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ABSTRACT 

Although the pairwise protein three-dimensional (3D) 

structure alignment is vital in structural bioinformatics, its 

complexity is categorized as non-deterministic polynomial-

time hard (NP-hard). Hence, researchers strive to develop 

algorithms to overcome the heavy computation complexity. 

Most of their attempts tend to achieve more accurate 

alignment results regardless of the computational execution 

time. Therefore, finding a fast alignment algorithm with 

accurate results is still an outstanding task. Recently, General 

Purpose Graphical Processing Units (GPGPUs) can execute 

the many time-consuming algorithms faster than the CPUs 

can. This paper proposes the GPU-based implementation of 

the MatAlign algorithm which is based on the two-level 

alignment of protein. This GPU implementation yields about 

11 increase in speed over its CPU-based, single-core 

implementation on GPU GeForce GTX 860M (640 cores, 

2GB RAM) and Intel Core i7-4710HQ (2.50GHz, 8GB RAM, 

8 cores) CPU. In order to achieve more accurate results, PTM-

MatAlign is implemented to use the Template Modeling Score 

(TM-score) instead of the MatAlign regular score function.   

General Terms 

Protein Structure Alignment, GPU Parallel Computing, Multi-

core Parallel Programming. 

Keywords 

Structure Alignment, CUDA, GPU Parallel Computing, TM-

Score, MatAlign. 

1. INTRODUCTION 
Since the 1970s, great attention has been directed to 

computational molecular biology [1]. Special attention has 

been given to protein 3D structure alignment since it plays a 

crucial role in many molecular biology fields. The protein 3D 

structure alignment, which can be described as superimposing 

protein structures to find which amino acid residues are 

equivalent between them, helps scientists draw useful 

conclusions about the history of proteins, possibility of their 

interactions, functional similarities, and many other operations 

[2]. The protein structure alignment process can be divided 

into two categories: local and global. The very basic 

difference between local and global methods is that in a local 

alignment, a portion of a query protein is aligned with a 

portion of the subject protein, whereas in a global alignment, 

the entire structure of both query and subject protein is 

aligned. Therefore, global alignment may end up with a lot of 

gaps in if the sizes of query and subject are dissimilar. Global 

methods consist of fold-based alignment approaches, while 

local methods can be categorized into template-based and 

surface-based alignment approaches.  

In fold-based alignment approaches, the alignment process 

focuses on different levels of details to calculate different 

types of alignments, where protein structures are represented 

on the level of atom coordinates or a higher level of 

Secondary Structure Elements (SSEs).  Since the alignment 

process is an NP-Hard problem, this task is usually done by 

heuristics techniques. The most famous heuristic algorithms 

among the fold-based approaches that are built on atom 

representations are the DALI [3], SSAP [4], TM-Align [5],  

FAST [6], MatAlign [7], LNA [8], CSA [9], and CAB-Align 

[10]. These kinds of algorithms provide accurate alignment 

results. However, their computation expense is very large 

which makes them inappropriate for large size proteins.   

Among the fold-based methods that are built on SSE 

representations are VAST [11], CE [12], FATCAT [13], 

FlexProt [14],YAKUSKA [15], STRIDE [16], CLePAPS 

[17], ALADYN [18], DEDAL [19], MICAN [20], ASSIST 

[21], GR-Align [22], and PCalign [23]. Not all fold-based 

approaches are heuristic, PAUL [24] and [25] are proposed in 

the literature to find the near-optimal alignment of two 

proteins. Although such approaches are computationally 

feasible, they are too slow to be a used daily.  

On the other hand, among local alignment methods, especially 

in template-based alignment approaches, the alignment 

process focuses on finding the three-dimensional 

arrangements of the important residues, such as catalytic 

dyads, triads or other catalytic centers. Some of the well-

known algorithms in this approach are ASSAM [26], TESS 

[27], MUSTA [28], [29], [30], [31], [32], [33], and [34]. Most 

template-based methods have the drawback of requiring a 

great knowledge about protein structures because templates 

either have to be manually pre-determined or are resultant 

from information mining. 

Likewise, surface-based approaches share similar 

methodologies with template-based approaches where in both 

approaches focus on finding common substructures in 

proteins. The main difference is that template-based alignment 

approaches are developed to deal with small residue patterns, 

whereas surface-based alignment approaches consider much 

larger areas. Furthermore, surface-based approaches focus on 

residues on the surface of the protein. Also, it needs no 

assumptions about the location, number or orientation of 

residues. The most well-known algorithms in this group are 

FEATURE [35], pvSOAR [36], SURFNET [37], SOIPPA 

[38], 3D-SURFER [39], SEGA [40], PL-PatchSurfer [41], and 

Layers [42].  

Local and global alignment algorithms are not suitable to be 

used as an everyday tool due to their heavy computation. In 

order to mitigate this problem, new GPU-based algorithms 

have been developed to speed up the database searching and 
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alignment processes while preserving its accuracy. For 

database search, many algorithms have shown hopeful results 

with high speed up over their CPU implementations such as 

SATableau Search [43] which performs two-level 

parallelization, where the outer level runs alignments in 

parallel, and the inner level parallelizes each alignment. Also, 

ppsAlign [44] and GPU-CASSERT [45], are similar to 

SATableau Search in which they consist of two dynamic 

programming alignment levels. However, GPU-CASSERT 

differs in using a different representation of Protein Secondary 

Structure Elements (SSEs) while ppsAlign differs in aligning 

structures at the residue level. 

This paper presents an enhanced GPU-based parallel 

implementation of the pairwise alignment algorithm MatAlign 

[7]. MatAlign was choosen for several reasons such as 1) 

MatAlign does not require any secondary structure 

information, 2) MatAlign can be easily parallelized because it 

consists of multiple mutually-independent dynamic 

programming procedures, and 3) MatAlign experimental 

results had shown that it had achieved better alignment results 

than DALI, CE and other often-used alignment algorithms.  

The rest of this paper is organized as follows: Section 2 

introduces a brief explanation of the MatAlign computational 

procedure. Moreover, it describes the PTM-MatAlign 

framework architecture. Also, it explains how PTM-MatAlign 

is enhanced to use TM-Score. Then the GPU-based 

implementation of the proposed algorithm PTM-MatAlign is 

provided.  In Section 3 the experimental results of the 

proposed implementation are provided then discussed in 

Section 4. Finally, the conclusion is presented in Section 5.  

2. METHODS 

2.1 Preliminaries 
The proposed algorithm is based on a classic alignment 

algorithm named MatAlign [7]. In MatAlign, the pairwise 

protein 3D structure alignment is reached, simply, by aligning 

the distance matrices of the two query proteins specified by 

the user instead of comparing their original 3D structure. 

These distance matrices are built by calculating the distance 

between Alpha-Carbon (C∝) atoms. Alignment of distance 

matrices is based on the fact that two structurally similar 

atoms, one from each protein, have the similar distance 

profiles. In principle, MatAlign applies a two-level dynamic 

programming approach by first mapping the protein structures 

into two-dimensional (2D) distance matrices and aligns them 

to find the initial alignment. Second, initial alignment is 

refined to reach the optimum alignment score.  

Level 1: Finding Initial Alignment 

Assume [DMA]and [DMB] represent distance matrices for two 

query proteins A and B respectively. In MatAlign first level, a 

score matrix SM is calculated by aligning each row from 

[DMA] against each row from [DMB] by using a match 

function similar to the one used in the classical Needleman-

Wunsch [46]. This match function is used to determine the 

matching degree between two alpha carbon atoms distance 

values d1 and d2. The match function can be defined as: 

𝑀 𝑑1,𝑑2 

=   

𝛼

 𝑑1 − 𝑑2 + 𝛼
       𝑖𝑓  𝑑1 −  𝑑2  ≤  𝑇𝑀𝑎𝑡𝑐 

0                                               𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 

  
(1) 

where α is the score adjusting weight with default value = 0.7, 

and TMatch is the difference threshold of the distances with 

default value 1.6Å. This match function is used in the 

dynamic programming's selection step. After executing the 

dynamic programming, the matching score of the two given 

rows is reached. 

Algorithm 1 shows the row-row alignment algorithm. First, 

the algorithm follows the same methodology of the classical 

Needleman-Wunsch dynamic programming algorithm [46] to 

create a score matrix SM. After that, another Needleman-

Wunsch dynamic programming algorithm is applied on the 

SM to generate the initially aligned pairs. Moreover, the 

exactly aligned pairs are traced back from the dynamic 

programming’s matrix F by a recursive algorithm. 

Algorithm 1 A single-thread version of first level of 

MatAlign algorithm 

1: Procedure GetInitialAlignment(𝐷𝑀𝐴, 𝐷𝑀𝐵)     

2:     Let 𝑆𝑀 be the similarity matrix 

3:     for row 𝑖 in 𝐷𝑀𝐴 do 

4:         for row j in 𝐷𝑀𝐵do                   

5:             𝑆𝑀[𝑖, 𝑗]  row-row matching score of 𝑖𝑡  row of 

𝐷𝑀𝐴and  𝑗𝑡 row of 𝐷𝑀𝐵 

6:         end for 

7:     end for 

8:     𝐺𝑆  0   //GS is the Gap Score 

9:     𝐹  𝐺𝑆  // Let F be a second similarity matrix 

10:     for row 𝑖 in 𝐷𝑀𝐴do 

11:         for row 𝑗 in 𝐷𝑀𝐵do 

12:             𝐹[𝑖, 𝑗]  𝑀𝑎𝑥 ( 𝐹[𝑖 − 1, 𝑗] + 𝐺𝑆,𝐹[𝑖 − 1, 𝑗 − 1] +
𝑆𝑀[𝑖, 𝑗],𝐹[𝑖 − 1, 𝑗] + 𝐺𝑆) 

13:         end for 

14:     end for 

15:     GetAlignment (𝑆𝑀,𝐹) 

16: end procedure 

 

Level 2: Alignment Refining 

The Root Mean Square Deviation (RMSD) [47] is the most 

commonly used tool to measure statistically the similarity 

between two protein structures. However, it is not enough in 

the most cases because the alignment length has to be 

considered too. MatAlign further refines the alignment using 

both the RMSD value (∆) and the number of aligned pairs by 

using the same scoring function (S) used in [48] as shown in 

Equation (2). Since the initial alignment resulting from level 1 

is not usually an optimum in terms of S, the alignment is 

iteratively refined until S cannot be further improved.  

𝑆 =  
3 × 𝑁

1 +  ∆
,

∆=   
1

𝑁
   𝐴𝑎𝑙  𝑖 −   𝑅.𝐵𝑎𝑙  𝑖 + 𝑇  

2
𝑁

𝑖=1

 

(2) 

Where here N is the number of aligned residues, and R and T 

are the rotation matrix and translation vector applied on the 

aligned residues of protein B in order to yield the minimum 

RMSD value. 

For further details about performance assessments, 

experimental results and efficiency tests are in illustrated in 



International Journal of Computer Applications (0975 – 8887) 

Volume 176 – No. 19, May 2020 

33 

[7]. Based on the heavy computations in the row-row 

alignment step, it is decided to parallelize the first level of 

MatAlign. 

2.2 The Proposed Framework Architecture 
PTM-MatAlign depends only on the NVIDIA GPU 

architecture and does not need any complex hardware 

requirements. The framework of PTM-MatAlign is illustrated 

in Fig 1. Obviously, The PTM-MatAlign algorithm consists of 

7 steps: 1) Query protein structure files A and B are read from 

the user. 2) Essential features are extracted from protein files. 

3) Distance matrices DMA and DMB are computed based on 

the extracted features. 4) The first parallel phase in first 

alignment level is executed on all query protein A rows 

against query protein B rows. 5) The second parallel phase in 

the first alignment level is executed on the resulted score 

matrix to find the aligned pairs list. 6) An optimization is 

performed using Compute Unified Device Architecture 

(CUDA) dynamic parallelism to accelerate the alignment 

process. In 7), 8) and 9), a refinement step is applied by 

calculating alignment score using TM-Score to reach the 

optimum alignment.  Steps 1, 2, 7, 8 and 9 are executed on the 

host (CPU), while the rest of steps, the most time-consuming 

parts, are implemented on the device (GPU) as kernels. 

Through the alignment process, input data are saved in GPU 

global memory, whereas the results from all GPU kernels are 

sent to CPU memory. 

 

Fig 1: The PTM-MatAlign Framework Architecture with its CPU and GPU Processes. 

2.3 The Proposed Algorithm (PTM-

MatAlign 
Even though MatAlign is much better than DALI and CE in 

terms of speed and accuracy [7], yet it is not as accurate as, 

for example, TM-Align [5]. In order to improve the alignment 

accuracy, it is decided to enhance MatAlign by applying TM-

Score function in addition to RMSD in the score function 

calculation. 

2.3.1 PTM-MatAlign Score Function 

Implementation 
As previously mentioned in section 2.1, RMSD is the most 

commonly used tool for specifying the similarity locally 

between two protein structures [49]. Despite that, RMSD has 

a major weakness that affects the alignment accuracy where in 

RMSD gives equal weight to all distances between all 

residues. This may lead that a high RMSD could contain a 

small number of local structural deviations, even in similar 

structures. Furthermore, the average RMSD of randomly 

related proteins depends on the length of the compared 

structures. On the other hand, TM-score [50] can easily 

overcome this weakness by using a variation of Levitt–

Gerstein (LG) weight factor [51] that gives stronger weights 

to small distance residues than those with larger distances.  

This efficiency of TM-Score encourages us to use it in the 

refinement step instead of MatAlign regular score function 

[48]  to improve the alignment results. The TM-score function 

is defined as following: 

TM − Score = Max 

 
 
 
 
 

1

𝐿𝑇𝑎𝑟𝑔𝑒𝑡
   

1

1 +   
𝑑𝑖

𝑑0 𝐿𝑇𝑎𝑟𝑔𝑒𝑡  
 

2

𝐿𝑎𝑙𝑖

𝑖

 
 
 
 
 

  (3) 

where LTarget  is the number of residues of the target protein, 

Lali is the number of aligned residues, di is the distance 

between the ith pair of aligned residues, and d0 (LTarget ) is a 

distance parameter that normalizes the distance so that the 

average TM-score is not dependent on the protein size. The 

word “Max” denotes the maximum value after optimal spatial 

superposition. d0 is defined as following: 

𝑑0 𝐿𝑇𝑎𝑟𝑔𝑒𝑡  = 1.24  𝐿𝑇𝑎𝑟𝑔𝑒𝑡 − 15
3

− 1.8 (4) 

As shown in Algorithm 2, during the process of score 

calculating, the farthest pair of residues is picked to be 

removed in case of score convergence because they are not 

contributing to the alignment quality and keeping them may 

cause inaccurate alignment results. The refinement iteration is 

stopped when the alignment score is no longer changing. 

Algorithm 2 The refinement step of PTM-MatAlign 

algorithm 

1: Procedure RefineAlignment(𝑁, 𝐴𝑖𝑛𝑖𝑡 , 𝐵𝑖𝑛𝑖𝑡 )     

2:    𝑆𝑜𝑙𝑑 0   /* The old score value */ 

3:     Let 𝑁\ be the updated number of aligned pairs 
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4:     𝑁\  𝑁,  𝐴𝑓𝑖𝑛𝑎𝑙 𝐴𝑖𝑛𝑖𝑡 , 𝐵𝑓𝑖𝑛𝑎𝑙 𝐵𝑖𝑛𝑖𝑡  

5:     while (true) 

6:          𝑆 = TM-Score (𝑁\, 𝐴𝑓𝑖𝑛𝑎𝑙 , 𝐵𝑓𝑖𝑛𝑎𝑙 ) 

7:          if (𝑆 diverges) then break 

8:          else 

9:               𝑆𝑜𝑙𝑑  = 𝑆 

10:              Remove the farthest pair from 𝐴𝑓𝑖𝑛𝑎𝑙  and 𝐵𝑓𝑖𝑛𝑎𝑙  

11:              Decrement 𝑁\ by 1 

12:          end if 

13:     end while 

14:     𝐴𝑓𝑖𝑛𝑎𝑙 𝐴𝑖𝑛𝑖𝑡 ,  𝐵𝑓𝑖𝑛𝑎𝑙   𝐵𝑖𝑛𝑖𝑡  

15:     return 𝐴𝑓𝑖𝑛𝑎𝑙 , 𝐵𝑓𝑖𝑛𝑎𝑙 , 𝑁\ 

16: end procedure 

 

2.3.2 PTM-MatAlign Parallel Implementation 
There are two main time-consuming steps that need to be 

parallelized. First, the heavy calculation in row-row alignment 

at Algorithm 1 lines 3 – 7 and second, the dynamic 

programming performed on the score matrix to generate the 

list of aligned pairs of Algorithm 1 lines 10 – 15. PTM-

MatAlign parallelizes the above two steps to accelerate the 

alignment process. 

I. First Parallel Alignment Step 

Algorithm 3 describes a pseudo-code of the parallel 

implementation of the first alignment step. This algorithm 

parallelizes the row-row alignment operation, which is the 

most time-consuming part of the first alignment level, as one 

GPU kernel (i.e. GPU function). Each row from the first 

protein is aligned against each row from the second protein 

and stores the similarity results in the global memory. Since 

the total number of blocks that can concurrently execute a 

kernel depends on the maximum global memory size of the 

GPU, in this model, the total number of blocks Bt is 

determined in terms of the number of amino acids in query 

proteins, A and B, and the total number of threads Tt   in each 

block where Bt= |B|/ Tt* |A|. 

In terms of memory usage, each thread requires one similarity 

matrix of size (|A|+1)*(|B|+1). Therefore, the total memory 

space needed to execute all threads in parallel is 

|A|*|B|*(|A|+1)*(|B|+1). This amount of data exceeds the limit 

of GPU local and shared memory in case of large size 

proteins. Therefore, the only rescue is the use of global 

memory to overcome the limitation of GPU memory 

resources. In order to optimize the use of global memory, each 

thread remembers only the last two rows of the similarity 

matrix. This is satisfactory to determine the maximum score 

of the similarity matrix, which is needed to check whether the 

two query proteins are similar or not. 

Algorithm 3 GPU parallel implementation of the first 

alignment step 

1: kernel Row-RowAlignmentKernel(DMA , DMB )     

2:     Let SM be the similarity matrix 

3:     Let patch = |B| / Tt  

4:     for i  BlockId / patch to |A| in parallel do 

5:         for j  (BlockId mod patch) * Tt  + ThreadId to  |B| in 

parallel do                  

6:             SM[i, j]  score of aligning row i in DMAagainst 

row j in DMB  

7:         end for 

8:     end for 

9: end kernel 

 

II. Second Parallel Alignment Step 

In this part, another dynamic programming algorithm is 

applied on the score matrix SM and then traced back by a 

recursive algorithm to generate the initially aligned pairs. 

Since alignment path is needed, then not only the first two 

rows of similarity matrix F are needed but also the whole 

matrix rows have to be allocated. Consequently, from the 

memory view, only one global similarity matrix F is 

represented as a one-dimension vector of type double with 

size [(|A|+1) * (|B|+1)]. In order to decrease the number of 

accesses to the GPU global memory, the similarity matrix F is 

not calculated cell by cell, it is divided into diagonals. From 

the data dependency view, each element F[i,j] depends on 

three elements, F[i,j-1], F[i-1,j], and F[i-1,j-1]. In other word, 

F[i,j] depends on the data from both same and previous rows. 

This kind of dependency looks like a diagonal scan over the 

elements. This technique is known as wave-front technique 

[52]. 

In fact, algorithms which are using wave-front techniques are 

usually developed by calling two nested loops where the outer 

loop represents matrix diagonals, and the inner loop 

represents the cells of each diagonal. This technique can be 

parallelized by implementing the inner loop as a parallel for 

loop. This means that the computations in all cells in each 

diagonal run in parallel where diagonals itself are running in 

sequence. So, in terms of data dependency, each matrix 

diagonal depends on the previous one. The parallel 

implementation of the wave-front technique is shown in Fig 2. 

 

Fig 2: The Parallel Representation of Wave-Front 

Technique 

The above-mentioned parallel methodology has some 

drawbacks such as the heavy load resulting from repetitive 

CPU-GPU data transfer process. In order to overcome this 

weakness, the CUDA dynamic parallel model is used to 
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parallelize this level. In the CUDA dynamic parallel model, 

GPU kernel can launch an inline nested kernel to eliminate the 

data transfer load from CPU to GPU and vice versa. 

Therefore, this model is followed as illustrated in Algorithm 

4.  

In Algorithm 4, the computation is split into two GPU kernels 

where the first kernel (parent) is responsible for calling 

diagonals in sequence and figuring out the number of blocks 

needed to parallelize each diagonal. Not all diagonals need the 

same number of blocks to run in parallel. Accordingly, the 

total number of blocks Bt is determined by the number of cells 

in each diagonal Cd where Bt= Cd. Afterward, this parent 

kernel calls a child kernel to calculate the value of each cell 

using dynamic programming. Once this calculation is done, 

the similarity matrix is moved from GPU memory to CPU 

memory to run a recursive algorithm to generate the initial 

alignment pairs. After that, experiments show that recursive 

refinement level is much faster on the CPU than the GPU 

since there is data dependency between each refinement step. 

Algorithm 4 GPU parallel implementation of the second 

alignment step 

1: kernel ParentKernel(𝑆𝑀, 𝐹)   

2:     Let 𝑃 = max number of cells in all diagonals  

3:     Let 𝑅 = number of repeats of diagonals with max number 

of cells  

4:     for 𝑖=1 to 𝑃 do  

5:        ChildKernel<<<𝑖, 1>>>(𝑆𝑀,𝐹)   

6:     end for 

7:     for 𝑖=1 to 𝑅 do  

8:         ChildKernel<<<𝑃, 1>>>(𝑆𝑀,𝐹)  

9:     end for 

10:    for 𝑖=1 to 𝑃 do  

11:         ChildKernel<<<𝑃 − 𝑖, 1>>>(𝑆𝑀,𝐹)  

12:    end for 

13: end kernel 

1: kernel ChildKernel(𝑆𝑀,𝐹) 

2:     calculate current cell indices 𝑖 and 𝑗 using threadId and 

blockId 

3:     𝐹[𝑖, 𝑗]  𝑀𝑎𝑥( 𝐹[𝑖 − 1, 𝑗] + 𝐺𝑆,𝐹[𝑖 − 1, 𝑗 − 1] +
𝑆𝑀[𝑖, 𝑗],𝐹[𝑖 − 1, 𝑗] + 𝐺𝑆) 

4: end kernel 

 

3. RESULTS 
The effectiveness of the PTM-MatAlign algorithm is tested on 

MSI GE60 2PE ApachePro with Intel core i7-4710HQ 2.50 

GHz processor, 8GB of RAM. This computation environment 

had the Microsoft Windows 8 64-bit operating system 

installed, with CUDA SDK version 6.5 with compute 

capability 5 settled on GPU device GeForce GTX 860M (5 

streaming multiprocessors with 640 processing cores, 49 KB 

of shared memory per block, 65 KB of total constant memory, 

65536 registers per block, 2GB of total global memory).  

Two types of experiments were conducted to assess the 

performance of the PTM-MatAlign algorithm. Firstly, it is 

important to measure the quality of the alignment results 

against its CPU-based implementation MatAlign and the most 

often-used structural alignment algorithms, such as TM-Align, 

MICAN, FATCAT, and CE using different criteria. These 

methods were chosen to compare with as a kind of diversity. 

For example, TM-Align and MICAN are using TM-Score as a 

scoring function. FATCAT is interested in flexible and rigid 

alignment. And CE is one of the classic alignment methods 

which is considered to be a reference. Secondly, it is 

important to compare the speed of PTM-MatAlign against all 

these algorithms. These two experiments were conducted 

using three diversified benchmarked datasets [53], [54], and 

[5]. These dataset were selected to represent different classes 

according to the SCOP classification [55], such as., all alpha 

proteins (all α), all beta proteins (all β), alpha and beta 

proteins (α/β), alpha and beta proteins (α+β), multi-domain 

proteins (alpha and beta), membrane and cell surface proteins 

and peptides, coiled coil proteins, and small proteins. 

3.1 Experiment 1: alignment quality 

assessment 
This experiment assesses the alignment quality of PTM-

MatAlign in relation with the most often-used CPU-based 

structural alignment algorithms mentioned previously. Three 

criteria were defined to assess the alignment quality, RMSD, 

TM-Score, and Alignment Length 

3.1.1 RMSD 
RMSD is one of the most used measures between a pair of 

structures with a specified set of equivalent residues. As 

shown in Fig 3 it can be observed that PTM-MatAlign 

generally tends to produce a smaller RMSD value than 

MatAlign, TM-Align, MICAN, FATCAT and CE do over the 

three datasets. Since there is a consensus says that the smaller 

RMSD value is, the better alignment will be. It means that 

PTM-MatAlign achieves better-fitted alignment than those 

alignment algorithms do. 

 

Fig 3: Distribution of RMSD values over the three 

benchmarked datasets (lower values mean better 

alignment). 

3.1.2 TM-Score 
A good alignment measure must consider the number of 

atoms in the alignment. This makes RMSD not a valid 

measure by itself as previously explained in Section 2.3.1. 

The TM-Score that was proposed by [5] overcomes RMSD 
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weaknesses. It was weighted according to the size of the 

compared structures in such a way that it varies between 0 and 

1, from a bad to a good alignment. As shown in Fig 4, it can 

be observed that PTM-MatAlign produces highest TM-Score, 

over the three used datasets, which means it produces best 

alignment results than MatAlign, TM-Align, MICAN, 

FATCAT and CE do 

 

Fig 4: Distribution of TM-Score values over the three 

benchmarked datasets (higher values mean better 

alignment). 

3.1.3 Alignment Length 
It is not enough to produce low RMSD value to mark the 

alignment results as good. It has to output a large number of 

atoms in the alignment with a high TM-Score value. In Fig 5, 

it is observed that PTM-MatAlign produces longer number of 

atoms in the alignment, over the three used datasets, than the 

MatAlign, TM-Align, MICAN, FATCAT and CE do. The 

summary of structural alignments assessment is shown in 

Table 1. 

Table 1. Table captions should be placed above the table 
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Fig 5: Distribution of alignment length over the three 

benchmarked datasets (higher values mean better 

alignment). 

To illustrate the alignment accuracy visually, a classic 

structural alignment between 2FB4_H and 2HPD_A is 

executed which have a sequence identity of 30%. As shown in 

Fig 6, MatAlign aligns the two proteins with overall RMSD 

17.775 Å with 204 aligned residues and TM-Score 0.4773. 

TM-Align aligns fewer residues, which results in a lower 

RMSD of 6.48 Å over 112 aligned residues and TM-Score 

0.25506. Likewise, MICAN aligns few numbers of residues 

with low RMSD of 4.271 Å over 77 aligned residues and TM-
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Score 0.238. FATCAT aligns the two structures with overall 

RMSD 3.16 Å over 32 aligned residues and TM-Score 

0.0657. CE aligns the two structures with overall RMSD 5.32 

Å over 57 aligned residues and TM-Score 0.0821. PTM-Align 

has the longest alignment coverage with overall RMSD of 

4.16 Å on 228 aligned residues with the highest TM-Score 

0.68. According to this alignment analysis, only PTM-

MatAlign can achieve the most accurate alignment results 

compared with results produced by those algorithms. 

 

Fig 6: Visual illustrative of aligning 2hpd_a (457 residues) 

and 2fb4_h (229 residues) using different alignment 

methods. 

3.2 Experiment 2: alignment speed 

assessment 
In terms of speed, PTM-MatAlign attains better results over 

the three benchmarked datasets. For instance, as an average 

speed up over the three benchmarked datasets, it is about 11 

times faster than the original single-threaded sequential 

algorithm MatAlign, 2 times faster than TM-Align, 8 times 

faster than CE, 13 times faster than FATCAT and about 28 

times faster than MICAN on and Intel Core i7-4710HQ 

(2.50GHz, 8GB RAM, 8 cores) CUP. Fig 7 shows the 

execution times of the six alignment methods over the three 

benchmarked data sets used. Also, as shown in Fig 8,there is 

such a correlation between query protein length and execution 

time, where the greater the length of the query proteins are, 

the higher the execution time becomes. This is expected 

because most of these algorithms mainly depend on query 

protein length to build their methodology. The speedup of 

PTM-MatAlign over the comparable alignment algorithms is 

shown in Fig 9. 

 

Fig 7: Distribution of alignment execution time in seconds 

over the three benchmarked datasets. 

 

Fig 8: Distribution of alignment execution time in relation 

with query protein length. 

 

Fig 9: The speedup values for PTM-MatAlign over the 

other comparable alignment algorithms for the three 

benchmarked datasets. 

4. DISCUSSION 
The experiments that are performed have proven the proposed 

hypothesis that using GPU is more computationally efficient 

than using the old classic single-core techniques to perform 

protein structure comparison is the use of CUDA parallel 

architecture using a graphical processing unit. Upon 

comparing the execution times, GPU-based implementation, 

PTM-MatAlign, is much faster than the other comparable 
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CPU-based alignment algorithms mentioned in the results 

section. This is vital ever since the number of protein 

structures in biological databases is increasing exponential in 

time. For such process, the use of GPU-based 

implementations is mostly important because GPU devices 

are quite inexpensive compared to clusters. For example, a 

middle-class GPU device that is settled on small computation 

environment was used with one processor and achieved better 

alignment results. Therefore, GPU devices can be usefully 

used in implementing many bioinformatics algorithms. 

The GPU-based implementation, PTM-MatAlign, consumes 

the fewest execution time among other algorithms because not 

only using the CUDA parallel architecture to implement 

PTM-MatAlign but also using the CUDA dynamic parallelism 

technique. Using the CUDA dynamic parallel model in the 

second alignment step, an explicit GPU kernel (Parent) was 

designed first. This kernel takes the responsibility for 

determining the number of blocks needed to parallelize cells 

in each diagonal in the similarity matrix. In fact, this kernel 

has one thread to manage the loop because the main 

motivation for implementing such kernel is to move these 

computations from CPU to GPU. Thus, it is quite easy to get 

rid of the kernel overhead problem and exploit the massive 

power of dynamic parallelism provided by CUDA.   

According to alignment quality assessment results, PTM-

MatAlign achieves the best alignment with refereeing to the 

different alignment quality measurements, RMSD, TM-Score 

and alignment length. Moreover, using TM-Score instead of 

MatAlign regular score helps in refining the alignment results 

in such an excellent way to produces the best alignment. 

According to the TM-Score value, the algorithm determines 

whether the alignment length will be affected or not. As a 

result, the proposed parallel implementation, PTM-MatAlign, 

produces differently aligned pair list than the original 

MatAlign does. As per RMSD is a function of the length of 

aligned pair list, then RMSD value in PTM-MatAlign will 

also differ from its counterpart in MatAlign. Similarly, it is 

worth mentioning that PTM-MatAlign produces different 

alignment length and different TM-Score than TM-Align and 

MICAN does because of the different alignment technique 

used.  

However, comparing large size proteins using this GPU-based 

implementation on the proposed GPU environment is deemed 

controversial because the alignment and score matrices cannot 

be stored in the GPU global memory during computations. It 

is not a software-related issue because the upper limit on the 

size of the query proteins is determined based on the GPU 

memory. The larger the GPU memory is, the bigger the 

protein files that can be aligned. As believed, soon, the 

technological advances in the GPUs industry will be able to 

find out a solution for such problems. 

5. CONCLUSION 
This paper presents the PTM-MatAlign algorithm which is a 

GPU-based parallel algorithm for pairwise protein 3D 

structures alignment. It parallelizes the MatAlign algorithm 

with using a TM-score function to refine the alignment 

results. Results show that the PTM-MatAlign algorithm 

overcomes the speed of its CPU-based implementation by 

nearly 11 times. Also, it overcomes the speed of TM-Align by 

nearly 2 times, MICAN by 28 times, CE by 8 times and 

FATCAT by 13 times.  

The advantages of the PTM-MatAlign algorithm are two-fold: 

First, the detailed comparative analysis of protein structures. 

Second, the avoidance of additional overhead resulted from 

launch configurations of kernels by using the CUDA dynamic 

parallel model. On the other hand, PTM-MatAlign drawback 

is the large GPU memory space needed due to the requirement 

of having the whole data when mapping proteins as 2D 

distance matrices. So that, the PTM-MatAlign algorithm with 

the proposed computational environment is currently working 

on middle-size query proteins with length near 900 amino 

acids 
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