
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

31

PTM-MatAlign: A Fast GPU-based Algorithm for Pairwise

Protein Structure Alignment

Nada M. A.
Mohammed

Faculty of Computer and
Information Science

Ain Shams University

Hala M. Ebeid
Faculty of Computer and

Information Science
Ain Shams University

Mostafa G. M.
Mostafa

Faculty of Computer and
Information Science

Ain Shams University

Mahmoud E. A.
Gadallah

Modern Academy for
Computer Science and
Information Technology

ABSTRACT

Although the pairwise protein three-dimensional (3D)

structure alignment is vital in structural bioinformatics, its

complexity is categorized as non-deterministic polynomial-

time hard (NP-hard). Hence, researchers strive to develop

algorithms to overcome the heavy computation complexity.

Most of their attempts tend to achieve more accurate

alignment results regardless of the computational execution

time. Therefore, finding a fast alignment algorithm with

accurate results is still an outstanding task. Recently, General

Purpose Graphical Processing Units (GPGPUs) can execute

the many time-consuming algorithms faster than the CPUs

can. This paper proposes the GPU-based implementation of

the MatAlign algorithm which is based on the two-level

alignment of protein. This GPU implementation yields about

11 increase in speed over its CPU-based, single-core

implementation on GPU GeForce GTX 860M (640 cores,

2GB RAM) and Intel Core i7-4710HQ (2.50GHz, 8GB RAM,

8 cores) CPU. In order to achieve more accurate results, PTM-

MatAlign is implemented to use the Template Modeling Score

(TM-score) instead of the MatAlign regular score function.

General Terms

Protein Structure Alignment, GPU Parallel Computing, Multi-

core Parallel Programming.

Keywords

Structure Alignment, CUDA, GPU Parallel Computing, TM-

Score, MatAlign.

1. INTRODUCTION
Since the 1970s, great attention has been directed to

computational molecular biology [1]. Special attention has

been given to protein 3D structure alignment since it plays a

crucial role in many molecular biology fields. The protein 3D

structure alignment, which can be described as superimposing

protein structures to find which amino acid residues are

equivalent between them, helps scientists draw useful

conclusions about the history of proteins, possibility of their

interactions, functional similarities, and many other operations

[2]. The protein structure alignment process can be divided

into two categories: local and global. The very basic

difference between local and global methods is that in a local

alignment, a portion of a query protein is aligned with a

portion of the subject protein, whereas in a global alignment,

the entire structure of both query and subject protein is

aligned. Therefore, global alignment may end up with a lot of

gaps in if the sizes of query and subject are dissimilar. Global

methods consist of fold-based alignment approaches, while

local methods can be categorized into template-based and

surface-based alignment approaches.

In fold-based alignment approaches, the alignment process

focuses on different levels of details to calculate different

types of alignments, where protein structures are represented

on the level of atom coordinates or a higher level of

Secondary Structure Elements (SSEs). Since the alignment

process is an NP-Hard problem, this task is usually done by

heuristics techniques. The most famous heuristic algorithms

among the fold-based approaches that are built on atom

representations are the DALI [3], SSAP [4], TM-Align [5],

FAST [6], MatAlign [7], LNA [8], CSA [9], and CAB-Align

[10]. These kinds of algorithms provide accurate alignment

results. However, their computation expense is very large

which makes them inappropriate for large size proteins.

Among the fold-based methods that are built on SSE

representations are VAST [11], CE [12], FATCAT [13],

FlexProt [14],YAKUSKA [15], STRIDE [16], CLePAPS

[17], ALADYN [18], DEDAL [19], MICAN [20], ASSIST

[21], GR-Align [22], and PCalign [23]. Not all fold-based

approaches are heuristic, PAUL [24] and [25] are proposed in

the literature to find the near-optimal alignment of two

proteins. Although such approaches are computationally

feasible, they are too slow to be a used daily.

On the other hand, among local alignment methods, especially

in template-based alignment approaches, the alignment

process focuses on finding the three-dimensional

arrangements of the important residues, such as catalytic

dyads, triads or other catalytic centers. Some of the well-

known algorithms in this approach are ASSAM [26], TESS

[27], MUSTA [28], [29], [30], [31], [32], [33], and [34]. Most

template-based methods have the drawback of requiring a

great knowledge about protein structures because templates

either have to be manually pre-determined or are resultant

from information mining.

Likewise, surface-based approaches share similar

methodologies with template-based approaches where in both

approaches focus on finding common substructures in

proteins. The main difference is that template-based alignment

approaches are developed to deal with small residue patterns,

whereas surface-based alignment approaches consider much

larger areas. Furthermore, surface-based approaches focus on

residues on the surface of the protein. Also, it needs no

assumptions about the location, number or orientation of

residues. The most well-known algorithms in this group are

FEATURE [35], pvSOAR [36], SURFNET [37], SOIPPA

[38], 3D-SURFER [39], SEGA [40], PL-PatchSurfer [41], and

Layers [42].

Local and global alignment algorithms are not suitable to be

used as an everyday tool due to their heavy computation. In

order to mitigate this problem, new GPU-based algorithms

have been developed to speed up the database searching and

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

32

alignment processes while preserving its accuracy. For

database search, many algorithms have shown hopeful results

with high speed up over their CPU implementations such as

SATableau Search [43] which performs two-level

parallelization, where the outer level runs alignments in

parallel, and the inner level parallelizes each alignment. Also,

ppsAlign [44] and GPU-CASSERT [45], are similar to

SATableau Search in which they consist of two dynamic

programming alignment levels. However, GPU-CASSERT

differs in using a different representation of Protein Secondary

Structure Elements (SSEs) while ppsAlign differs in aligning

structures at the residue level.

This paper presents an enhanced GPU-based parallel

implementation of the pairwise alignment algorithm MatAlign

[7]. MatAlign was choosen for several reasons such as 1)

MatAlign does not require any secondary structure

information, 2) MatAlign can be easily parallelized because it

consists of multiple mutually-independent dynamic

programming procedures, and 3) MatAlign experimental

results had shown that it had achieved better alignment results

than DALI, CE and other often-used alignment algorithms.

The rest of this paper is organized as follows: Section 2

introduces a brief explanation of the MatAlign computational

procedure. Moreover, it describes the PTM-MatAlign

framework architecture. Also, it explains how PTM-MatAlign

is enhanced to use TM-Score. Then the GPU-based

implementation of the proposed algorithm PTM-MatAlign is

provided. In Section 3 the experimental results of the

proposed implementation are provided then discussed in

Section 4. Finally, the conclusion is presented in Section 5.

2. METHODS

2.1 Preliminaries
The proposed algorithm is based on a classic alignment

algorithm named MatAlign [7]. In MatAlign, the pairwise

protein 3D structure alignment is reached, simply, by aligning

the distance matrices of the two query proteins specified by

the user instead of comparing their original 3D structure.

These distance matrices are built by calculating the distance

between Alpha-Carbon (C∝) atoms. Alignment of distance

matrices is based on the fact that two structurally similar

atoms, one from each protein, have the similar distance

profiles. In principle, MatAlign applies a two-level dynamic

programming approach by first mapping the protein structures

into two-dimensional (2D) distance matrices and aligns them

to find the initial alignment. Second, initial alignment is

refined to reach the optimum alignment score.

Level 1: Finding Initial Alignment

Assume [DMA]and [DMB] represent distance matrices for two

query proteins A and B respectively. In MatAlign first level, a

score matrix SM is calculated by aligning each row from

[DMA] against each row from [DMB] by using a match

function similar to the one used in the classical Needleman-

Wunsch [46]. This match function is used to determine the

matching degree between two alpha carbon atoms distance

values d1 and d2. The match function can be defined as:

𝑀 𝑑1,𝑑2

=

𝛼

 𝑑1 − 𝑑2 + 𝛼
 𝑖𝑓 𝑑1 − 𝑑2 ≤ 𝑇𝑀𝑎𝑡𝑐

0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

(1)

where α is the score adjusting weight with default value = 0.7,

and TMatch is the difference threshold of the distances with

default value 1.6Å. This match function is used in the

dynamic programming's selection step. After executing the

dynamic programming, the matching score of the two given

rows is reached.

Algorithm 1 shows the row-row alignment algorithm. First,

the algorithm follows the same methodology of the classical

Needleman-Wunsch dynamic programming algorithm [46] to

create a score matrix SM. After that, another Needleman-

Wunsch dynamic programming algorithm is applied on the

SM to generate the initially aligned pairs. Moreover, the

exactly aligned pairs are traced back from the dynamic

programming’s matrix F by a recursive algorithm.

Algorithm 1 A single-thread version of first level of

MatAlign algorithm

1: Procedure GetInitialAlignment(𝐷𝑀𝐴, 𝐷𝑀𝐵)

2: Let 𝑆𝑀 be the similarity matrix

3: for row 𝑖 in 𝐷𝑀𝐴 do

4: for row j in 𝐷𝑀𝐵do

5: 𝑆𝑀[𝑖, 𝑗] row-row matching score of 𝑖𝑡 row of

𝐷𝑀𝐴and 𝑗𝑡 row of 𝐷𝑀𝐵

6: end for

7: end for

8: 𝐺𝑆 0 //GS is the Gap Score

9: 𝐹 𝐺𝑆 // Let F be a second similarity matrix

10: for row 𝑖 in 𝐷𝑀𝐴do

11: for row 𝑗 in 𝐷𝑀𝐵do

12: 𝐹[𝑖, 𝑗] 𝑀𝑎𝑥 (𝐹[𝑖 − 1, 𝑗] + 𝐺𝑆,𝐹[𝑖 − 1, 𝑗 − 1] +
𝑆𝑀[𝑖, 𝑗],𝐹[𝑖 − 1, 𝑗] + 𝐺𝑆)

13: end for

14: end for

15: GetAlignment (𝑆𝑀,𝐹)

16: end procedure

Level 2: Alignment Refining

The Root Mean Square Deviation (RMSD) [47] is the most

commonly used tool to measure statistically the similarity

between two protein structures. However, it is not enough in

the most cases because the alignment length has to be

considered too. MatAlign further refines the alignment using

both the RMSD value (∆) and the number of aligned pairs by

using the same scoring function (S) used in [48] as shown in

Equation (2). Since the initial alignment resulting from level 1

is not usually an optimum in terms of S, the alignment is

iteratively refined until S cannot be further improved.

𝑆 =
3 × 𝑁

1 + ∆
,

∆=
1

𝑁
 𝐴𝑎𝑙 𝑖 − 𝑅.𝐵𝑎𝑙 𝑖 + 𝑇

2
𝑁

𝑖=1

(2)

Where here N is the number of aligned residues, and R and T

are the rotation matrix and translation vector applied on the

aligned residues of protein B in order to yield the minimum

RMSD value.

For further details about performance assessments,

experimental results and efficiency tests are in illustrated in

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

33

[7]. Based on the heavy computations in the row-row

alignment step, it is decided to parallelize the first level of

MatAlign.

2.2 The Proposed Framework Architecture
PTM-MatAlign depends only on the NVIDIA GPU

architecture and does not need any complex hardware

requirements. The framework of PTM-MatAlign is illustrated

in Fig 1. Obviously, The PTM-MatAlign algorithm consists of

7 steps: 1) Query protein structure files A and B are read from

the user. 2) Essential features are extracted from protein files.

3) Distance matrices DMA and DMB are computed based on

the extracted features. 4) The first parallel phase in first

alignment level is executed on all query protein A rows

against query protein B rows. 5) The second parallel phase in

the first alignment level is executed on the resulted score

matrix to find the aligned pairs list. 6) An optimization is

performed using Compute Unified Device Architecture

(CUDA) dynamic parallelism to accelerate the alignment

process. In 7), 8) and 9), a refinement step is applied by

calculating alignment score using TM-Score to reach the

optimum alignment. Steps 1, 2, 7, 8 and 9 are executed on the

host (CPU), while the rest of steps, the most time-consuming

parts, are implemented on the device (GPU) as kernels.

Through the alignment process, input data are saved in GPU

global memory, whereas the results from all GPU kernels are

sent to CPU memory.

Fig 1: The PTM-MatAlign Framework Architecture with its CPU and GPU Processes.

2.3 The Proposed Algorithm (PTM-

MatAlign
Even though MatAlign is much better than DALI and CE in

terms of speed and accuracy [7], yet it is not as accurate as,

for example, TM-Align [5]. In order to improve the alignment

accuracy, it is decided to enhance MatAlign by applying TM-

Score function in addition to RMSD in the score function

calculation.

2.3.1 PTM-MatAlign Score Function

Implementation
As previously mentioned in section 2.1, RMSD is the most

commonly used tool for specifying the similarity locally

between two protein structures [49]. Despite that, RMSD has

a major weakness that affects the alignment accuracy where in

RMSD gives equal weight to all distances between all

residues. This may lead that a high RMSD could contain a

small number of local structural deviations, even in similar

structures. Furthermore, the average RMSD of randomly

related proteins depends on the length of the compared

structures. On the other hand, TM-score [50] can easily

overcome this weakness by using a variation of Levitt–

Gerstein (LG) weight factor [51] that gives stronger weights

to small distance residues than those with larger distances.

This efficiency of TM-Score encourages us to use it in the

refinement step instead of MatAlign regular score function

[48] to improve the alignment results. The TM-score function

is defined as following:

TM − Score = Max

1

𝐿𝑇𝑎𝑟𝑔𝑒𝑡

1

1 +
𝑑𝑖

𝑑0 𝐿𝑇𝑎𝑟𝑔𝑒𝑡

2

𝐿𝑎𝑙𝑖

𝑖

 (3)

where LTarget is the number of residues of the target protein,

Lali is the number of aligned residues, di is the distance

between the ith pair of aligned residues, and d0 (LTarget) is a

distance parameter that normalizes the distance so that the

average TM-score is not dependent on the protein size. The

word “Max” denotes the maximum value after optimal spatial

superposition. d0 is defined as following:

𝑑0 𝐿𝑇𝑎𝑟𝑔𝑒𝑡 = 1.24 𝐿𝑇𝑎𝑟𝑔𝑒𝑡 − 15
3

− 1.8 (4)

As shown in Algorithm 2, during the process of score

calculating, the farthest pair of residues is picked to be

removed in case of score convergence because they are not

contributing to the alignment quality and keeping them may

cause inaccurate alignment results. The refinement iteration is

stopped when the alignment score is no longer changing.

Algorithm 2 The refinement step of PTM-MatAlign

algorithm

1: Procedure RefineAlignment(𝑁, 𝐴𝑖𝑛𝑖𝑡 , 𝐵𝑖𝑛𝑖𝑡)

2: 𝑆𝑜𝑙𝑑 0 /* The old score value */

3: Let 𝑁\ be the updated number of aligned pairs

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

34

4: 𝑁\ 𝑁, 𝐴𝑓𝑖𝑛𝑎𝑙 𝐴𝑖𝑛𝑖𝑡 , 𝐵𝑓𝑖𝑛𝑎𝑙 𝐵𝑖𝑛𝑖𝑡

5: while (true)

6: 𝑆 = TM-Score (𝑁\, 𝐴𝑓𝑖𝑛𝑎𝑙 , 𝐵𝑓𝑖𝑛𝑎𝑙)

7: if (𝑆 diverges) then break

8: else

9: 𝑆𝑜𝑙𝑑 = 𝑆

10: Remove the farthest pair from 𝐴𝑓𝑖𝑛𝑎𝑙 and 𝐵𝑓𝑖𝑛𝑎𝑙

11: Decrement 𝑁\ by 1

12: end if

13: end while

14: 𝐴𝑓𝑖𝑛𝑎𝑙 𝐴𝑖𝑛𝑖𝑡 , 𝐵𝑓𝑖𝑛𝑎𝑙 𝐵𝑖𝑛𝑖𝑡

15: return 𝐴𝑓𝑖𝑛𝑎𝑙 , 𝐵𝑓𝑖𝑛𝑎𝑙 , 𝑁\

16: end procedure

2.3.2 PTM-MatAlign Parallel Implementation
There are two main time-consuming steps that need to be

parallelized. First, the heavy calculation in row-row alignment

at Algorithm 1 lines 3 – 7 and second, the dynamic

programming performed on the score matrix to generate the

list of aligned pairs of Algorithm 1 lines 10 – 15. PTM-

MatAlign parallelizes the above two steps to accelerate the

alignment process.

I. First Parallel Alignment Step

Algorithm 3 describes a pseudo-code of the parallel

implementation of the first alignment step. This algorithm

parallelizes the row-row alignment operation, which is the

most time-consuming part of the first alignment level, as one

GPU kernel (i.e. GPU function). Each row from the first

protein is aligned against each row from the second protein

and stores the similarity results in the global memory. Since

the total number of blocks that can concurrently execute a

kernel depends on the maximum global memory size of the

GPU, in this model, the total number of blocks Bt is

determined in terms of the number of amino acids in query

proteins, A and B, and the total number of threads Tt in each

block where Bt= |B|/ Tt* |A|.

In terms of memory usage, each thread requires one similarity

matrix of size (|A|+1)*(|B|+1). Therefore, the total memory

space needed to execute all threads in parallel is

|A|*|B|*(|A|+1)*(|B|+1). This amount of data exceeds the limit

of GPU local and shared memory in case of large size

proteins. Therefore, the only rescue is the use of global

memory to overcome the limitation of GPU memory

resources. In order to optimize the use of global memory, each

thread remembers only the last two rows of the similarity

matrix. This is satisfactory to determine the maximum score

of the similarity matrix, which is needed to check whether the

two query proteins are similar or not.

Algorithm 3 GPU parallel implementation of the first

alignment step

1: kernel Row-RowAlignmentKernel(DMA , DMB)

2: Let SM be the similarity matrix

3: Let patch = |B| / Tt

4: for i BlockId / patch to |A| in parallel do

5: for j (BlockId mod patch) * Tt + ThreadId to |B| in

parallel do

6: SM[i, j] score of aligning row i in DMAagainst

row j in DMB

7: end for

8: end for

9: end kernel

II. Second Parallel Alignment Step

In this part, another dynamic programming algorithm is

applied on the score matrix SM and then traced back by a

recursive algorithm to generate the initially aligned pairs.

Since alignment path is needed, then not only the first two

rows of similarity matrix F are needed but also the whole

matrix rows have to be allocated. Consequently, from the

memory view, only one global similarity matrix F is

represented as a one-dimension vector of type double with

size [(|A|+1) * (|B|+1)]. In order to decrease the number of

accesses to the GPU global memory, the similarity matrix F is

not calculated cell by cell, it is divided into diagonals. From

the data dependency view, each element F[i,j] depends on

three elements, F[i,j-1], F[i-1,j], and F[i-1,j-1]. In other word,

F[i,j] depends on the data from both same and previous rows.

This kind of dependency looks like a diagonal scan over the

elements. This technique is known as wave-front technique

[52].

In fact, algorithms which are using wave-front techniques are

usually developed by calling two nested loops where the outer

loop represents matrix diagonals, and the inner loop

represents the cells of each diagonal. This technique can be

parallelized by implementing the inner loop as a parallel for

loop. This means that the computations in all cells in each

diagonal run in parallel where diagonals itself are running in

sequence. So, in terms of data dependency, each matrix

diagonal depends on the previous one. The parallel

implementation of the wave-front technique is shown in Fig 2.

Fig 2: The Parallel Representation of Wave-Front

Technique

The above-mentioned parallel methodology has some

drawbacks such as the heavy load resulting from repetitive

CPU-GPU data transfer process. In order to overcome this

weakness, the CUDA dynamic parallel model is used to

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

35

parallelize this level. In the CUDA dynamic parallel model,

GPU kernel can launch an inline nested kernel to eliminate the

data transfer load from CPU to GPU and vice versa.

Therefore, this model is followed as illustrated in Algorithm

4.

In Algorithm 4, the computation is split into two GPU kernels

where the first kernel (parent) is responsible for calling

diagonals in sequence and figuring out the number of blocks

needed to parallelize each diagonal. Not all diagonals need the

same number of blocks to run in parallel. Accordingly, the

total number of blocks Bt is determined by the number of cells

in each diagonal Cd where Bt= Cd. Afterward, this parent

kernel calls a child kernel to calculate the value of each cell

using dynamic programming. Once this calculation is done,

the similarity matrix is moved from GPU memory to CPU

memory to run a recursive algorithm to generate the initial

alignment pairs. After that, experiments show that recursive

refinement level is much faster on the CPU than the GPU

since there is data dependency between each refinement step.

Algorithm 4 GPU parallel implementation of the second

alignment step

1: kernel ParentKernel(𝑆𝑀, 𝐹)

2: Let 𝑃 = max number of cells in all diagonals

3: Let 𝑅 = number of repeats of diagonals with max number

of cells

4: for 𝑖=1 to 𝑃 do

5: ChildKernel<<<𝑖, 1>>>(𝑆𝑀,𝐹)

6: end for

7: for 𝑖=1 to 𝑅 do

8: ChildKernel<<<𝑃, 1>>>(𝑆𝑀,𝐹)

9: end for

10: for 𝑖=1 to 𝑃 do

11: ChildKernel<<<𝑃 − 𝑖, 1>>>(𝑆𝑀,𝐹)

12: end for

13: end kernel

1: kernel ChildKernel(𝑆𝑀,𝐹)

2: calculate current cell indices 𝑖 and 𝑗 using threadId and

blockId

3: 𝐹[𝑖, 𝑗] 𝑀𝑎𝑥(𝐹[𝑖 − 1, 𝑗] + 𝐺𝑆,𝐹[𝑖 − 1, 𝑗 − 1] +
𝑆𝑀[𝑖, 𝑗],𝐹[𝑖 − 1, 𝑗] + 𝐺𝑆)

4: end kernel

3. RESULTS
The effectiveness of the PTM-MatAlign algorithm is tested on

MSI GE60 2PE ApachePro with Intel core i7-4710HQ 2.50

GHz processor, 8GB of RAM. This computation environment

had the Microsoft Windows 8 64-bit operating system

installed, with CUDA SDK version 6.5 with compute

capability 5 settled on GPU device GeForce GTX 860M (5

streaming multiprocessors with 640 processing cores, 49 KB

of shared memory per block, 65 KB of total constant memory,

65536 registers per block, 2GB of total global memory).

Two types of experiments were conducted to assess the

performance of the PTM-MatAlign algorithm. Firstly, it is

important to measure the quality of the alignment results

against its CPU-based implementation MatAlign and the most

often-used structural alignment algorithms, such as TM-Align,

MICAN, FATCAT, and CE using different criteria. These

methods were chosen to compare with as a kind of diversity.

For example, TM-Align and MICAN are using TM-Score as a

scoring function. FATCAT is interested in flexible and rigid

alignment. And CE is one of the classic alignment methods

which is considered to be a reference. Secondly, it is

important to compare the speed of PTM-MatAlign against all

these algorithms. These two experiments were conducted

using three diversified benchmarked datasets [53], [54], and

[5]. These dataset were selected to represent different classes

according to the SCOP classification [55], such as., all alpha

proteins (all α), all beta proteins (all β), alpha and beta

proteins (α/β), alpha and beta proteins (α+β), multi-domain

proteins (alpha and beta), membrane and cell surface proteins

and peptides, coiled coil proteins, and small proteins.

3.1 Experiment 1: alignment quality

assessment
This experiment assesses the alignment quality of PTM-

MatAlign in relation with the most often-used CPU-based

structural alignment algorithms mentioned previously. Three

criteria were defined to assess the alignment quality, RMSD,

TM-Score, and Alignment Length

3.1.1 RMSD
RMSD is one of the most used measures between a pair of

structures with a specified set of equivalent residues. As

shown in Fig 3 it can be observed that PTM-MatAlign

generally tends to produce a smaller RMSD value than

MatAlign, TM-Align, MICAN, FATCAT and CE do over the

three datasets. Since there is a consensus says that the smaller

RMSD value is, the better alignment will be. It means that

PTM-MatAlign achieves better-fitted alignment than those

alignment algorithms do.

Fig 3: Distribution of RMSD values over the three

benchmarked datasets (lower values mean better

alignment).

3.1.2 TM-Score
A good alignment measure must consider the number of

atoms in the alignment. This makes RMSD not a valid

measure by itself as previously explained in Section 2.3.1.

The TM-Score that was proposed by [5] overcomes RMSD

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

36

weaknesses. It was weighted according to the size of the

compared structures in such a way that it varies between 0 and

1, from a bad to a good alignment. As shown in Fig 4, it can

be observed that PTM-MatAlign produces highest TM-Score,

over the three used datasets, which means it produces best

alignment results than MatAlign, TM-Align, MICAN,

FATCAT and CE do

Fig 4: Distribution of TM-Score values over the three

benchmarked datasets (higher values mean better

alignment).

3.1.3 Alignment Length
It is not enough to produce low RMSD value to mark the

alignment results as good. It has to output a large number of

atoms in the alignment with a high TM-Score value. In Fig 5,

it is observed that PTM-MatAlign produces longer number of

atoms in the alignment, over the three used datasets, than the

MatAlign, TM-Align, MICAN, FATCAT and CE do. The

summary of structural alignments assessment is shown in

Table 1.

Table 1. Table captions should be placed above the table

 Data Set 1 Data Set 2

RM

SD

(A)

TM

-

Sco

re

Align

ment

Length

RM

SD

(A)

TM

-

Sco

re

Align

ment

Lengt

h

MatAl

ign

2.96

7

0.64

5
53 6

0.46

7
136

TM-

Align

3.23

1
0.48 58

5.33

8

0.29

6
84

CE
3.45

8

0.61

1
62

5.45

7

0.27

1
70

FATC

AT

2.90

8

0.47

1
62

3.36

1

0.13

6
85

MICA

N

3.00

3

0.49

9
60

3.96

3

0.28

6
74

PTM-

MatAl
1.37 0.73 71 2.63 0.65 164

ign 4 7 9

 Data Set 3
Average over all

Datasets

RM

SD

(A)

TM

-

Sco

re

Align

ment

Length

RM

SD

(A)

TM

-

Sco

re

Align

ment

Lengt

h

MatAl

ign

4.81

6

0.53

1
117

4.59

4

0.54

8
102

TM-

Align

4.48

1
0.41 91 4.35

0.39

5
78

CE
4.80

8

0.42

8
74

4.57

4

0.43

7
69

FATC

AT

3.04

1

0.48

3
79

3.10

3

0.36

1
75

MICA

N

3.66

8

0.38

6
79

3.54

9

0.54

8
71

PTM-

MatAl

ign

2.17

7
0.69 140

2.06

27

0.69

3
125

Fig 5: Distribution of alignment length over the three

benchmarked datasets (higher values mean better

alignment).

To illustrate the alignment accuracy visually, a classic

structural alignment between 2FB4_H and 2HPD_A is

executed which have a sequence identity of 30%. As shown in

Fig 6, MatAlign aligns the two proteins with overall RMSD

17.775 Å with 204 aligned residues and TM-Score 0.4773.

TM-Align aligns fewer residues, which results in a lower

RMSD of 6.48 Å over 112 aligned residues and TM-Score

0.25506. Likewise, MICAN aligns few numbers of residues

with low RMSD of 4.271 Å over 77 aligned residues and TM-

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

37

Score 0.238. FATCAT aligns the two structures with overall

RMSD 3.16 Å over 32 aligned residues and TM-Score

0.0657. CE aligns the two structures with overall RMSD 5.32

Å over 57 aligned residues and TM-Score 0.0821. PTM-Align

has the longest alignment coverage with overall RMSD of

4.16 Å on 228 aligned residues with the highest TM-Score

0.68. According to this alignment analysis, only PTM-

MatAlign can achieve the most accurate alignment results

compared with results produced by those algorithms.

Fig 6: Visual illustrative of aligning 2hpd_a (457 residues)

and 2fb4_h (229 residues) using different alignment

methods.

3.2 Experiment 2: alignment speed

assessment
In terms of speed, PTM-MatAlign attains better results over

the three benchmarked datasets. For instance, as an average

speed up over the three benchmarked datasets, it is about 11

times faster than the original single-threaded sequential

algorithm MatAlign, 2 times faster than TM-Align, 8 times

faster than CE, 13 times faster than FATCAT and about 28

times faster than MICAN on and Intel Core i7-4710HQ

(2.50GHz, 8GB RAM, 8 cores) CUP. Fig 7 shows the

execution times of the six alignment methods over the three

benchmarked data sets used. Also, as shown in Fig 8,there is

such a correlation between query protein length and execution

time, where the greater the length of the query proteins are,

the higher the execution time becomes. This is expected

because most of these algorithms mainly depend on query

protein length to build their methodology. The speedup of

PTM-MatAlign over the comparable alignment algorithms is

shown in Fig 9.

Fig 7: Distribution of alignment execution time in seconds

over the three benchmarked datasets.

Fig 8: Distribution of alignment execution time in relation

with query protein length.

Fig 9: The speedup values for PTM-MatAlign over the

other comparable alignment algorithms for the three

benchmarked datasets.

4. DISCUSSION
The experiments that are performed have proven the proposed

hypothesis that using GPU is more computationally efficient

than using the old classic single-core techniques to perform

protein structure comparison is the use of CUDA parallel

architecture using a graphical processing unit. Upon

comparing the execution times, GPU-based implementation,

PTM-MatAlign, is much faster than the other comparable

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

38

CPU-based alignment algorithms mentioned in the results

section. This is vital ever since the number of protein

structures in biological databases is increasing exponential in

time. For such process, the use of GPU-based

implementations is mostly important because GPU devices

are quite inexpensive compared to clusters. For example, a

middle-class GPU device that is settled on small computation

environment was used with one processor and achieved better

alignment results. Therefore, GPU devices can be usefully

used in implementing many bioinformatics algorithms.

The GPU-based implementation, PTM-MatAlign, consumes

the fewest execution time among other algorithms because not

only using the CUDA parallel architecture to implement

PTM-MatAlign but also using the CUDA dynamic parallelism

technique. Using the CUDA dynamic parallel model in the

second alignment step, an explicit GPU kernel (Parent) was

designed first. This kernel takes the responsibility for

determining the number of blocks needed to parallelize cells

in each diagonal in the similarity matrix. In fact, this kernel

has one thread to manage the loop because the main

motivation for implementing such kernel is to move these

computations from CPU to GPU. Thus, it is quite easy to get

rid of the kernel overhead problem and exploit the massive

power of dynamic parallelism provided by CUDA.

According to alignment quality assessment results, PTM-

MatAlign achieves the best alignment with refereeing to the

different alignment quality measurements, RMSD, TM-Score

and alignment length. Moreover, using TM-Score instead of

MatAlign regular score helps in refining the alignment results

in such an excellent way to produces the best alignment.

According to the TM-Score value, the algorithm determines

whether the alignment length will be affected or not. As a

result, the proposed parallel implementation, PTM-MatAlign,

produces differently aligned pair list than the original

MatAlign does. As per RMSD is a function of the length of

aligned pair list, then RMSD value in PTM-MatAlign will

also differ from its counterpart in MatAlign. Similarly, it is

worth mentioning that PTM-MatAlign produces different

alignment length and different TM-Score than TM-Align and

MICAN does because of the different alignment technique

used.

However, comparing large size proteins using this GPU-based

implementation on the proposed GPU environment is deemed

controversial because the alignment and score matrices cannot

be stored in the GPU global memory during computations. It

is not a software-related issue because the upper limit on the

size of the query proteins is determined based on the GPU

memory. The larger the GPU memory is, the bigger the

protein files that can be aligned. As believed, soon, the

technological advances in the GPUs industry will be able to

find out a solution for such problems.

5. CONCLUSION
This paper presents the PTM-MatAlign algorithm which is a

GPU-based parallel algorithm for pairwise protein 3D

structures alignment. It parallelizes the MatAlign algorithm

with using a TM-score function to refine the alignment

results. Results show that the PTM-MatAlign algorithm

overcomes the speed of its CPU-based implementation by

nearly 11 times. Also, it overcomes the speed of TM-Align by

nearly 2 times, MICAN by 28 times, CE by 8 times and

FATCAT by 13 times.

The advantages of the PTM-MatAlign algorithm are two-fold:

First, the detailed comparative analysis of protein structures.

Second, the avoidance of additional overhead resulted from

launch configurations of kernels by using the CUDA dynamic

parallel model. On the other hand, PTM-MatAlign drawback

is the large GPU memory space needed due to the requirement

of having the whole data when mapping proteins as 2D

distance matrices. So that, the PTM-MatAlign algorithm with

the proposed computational environment is currently working

on middle-size query proteins with length near 900 amino

acids

6. REFERENCES
[1] Morange, M. 1999. A History of Molecular Biology.

BioScience, 49(11), 929-931.

[2] Burkowski, F.J. 2009. Structural bioinformatics: an

algorithmic approach (Vol. 20): Chapman & Hall/CRC.

[3] Liisa , H., and S. Chris. 1993. Protein Structure

Comparison by Alignment of Distance Matrices. Journal

of Molecular Biology, 233(11), 123–138.

[4] Orengo, C.A., and W.R. Taylor. 1996. SSAP: sequential

structure alignment program for protein structure

comparison. Methods Enzymol, 266, 617-635.

[5] Zhang, Y., and J. Skolnick. 2005. TM-align: a protein

structure alignment algorithm based on the TM-score.

Nucleic Acids Research, 33(7), 2302-2309.

[6] Jianhua, Z., and W. Zhiping. 2004. FAST: A novel

protein structure alignment algorithm. Proteins:

Structure, Function, and Bioinformatics, 58(3), 618-627.

[7] Zeyar, A., and T. Kian-Lee. 2006. MatAlign: PRECISE

PROTEIN STRUCTURE COMPARISON BY MATRIX

ALIGNMENT. Journal of Bioinformatics and

Computational Biology, 4(6), 1197-1216.

[8] Nicolas, B., and M. Pierre-Francois. 2012. LNA: Fast

Protein Structural Comparison Using a Laplacian

Characterization of Tertiary Structure. IEEE/ACM

Transactions on Computational Biology and

Bioinformatics, 9(5), 1451-1458.

[9] Inken , W., M.-D. Noel , and A. Rumen 2012. CSA:

comprehensive comparison of pairwise protein structure

alignments. Nucleic Acids Research, 303-309.

[10] Genki, T., and T.-S. Mayuko. 2015. CAB-Align: A

Flexible Protein Structure Alignment Method Based on

the Residue-Residue Contact Area. PLoS ONE, 10(10).

[11] Jean-Francois, G., M. Thomas, and H.B. Stephen. 1996.

Surprising similarities in structure comparison. Current

Opinion in Structural Biology, 6(3), 377-385.

[12] Shindyalov, I.N., and P.E. Bourne. 1998. Protein

structure alignment by incremental combinatorial

extension (CE) of the optimal path. Protein Eng, 11(9),

739-747.

[13] Yuzhen, Y., and G. Adam. 2003. Flexible structure

alignment by chaining aligned fragment pairs allowing

twists. Bioinformatics, 19(2), 246-255.

[14] Maxim, S., N. Ruth, and J.W. Haim. 2004. FlexProt:

Alignment of Flexible Protein Structures Without a

Predefinition of Hinge Regions. Journal of

Computational Biology, 11(1), 83-106.

[15] Mathilde, C., B. Sophie, and P. Joël. 2005. YAKUSA: A

fast structural database scanning method. Proteins:

Structure, Function, and Bioinformatics, 61, 137-151.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

39

[16] Matthias, H., and F. Dmitrij. 2004. STRIDE: a web

server for secondary structure assignment from known

atomic coordinates of proteins. Nucleic Acids Research,

32, 500-502.

[17] Zheng, W. 2008. CLePAPS: Fast Pair Alignment of

Protein Structures Based on Conformational Letters.

Journal of Bioinformatics and Computational Biology,

6(2), 347-366.

[18] Potestio, R., et al. 2010. ALADYN: a web server for

aligning proteins by matching their large-scale motion.

Nucleic Acids Research, 38(2), 41-45.

[19] Paweł, D., and L. Bogdan. 2011. A novel method to

compare protein structures using local descriptors. BMC

Bioinformatics, 12(344).

[20] Shintaro, M., S. Kengo, and C. George. 2013. MICAN: a

protein structure alignment algorithm that can handle

multiple-chains, inverse alignments, Ca only models,

alternative alignments, and non-sequential alignments.

BMC Bioinformatics, 14(24).

[21] Silvia, C., et al. 2013. ASSIST: a fast versatile local

structural comparison tool. Bioinformatics, 30(7).

[22] Noel, M.-D., and P. Natasa. 2014. GR-Align: fast and

flexible alignment of protein 3D structures using graphlet

degree similarity. Bioinformatics, 30(9), 1259-1265.

[23] Shanshan, C., Z. Yang, and B. Charles. 2015. PCalign: a

method to quantify physicochemical similarity of

protein-protein interfaces. BMC Bioinformatics, 16(33).

[24] Wohlers, I., F.S. Domingues, and W.K. Gunnar 2010.

Towards optimal alignment of protein structure distance

matrices. Bioinformatics, 26, 2273-2280.

[25] Linial, K. 20004. Approximate Protein Structural

Alignment in Polynomial Time. Proceedings of the

National Academy of Sciences of the United States of

America(101), 12201–12206.

[26] Peter, A.J., P.R. Andrew, and G.M. Helen. 1994. A

Graph-theoretic Approach to the Identification of Three-

dimensional Patterns of Amino Acid Side-chains in

Protein Structures. Journal of Molecular Biology, 243(2),

327–344.

[27] Andrew , W.C., B. Neera , and T. Janet 1997. TESS: a

geometric hashing algorithm for deriving 3D coordinate

templates for searching structural databases. Application

to enzyme active sites. Protein Science, 6(11), 2308-

2323.

[28] Nathaniel, L., N. Ruth , and W.J. Haim 2001. MUSTA -

A General, Efficient, Automated Method for Multiple

Structure Alignment and Detection of Common Motifs:

Application to Proteins. Journal of Computational

Biology, 8(2), 93-121.

[29] Jonathan, B.A., and T.M. Janet 2003. An algorithm for

constraint-based structural template matching:

application to 3D templates with statistical analysis.

Bioinformatics, 19(13), 1644-1649.

[30] Pramod , W.P., et al. 2003. Functional Sites in Protein

Families Uncovered via an Objective and Automated

Graph Theoretic Approach. Journal of Molecular

Biology, 326(3), 955–978.

[31] Alexander , S., and R.B. Robert. 2003. Annotation in

three dimensions. PINTS: Patterns in Non-homologous

Tertiary Structures. Nucleic Acids Research, 31(13),

3341-3344.

[32] Nurcan, T., et al. 2011. Predicting protein-protein

interactions on a proteome scale by matching

evolutionary and structural similarities at interfaces using

PRISM. Nat. Protocols, 6(9), 1341-1354.

[33] Kundrotas, P.J., Z. Zhengwei, and J. Joël. 2012.

Templates are available to model nearly all complexes of

structurally characterized proteins. Proceedings of the

National Academy of Sciences of the United States of

America, 109(24), 9438-9441.

[34] Kundrotas, P.J., and I.A. Vakser. 2013. Global and local

structural similarity in protein–protein complexes:

Implications for template-based docking. Proteins,

81(12), 2137-2142.

[35] Bagley, S.C., and R.B. Altman. 1995. Characterizing the

microenvironment surrounding protein sites. Protein

Science, 4(4), 622-635.

[36] Binkowski, A.T., L. Adamian, and J. Liang. 2003.

Inferring Functional Relationships of Proteins from

Local Sequence and Spatial Surface Patterns. Journal of

Molecular Biology, 332(2), 505–526.

[37] Glaser, F., et al. 2006. A method for localizing ligand

binding pockets in protein structures. Proteins: Structure,

Function, and Bioinformatics, 62(2), 479–488.

[38] Xie, L., and P.E. Bourne. 2008. Detecting evolutionary

relationships across existing fold space, using sequence

order-independent profile–profile alignments.

Proceedings of the National Academy of Sciences of the

United States of America, 105(14), 5441-5446.

[39] La, D., et al. 2009. 3D-SURFER: software for high-

throughput protein surface comparison and analysis.

Bioinformatics, 25(21), 2843-2844.

[40] Mernberger, M., G. Klebe, and E. Hullermeier. 2011.

SEGA: Semiglobal Graph Alignment for Structure-

Based Protein Comparison. IEEE/ACM Transactions on

Computational Biology and Bioinformatics, 8(5), 1330-

1343.

[41] Hu, B., et al. 2014. PL-PatchSurfer: A Novel Molecular

Local Surface-Based Method for Exploring Protein-

Ligand Interactions. International Journal of Molecular

Sciences, 15(9), 15122-15145.

[42] Karampudi, N.B.R., and R.P. Bahadur. 2015. Layers: A

molecular surface peeling algorithm and its applications

to analyze protein structures. Scientific Reports, 5.

[43] Alex , S.D., P.J. Stuckey, and A.I. Wirth. 2010. Fast and

accurate protein substructure searching with simulated

annealing and GPUs. BMC Bioinformatics, 11, 446.

[44] Bin, P., et al. 2012. Accelerating large-scale protein

structure alignments with graphics processing units.

BMC Research Notes, 5(1), 116.

[45] Mrozek, D., M. Brożek, and B. Małysiak-Mrozek. 2014.

Parallel implementation of 3D protein structure similarity

searches using a GPU and the CUDA. Journal of

Molecular Biology, 20(2), 2067.

[46] Saul, N.B., and W.D. Christian. 1970. A general method

applicable to the search for similarities in the amino acid

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 19, May 2020

40

sequence of two proteins. Journal of Molecular Biology,

48(3), 443-453.

[47] Rachel, K., K. Patrice, and L. Michael. 2005.

Comprehensive Evaluation of Protein Structure

Alignment Methods: Scoring by Geometric Measures.

Journal of Molecular Biology, 346, 1173-1188.

[48] Alexandrov, N.N., and D. Fischer. 1996. Analysis of

topological and nontopological structural similarities in

the PDB: new examples with old structures. Proteins,

25(3), 354-365.

[49] Kabsch, W. 1978. A discussion of the solution for the

best rotation to relate two sets of vectors. Acta

Crystallographica, 34, 827-828.

[50] Skolnick, J. 2004. Scoring function for automated

assessment of protein structure template quality.

Proteins, 57, 702-710.

[51] Michael, L., and G. Mark. 1998. A unified statistical

framework for sequence comparison and structure

comparison. Proceedings of the National Academy of

Sciences of the United States of America, 95(11), 5913-

5920.

[52] Dhraief, A., R. Issaoui, and A. Belghith. 2011. Parallel

Computing the Longest Common Subsequence (LCS) on

GPUs: Efficiency and Language Suitability.

INFOCOMP.

[53] Fischer, D., et al. 1996. Assessing the performance of

fold recognition methods by means of a comprehensive

benchmark. Pacific Symposium on Biocomputing, 300-

318.

[54] Cheng, H., B.H. Kim, and N.V. Grishin. 2008.

MALISAM: A Database of Structurally Analogous

Motifs in Proteins. Nucleic Acids Research, 36, 211-217.

[55] Murzin, A.G., S.E. Brenner, and T. Hubbard. 1995.

SCOP: a structural classification of proteins database for

the investigation of sequences and structures. J Mol

Biol(247), 536–540.

IJCATM : www.ijcaonline.org

