑐𝑒/ 𝑡 𝑖  ; find the weight of each 

architecture    

11.  𝑬𝑳𝑺𝑬 

12.  
𝑅𝑖 ←  0 ; this architecture is very slow and will be 

ignored 

13.  𝑬𝑵𝑫 

14. 𝑬𝑵𝑫 

15. 𝑅𝑡𝑜𝑡𝑎𝑙  ← 𝑅1 + 𝑅2 + ⋯ + 𝑅𝑝  ; sum the weights 

16. 
𝑅𝑢  ← 𝑃𝑟𝑜𝑏𝑙𝑒𝑚_𝑆𝑝𝑎𝑐𝑒 / 𝑅𝑡𝑜𝑡𝑎𝑙   ; find the tasks assigned to each 

weight unit 

17. 𝑜𝑓𝑓𝑠𝑒𝑡 =  0 

18. 𝑠𝑡𝑎𝑟𝑡𝑖 = 0  

19. 𝑭𝑶𝑹 𝑖 = 1 𝒕𝒐 𝑝 

20.  
𝐶𝑖 =  𝑅𝑖 ∗ 𝑅𝑢  ; sorting operations (tasks)  assigned to 

architecture 

21.  
𝑠𝑡𝑎𝑟𝑡𝑖 =  𝑠𝑡𝑎𝑟𝑡𝑖 + 𝑜𝑓𝑓𝑠𝑒𝑡 ; determine the start index of 

tasks 

22.  𝑒𝑛𝑑𝑖 =  𝑠𝑡𝑎𝑟𝑡𝑖 + 𝐶𝑖  – 1 ; determine the end index of tasks 

23.  𝑜𝑓𝑓𝑠𝑒𝑡 =  𝐶𝑖   

24.  
𝑀𝑒𝑑𝑖𝑎𝑛
← 𝑺𝑷𝑨𝑾𝑵 𝐴𝑙𝑔𝑜𝑟𝑖𝑡𝑕𝑚𝑖(𝑟, 𝑟𝑜𝑤, 𝑐𝑜𝑙𝑢𝑚𝑛, 𝐶𝑖 , 𝑠𝑡𝑎𝑟𝑡𝑖 , 𝑒𝑛𝑑𝑖  ) 

25. 𝑬𝑵𝑫 

26. 𝒓𝒆𝒕𝒖𝒓𝒏 𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝐹𝑟𝑎𝑚𝑒𝑠  

27. 𝑬𝑵𝑫 

Fig. 2: Scheduling routine pseudo code to assign 

workloads to architectures 

4. EXPERIMENTAL RESULTS 
In this section the results of implementing the MF on different 

architectures will be shown.   Currently, an HPC cluster has 

492 CPU nodes (11,808 cores), 2 GPGPU nodes, and 2 MIC 

nodes exist on “Aziz” cluster at King Abdulaziz University, 

KSA. All the experiments on the traditional CPU and Xeon-

Phi systems have been implemented using Intel Composer 

Studio 2017 with OpenMP-enabled. GPU experiments are 

implemented using CUDA 9.  Traditional CPU has dual Intel 

x86_64 processors each has 12-core processors running at 2.4 

GHz, 96 GB memory, and Centos (Linux) operating system.  

Xeon-Phi node has a total of 60 active cores and the processor 

is running at 1GHz. GPGPU node is equipped with NVidia 

K20 GPU card having a total global memory of 5120 MB, and 

2496 CUDA cores. 

Applying the MF on (3840 x 2880) 4K image will be 

investigated. Also, the speed of the MF with r = 5 will be 

checked. Video images with different frame rates will be 

investigated such as 15, 24, and 30 fps.  Insertion sort will be 

used as a basic sorting algorithm.  Parallel instances of the 

insertion sort will be concurrently activated. Chunk size will 

depend on the number of frames per second. Table 1 shows 

the speed of different architectures in processing one second 

of video stream with different frame rates. It is found that 

CPU can process 30 4K frames in 167 seconds which means 

that it is impossible to use it alone to process real-time video 

streaming.  The ratio for each architecture will be as shown in 

Table 2. This ratio will be used to assign different workloads 

to each architecture.   



International Journal of Computer Applications (0975 – 8887) 

Volume 176 – No. 19, May 2020 

14 

For 30 fps video, The CPU will take the responsibility of 

processing around 32.2% of the workload while the GPU will 

take the responsibility of 42.8% and the MIC will take the 

responsibility of processing 25.0% of the workload.  The MF 

can filter a one-minute video streaming of a 4K image, 30 fps 

(329,763,000 x 60 sorting operations) in 2.79 hours when 

using one traditional CPU.  Implementing the MF on CPU, 

GPU, and MIC results in 3156 sec. for the same video, which 

means a speedup factor of more than 3X is achieved when 

compared to pure CPU implementation. Chunk size here is 

equivalent to the number of sorting operations needed to 

process one second video streaming.  Chunks assigned to each 

architecture based on its speed and the speedup factor S are 

listed in Table 3.  

In order to reduce the total time required to process video 

streaming, the chunk size should be reduced.  The chunk size 

can be selected to be a specific number of sorting operations. 

Processing power should be able to process all the sorting 

operations of one second video stream in only one second.   

For example; 329,763,000 sorting operations (mentioned 

earlier in this paper) should be performed in one second to 

support real-time video streaming applications.  Table 4 

shows the maximum number of sorting operations that can be 

implemented in one second by each architecture. 

Consequently, a chunk size 6,107,955 sorting operations can 

be implemented in one second on a cluster comprising of one 

CPU, one GPU, and one MIC. Table 5 shows the 

heterogeneous cluster structure having equal number of CPUs, 

GPUs, and MICs required to apply MF on real-time video 

streaming for 4K image with different frame rates.  

Table 1: MF Run Time on Different Architectures (1 Sec. 

Video) 

fps r tCPU 

(Sec.) 

tGPU 

(Sec.) 

tMIC 

(Sec.) 

30 5 167.577 126.278 216.2 

24 5 135.369 100.161 173.236 

15 5 83.7992 63.8055 109.542 

 

Table 2: Percentage of the Architectures 

fps # of Sorting 

Operations 

per second 

CPU 

Ratio 

GPU 

Ratio 

MIC 

Ratio 

30 329,763,000 32.2% 42.8% 25.0% 

24 263,810,400 31.9% 43.1% 25.0% 

15 164,881,500 32.5% 42.6% 24.9% 

 

Table 3: Speedup factor for One Min Video Stream 

(chunk size = No. of sorting operations in one second) 

fps CPU 

Time 

Chunks Assigned CPU+ 

GPU+ 

MIC 

S 

CPU  GPU  MIC  

30 10,054 18 25 17 3,156 3.18 

24 8,122 10 13 7 1,353 6 

15 5,028 10 13 7 838 6 

Table 4: Max. No. of Sorting Operations per Sec. for CPU, 

GPU, and MIC 

Arch. Max. No. of Sorting Operations per Sec. 

CPU  1,948,824 

GPU 2,633,863 

MIC 1,525,268 

 

Table 5: Heterogeneous Cluster Structure with Equivalent 

No. of Nodes of each Architecture Type 

fps Heterogeneous Cluster Structure 

Total # of 

Nodes 

# of Nodes for Each 

Arch. Type (CPU, 

GPU, and MIC) 

30 162 54 

24 132 44 

15 81 27 

 

The MF experiment has been conducted on different number 

of nodes as shown in Table 6.  Since “Aziz” has a limited 

number of GPU and MIC nodes on the cluster, it is obvious 

that as the number of CPU nodes increases, the number of 

frames that can be processed in a second increases. As seen,  

165 CPU nodes (3960 cores) are needed in addition to 2 

Nvidia GPU nodes and 2 Xeon-Phi nodes to process real-time 

video streaming of 30 4K frames per second. 15 fps can be 

processed using 81 CPU nodes (1944 cores) in addition to 2 

Nvidia GPGPU nodes and 2 Xeon-Phi nodes.  

Table 6: MF Experimental Results Using Different No. of 

CPU Nodes 

Cluster Structure Processed fps 

CPU GPU MIC 

2 2 2 1 

19 2 2 4 

53 2 2 10 

81 2 2 15 

132 2 2 24 

165 2 2 30 

 

5. CONCLUSION 
The MF implementation on heterogeneous architectures can 

significantly improve the speed of its operation.  The time 

required to perform median filtering depends mainly on the 

number and type of architectures used to perform the sorting 

operations.  Proper scheduling strategy and suitable parallel 

computing paradigms are used to perform the MF function. In 

order to provide real-time MF operation on video streaming, 

more hardware should be deployed to reduce the processing 

time of sorting operations.  In doing so, the frame should be 

divided among many architectures such that the time required 

to process it is reduced.  Future work may include the use of 

different sorting technique that may result in reducing the 

total time required to perform the MF functionality. The 
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proposed MF implementation on heterogeneous architectures 

can be used either in real-time or off-line applications.  This 

paper is considered a step towards a complete system to solve 

computationally intensive problems of image processing 

domain on HPC clusters comprising of heterogeneous 

architectures. 
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