
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

6

The Implication of Deep Neural Networks in Solving

Optimization Problems for Network Security

Shabbir Hassan
Department of Computer Science

Aligarh Muslim University
Aligarh, 202002, India

ABSTRACT
Optimization which implies minimization and maximization

of some objective functions often becomes heuristics, as all

the problems are not just in the form of linear or polynomial.

To optimize problems we may apply heuristics method or any

other type of approximation method that can be employed. On

the application of derivatives and partial derivatives, these

evolutionary algorithms liberalize the objective functions and

their restrictions at a specific point. The objective function

approximation method of (NLO) Non-linear optimization

which used to resolve the optimization problems efficiently.

This study paper proposes the critical use of artificial neural

networks to strategically optimize these problems so that to

apply other possible techniques or methods if it could not be

optimized directly. We have enforced the conversion of

problems into polynomials so that the solution of

Optimization problems (OP) can be calculated accurately.

Keywords
Deep leering neural network (DNN), Neural network model,

Optimization problems (OP), Non-linear optimization (NLO),

Particle Swarm Optimization (PSO), Method of

Approximation (MAP), Unprotected AES implementation.

General Terms

Stream optimization algorithms, curve estimation function.

Recognition, pre-trained multilayer perception.

1. INTRODUCTION
DNN is some part of soft computing and has applied to

different fields so that as intelligence, industry, logistics,

information theory or control system [1, 3]. The best

techniques to get an optimized solution are by involving

objective maximizing and minimizing functions and some

linear limitations. Optimization problems play a crucial role in

all kinds of fields regarding DNN and AI. In the case of non-

linear restrictions heuristics are used to obtain a pseudo

optimal solution. Linear restrictions are easily solvable by

Simplex [1, 2, 6] algorithms. This restricts the deeper study of

these kinds of problems. In many cases, Lagrange Multipliers

or Kuhn-Tucker multipliers can't solve all the problems in

most numerical terms, so in such kind of cases used heuristics

and met heuristics, the solution comes into the picture such as

genetic algorithms PSO [8, 9] Simulated annealing ant colony

optimization. Here we go for the usage of neural networks

such as heuristics when Lagrange multipliers don't make the

work fruitful. In the case of objective functions, we use a

multilayer perception as the way we implement it on

restrictions of optimization. For some defined variables we

check required conditions to conduct the training, the

activation function to be used is established through the work.

This process could result in a transformed objective function

that can be resolved without using meta-heuristics. Thus the

objective function resulted can be approximated with non-

linear regression which gives us a way to solve the problem

incurred [27, 28, 29]. We choose the activation function in a

way such that after its application on the objective function it

results in a form that depicts a polynomial when derivation is

made. Once we have the new objective functions in our hands

it's easy to calculate the problem in other ways. Non-equality

restrictions can be made easy in this manner but we need to

make use of gaps to satisfy the restrictions [31].

2. APPLICATION OF HEURISTICS IN

OPTIMIZATION
In some cases, optimization cannot be done using simplex or

Lagrange tests because simplex texts are used only when the

problem is linear whereas Lagrange solves when the problem

is non-linear, but it is not true in all the cases so when the

algorithm does not follow the optimal solution we use

heuristics and Met heuristics. Heuristics such as ant colony

optimization uses graphs [21, 12] although intelligence [30,

33], industry [16, 12], logistics [2, 3] information theory [4] or

control system [5] to solve problems. Few heuristic methods

work on approximation functions, in mathematics. The

approximation functions are defined on a certain point which

makes it feasible to work on polynomials using Taylor’s

theorem. On working with this idea we can even solve non-

linear optimization problems using Taylor’s non-linear

functions. This idea is applied in algorithms like Frank-Wolfe

[3, 15] in this, we derivate a certain problem on a point

calculating straight lines, planes, and hyperplane crosses

through that point. The solutions are calculated iteratively

using a new hyperplane over each iteration. MAP is the

generalized version of the Frank Wolfe algorithm permitting

the linearization of restrictions. The hectic work of calculating

a new approximation for each tentative solution alternatively

can be made by the simple use of neural networks.

3. RELATED WORK
Deep Belief Networks (DBN) has been introduced by Anna L.

Buczak et al [41]. It is a class of DNNs made up of multiple

layers of hidden units that link the layers, but not each layer.

DBNs are uncontrollably educated. They are normally trained

individually to recreate the inputs by changing weights in

each hidden layer. The Autoencoders are a type of neural

network that is unconsidered and in which the network takes a

vector as its input and tries to adapt the output to the same

vector. By entering, changing the dimension and restoring the

input, a higher or lower dimension of data can be generated.

Such neural network types are incredibly flexible as they

know unattended compressed data encoding. Besides, the

computational resources required to construct an efficient

model can be trained one layer at a time [7]. The Network is

used for encoding the data if the bulky layers are of a smaller

dimension than the input and output layers [8]. A noise

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

7

remover can be rendered by an autoencoder to re-engineer the

input from a noisy input version (refer to Fig 4), called a

debruising autoencoder [19] and become stronger by training

an autoencoder. It has been demonstrated that this technique is

more common and reliable than traditional auto-encoders.

In the Literature of machine-learning applications, Yalin E.

Sagduyu et al [42] have addressed safety problems for IoT

systems. In order to first differentiate between the traffic

generated by IoT and non-IoT devices and then decide the IoT

device class, a machine learning multistage Meta

classification was equipped. In order to automatically identify

device types linked to the IoT network and to implement rules

to limit the contact of compromised devices to mitigate the

harm resulting from their compromise, machine learning has

been employed. Deep learning has been used to detect IoT

devices' data injection and screening. In [20] machine learning

was applied to detect errors in data sent from edge equipment

within an IoT gateway. The leaning of an opponent engine has

started to identify wireless communications applications. By

changing the input data to a modulation classifier based on

profound learning the white box and black box attacks were

planned. Our methodology varies as it focuses on

transmission and spectrum measurement processes and

explains specifically how to input data should be treated in

research and training processes. Deep education was used to

develop jamming attacks and protection mechanisms, while a

spectrum poisoning attack was studied but retraining was not

included in these studies.

Ho Bae et al. [43] has developed data-driven systems for

numerous practical applications, including the use of vast

volumes of medical prediction data for health care network

logs for standalone device security assessments [16], and

visually impaired car driving [15]. However, in significant

number of literature, vulnerabilities in DL systems have

recently been found. Such implementations may be dangerous

because they are based on a restricted understanding of the

DL systems' protection and privacy.

4. RESEARCH GAP
There are several limitations and problems associated with the

above-said area are:

4.1 Global optimality conditions for DNN
Several errors field of deep linear and nonlinear neural

networks. Minimizing the loss of a deep linear neural network

is a non-convex problem, and our understanding of this

surface of loss is still incomplete despite recent advances [13].

To be a global minimum, we pose necessary and adequate

conditions for deep linear networks to be a critical point of the

risk function. Surprisingly, our conditions have a globally

optimal test that can be easily tested, whereas those tests are

usually intractable in non-convex optimization [32].

4.2 Solving inverse problems with DNN
A core task in various scientific fields is to recover a function

or high-dimensional parameter vector from indirect

measurements. Recently, new algorithms have emerged that

use deep learning and neural networks for inverse problems

[11]. These techniques, though still in their infancy, show

astounding problems for applications such as low-dose CTs or

various sparse data. However, in inverse problems, there are

few theoretical findings for profound research [33].

4.3 Risk versus uncertainty in DL
There is an important difference between risk and uncertainty

in sequential decision problems. The demarcation between

risk and uncertainty is related to the particular model type, in

this case, a Bernoulli random variable; even the outcome of a

coin might not be risky at all with a more detailed model of

flip dynamics. Our distinction is that unlike risk, uncertainty

captures the volatility of the posterior belief of an agent that

can be resolved by statistical analysis of the relevant data

[10]. This distinction reflects a key dichotomy for a learning

agent looking to optimize accumulated utility over time [34,

35]. A result of linear regression with a little and a large

amount of data is in Fig 1 and 2 below:

Fig 1: Linear regression with insufficient evidence of data

And here is the simulation report of linear regression with

sufficient loss of data

Fig 2: Linear regression with sufficient loss of data

4.4 Low confidence predictions for UI
Recently, deep neural networks (DNNs) have achieved state-

of-the-art success on various pattern-recognition tasks or an

unrecognizable image (UI), most notably visual classification

issues. Since DNNs are now able to classify objects into near-

human-level performance images, questions naturally arise as

to what disparities between machine and human vision still

exist. A recent study revealed that altering an image (e.g. a

lion) in a manner that is imperceptible to humans can cause a

DNN to mark the picture entirely as something else such as

mislabeling a library lion [35]. It is possible to create

unrecognizable images for human eyes that DNNs almost

certainly believe to be familiar objects, which we call "fooling

pictures" more generally, fooling examples. Our findings shed

light on fascinating variations between human vision and

current DNNs and raise concerns regarding DNN machine

vision in general [36].

4.5 Problems in safety verification of DNN
Deep neural networks have produced remarkable

experimental results in the classification of images, but can be

surprisingly unstable concerning adversarial perturbations, i.e.

small changes in the input image that cause the network to

misclassify it [29].

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

8

4.6 Unsolved ill-posed inverse problems
Use iterative deep neural networks to solve ill-positioned

inverse problems. The approach results in a gradient-like

iterative scheme where the function "gradient" is learned in

each iteration using a co-evolutionary network that includes

the gradients of the data discrepancy and the regularize as

input [37].

5. CRYPTOGRAPHIC APPLICATIONS

OF DNN
The question we are discussing is the following: how can a

customer use a third-party predictive model without

sacrificing private information. A hospital, for example, may

want to use a cloud service to predict a patient's risk of

readmission. Nonetheless, the patient's medical files cannot be

released due to legislation [14, 45]. The goal is to make an

inference using the model, without jeopardizing the prediction

accuracy or data privacy. We use neural networks to achieve

high precision which has been shown to outperform other

learning models for many tasks. To satisfy the privacy

requirements, in the following protocol we use homomorphic

encryption: the data owner encrypts the data and sends the

ciphertexts to the third party to obtain a prediction from a

qualified model. The code works on such ciphertexts and

sends back the prediction that is encrypted. Not only the data

remain private in this protocol, but even the expected values

are accessible only to the data owner [39]. Using

homomorphic encryption and modifications to neural network

activation functions and training algorithms, we demonstrate

that protocol is possible and maybe feasible. This approach

paves the way for the development of stable neural network

prediction services based on the cloud without violating the

privacy of users [28, 46].

The most popular and effective profiled side-channel attack is

a template attack. It relies on a rational assumption about the

noise of the system under attack: a multivariate Gaussian

distribution is the probability density function of the results.

To ease this presumption, a recent line of research has been

exploring new approaches to profiling mainly through the

application of machine learning techniques. Compared with

template attack, the results obtained are commensurate, and in

some specific cases stronger. In this work, we propose to

continue this recent research line through the application of

more sophisticated profiling techniques focused on profound

learning [38, 47].

Another problem is whether neural networks can learn to

shield knowledge from other neural networks using hidden

keys. Specifically, in a multi-agent scheme, we concentrate on

preserving confidentiality properties and define those

properties as an adversary. Thus, a framework that consists of

neural networks called Alice and Bob, and we intend to

restrict what a third neural network called Eve learns from

eavesdropping about Alice and Bob's communication. Such

neural networks are not recommended for unique

cryptographic algorithms; rather, we practice end-to-end,

adversarial [40, 44].

6. THE PROPOSED IDEA
Any continuous function can be precisely defined as

Kolmogorov's theorem using a multilayer perception with a

three-layer. However, for the approximation to be exact, we

define the activation function and parameters. It is not

possible to apply any activation function just as it is because

the objective of the function needs to be accounted for. A

dataset is generated that trains neural networks in the domain

of variables. A multilayer perception is used to regenerate the

objective function of the optimization problem. Hence

generating a polynomial equation. At last, the objective

function is calculated forming a new solution that is therefore

applied to resolve a problem. Finally, another solution is

applied to resolve the new objective function calculated [17,

25]. The definition of neural networks must include

parameters such as the connections, number of layers,

activation functions, propagation rules, etc. There are two

stages in a multilayer perception that is the learning stage and

the prediction process [18, 30]. The layers number and

activation functions are the same in both cases. Learning rate

and momentum are irrelevant in prediction stage Propagation

rule is the weighted sum in case of multilayer perception

which is defined as in equation (1). Fig 3 represents the

working principle of LOP in neural networks [29]

Fig 3: Workflow of linear optimization problems

 𝑝

𝑛

𝑗=1

 ∀ 𝑝 = 𝑤𝑗 ,𝑘𝑦𝑖(𝑡) (1)

Where weight 𝑤𝑗 ,𝑘 is the foundation of DNN connects neuron

′𝒋′ in weight input layer allow with artificial neuron ′𝒌′ in

weight hidden layer, 𝑦𝑖 is the weight output layer with

artificial neuron ′𝒋′ in the weight input layer, ′𝒏′ is number

artificial neuron of weight input layer ′𝒋′ at a time ′𝒕′ [18, 26].

In the case of having an artificial bias neuron, what would

result in equation (2) [20, 23]?

 𝑝
𝑛

𝑗=1
+ Ө(k) (2)

If the result from activating function is linear then the neuron

′𝒌′ is combined in linear with neurons of the input layer, and

𝑦1(𝑘) as a linear function then, the present answer

corresponds to the answer of a neuron when the activation

function is identical [19, 20, 24]. When ′𝑴′ is in the output

layer has the activating function𝑓1, the solution is written as

an equation (3).

𝑦1k(t) = 𝑓1 𝑝
𝑛

𝑗=1
+ Ө(k) (3)

We should apply the activation function after calculating the

propagation rules. The multilayer perception has three layers

[21, 33]. We need to apply the propagation rule on two cases

to transmit the values from input layer neurons to output layer

neurons.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

9

𝑦1M(t) = 𝑤𝑘(𝑀) ∙
𝑚1

𝑗=1
𝑦𝑗 t + Ө(M) (4)

Where artificial neuron ′𝑴′ represents in the weight output

layer, and 𝒎𝟏 represents many hidden layer of artificial

neurons [26, 29, 34].

Fig 4 (a): Sigmoid function

Fig 4 (b): Arc Tan activation

Fig 4 (c): Soft Sign activation

Where 𝒎𝟏 represents the number of neurons in the hidden

layer and ′𝑴′ represents neuron in the output on replacing

equation (4) with equation (3) we remain with the output in

neuron ′𝒌’ defined with respect to equation (5) [22, 24, 27].

Fig 5 (a): Derivative of Arc Tan activation function

Fig 5 (b): Derivative of Sigmoid Activation function

𝑦1M t = 𝑇
𝑚1

𝑗=1
 𝑓1 𝑝

𝑛

𝑗=1
+ Ө(k) + Ө M (5)

where T = 𝑤𝑘(M)

7. ANALYSIS OF THE PROPOSED

IDEA
So, it would be possible to approximate the trained function

with pre-trained multilayer perception with an identical

activating function. An optimization problem with non-linear

objective function is given; it’s a cake-walk to solve the

function in accordance with equation (5) as it turns out to be

linear. Of course, we had approx. functions defined already;

we couldn’t stop it from turning into the hyperplane, so the

activation function is nonlinear. Here, we selected Arc Tan

function to easily simplify the function as its derivative is also

simple [48, 49]. For example. Lagrange can solve

trigonometric or exponential functions easily by turning it into

polynomials. Fig 4(a) shows an Arc Tan activation function. It

is similar to Fig 4(b) which is a sigmoidal function; as such,

similar training is made on neuronal networks with both

activation functions. The Sigmoidal function is used more

often but here we use Arc Tan function because the derivative

equation is simple compared to the expression of the

sigmoidal. Though these are similar functions that are shown

in Fig 5(a) and 5(b), while the derivate equation of Arc Tan is

shown in the equation (6), and the derivative of sigmoidal can

be obtained from equation (7) [46].

arc tan(𝑓1) =
𝑓1′

1 + 𝑓1
2 (6)

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

10

Sigmoid(𝑓1) = −
𝑓1′𝑒𝑓1

(1 + 𝑓1)2
 (7)

𝑓1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛 subject to

𝑟1(𝑦1, 𝑦2 , ……… . . , 𝑦𝑛) ≤ 0 (8)

…………

r𝑚1(𝑦1, 𝑦2, ……… . . , 𝑦𝑛) ≤ 0

Here, 𝑟𝑖 is the constraint and 𝑓1 is the objective function.

Hence the approximation of DNN can be done using equation

(5).

𝑓1(𝑦1 , 𝑦2 , ……… . . , 𝑦𝑛)

= 𝑇
𝑚1

𝑗=1
 𝑓1 𝑝

𝑛

𝑗=1
+ Ө k + Ө(M)

Subject to

𝑟1(𝑦1, 𝑦2 , ……… . . , 𝑦𝑛) ≤ 0 (9)

………….

r𝑚1(𝑦1, 𝑦2, ……… . . , 𝑦𝑛) ≤ 0

Hence, the subsequent optimization problems solve with

Kuhn -Tucker, applying the equation.

∂𝑓1 𝑦1 ,𝑦2 ,………..,𝑦𝑛

∂𝑦𝑗
+ 𝜆𝑗

𝑚1

𝑗=1

∂𝑟𝑗 𝑦1 ,𝑦2 ,………..,𝑦𝑛

∂𝑦𝑗

≤ 0 ∀ 𝑘 = 1, 2, 3, 𝑚1

𝜆1 ∗ 𝑟1(𝑦1, 𝑦2 , ……… . . , 𝑦𝑛) = 0

………………

λ𝑚1 ∗ r𝑚1(𝑦1, 𝑦2, ……… . . , 𝑦𝑛) = 0
(10)

Defined the optimization problems with the Lagrange through

equation (11)

𝑓1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛 subject to

𝑟1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛 = 0

(11)

r𝑚1 𝑦1, 𝑦2, ……… . . , 𝑦𝑛 = 0

According to optimization problems, it would be solved.

𝐿1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛 , 𝜆1, 𝜆2, 𝜆3, ………… . . 𝜆𝑚1

= 𝑇
𝑚1

𝑗=1
 𝑓1 𝑝

𝑛

𝑗=1
+ Ө k +

Ө M + 𝜆𝑖

𝑚1

𝑗=1

. 𝑟𝑖
∂𝐿1

∂𝑦𝑗
 = 0

∀ 𝑗 ∈ {1, 2, 3. 𝑛)

∂𝐿1

∂𝑦𝑘
 = 0 ∀ 𝑘 ∈ {1, 2, 3. 𝑚1)

(12)

From equation (10) and (12) we can say that it is essential to

use the activation function to simplify the derivative and find

the solution. Based on training made in the DNN, we can

introduce a threshold for restrictions with inequality. For a

lower threshold to be maintained, it is better to have a neural

network that is prior trained with the variables around the

defined constraints. In other terms for an obstacle with the

same restrictions as equation (13) a set of data is generated to

be used in the training process which is similar to the variable

𝑦𝑗 . The change that is a difference in values that come one

after the other and the error to define the threshold is in

proportional.

𝑎𝑗 ≤ 𝑦𝑗 ≤ 𝑏𝑗

𝑦𝑗 ≥ 𝑎𝑗

𝑦𝑗 ≤ 𝑏𝑗

(13)

Equation (15) defined here will be based on expression (5)

and the restrictions defined according to equation (14) along

with the threshold calculated.

rs(𝑦1, 𝑦2 , ……… . . , 𝑦𝑛) ≤ 0 (14)

 𝑇
𝑚1

𝑗=1
𝑓1 𝑝

𝑛

𝑗=1
+ Ө(k) + Ө(M) + ẞ (15)

At last, expression (16) here is defined based on the

optimization problem as in expression (8).

𝑓1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛

= 𝐴𝑓1

𝐵

𝑗=1
 𝐶

𝑛

𝑗=1
∙ D + E + 𝐹

Where:

A = 𝑤1k M , B = 𝑚1, C = 𝑤1j k

D = 𝑦1j(t), E = Ө(k) and F = Ө(M)

Subject to:

 𝐴1

𝑩1

𝑗=1
𝑓1 𝐶1

𝑛1

𝑗=1
𝐷1 + 𝐸1 + 𝐹1 + ẞ1 (16)

 𝐴2

𝑩2

𝑗=1
𝑓1 𝐶2

𝑛2

𝑗=1
𝐷2 + 𝐸2 + 𝐹2 + ẞ2

……………

 𝐴𝑚
𝑩𝑚

𝑗=1
𝑓1 𝐶𝑚

𝑛𝑚

𝑗=1
𝐷𝑚 + 𝐸𝑚 + 𝐹𝑚 + ẞ𝑚

An Application of Support Vector Regression (SVR) is

another technique to approximate functions which is an

alternative to the use of neural networks. SVR approximates

the functions as a linear combination in a higher dimension

space than the original [25].

8. CONCLUSION
As to test the performance of recommendation, we evaluate

different OP and compared the optimal values and predicted

in the system. The neural network tool designed by our

research group is used to test the optimization problems.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

11

Under the domain of variables, the set of the dataset that we

made use of training a neural network is generated objective

function contains input variables and objective function

obtained for these values contains output variables. The

variable domain is defined on the constraints of the OP.

Firstly, the system’s performance was analyzed with a simple

optimization problem. A multilayer perception is used to

approximate a linear function by activating hidden and output

linear layer functions.

minimum:

𝑓(𝑥) = (𝑥1
2 + 𝑥2

2 − 1)2

subject to:

−1 ≤ 𝑥1 ≤ 1,−1 < 𝑥2 ≤ 1 (17)

The objective function returned 𝟏. 𝟑𝟒𝟒𝟎𝟓 when 𝑥1 =
−0.707 and 𝑥2 = −0.707 when it is replaced with the

function that is approximated with the DNN. The result

𝟏. 𝟑𝟒𝟒𝟎𝟓 was of the objective function and the values of 𝑥1

and 𝑥1 is −𝟎. 𝟕𝟎𝟕. This was the result obtained by a quick
training of neural networks; hence it could be improved

easily.

Fig 6 (a) shows the original function whereas Fig 6 (b) shows

an approximated one. It shows that the approximation worked

well. There are two input layers in the neural network and

seventeen neurons in the hidden layer, and Arc Tan activation

function, and the objective function as an output. The

momentum is 𝟎. 𝟎𝟎𝟏 and the learning rate is +𝟎. 𝟎𝟏. The

DNN is trained manually and is stopped when the constant is

the error of 𝟎. 𝟎𝟑𝟓, furthermore 𝒚𝟏 = 𝟎. 𝟒𝟔 and 𝒚𝟏 = 𝟎. 𝟑

were the results obtained from PSO. In this case, the results of

the PSO algorithm worked well.

maximum:

cos 𝑥1 ∙ 𝑥2 = 𝑥1 + 𝑥2
𝑥1 ∙ 𝑥2

100
sin 𝑥1 + 𝑥2

subject to:

𝑥1 + 𝑥2 ≥ 0.5

𝑥1 ∙ 𝑥2 ≤ 15

𝑥1 ≥ 0

𝑥1 ≤ 1.5

𝑥2 ≥ −1

𝑥2 ≤ 1

(18)

As we can see the result depicts multilayer perception with

approximate objective functions and hence uses these results

to solve OP. In a few instances when the new perspective

calculated matches with the solution stated, meta-heuristics

cannot provide a solution.

Fig 6(a): The original function

Fig 6 (b): The estimated function

The major drawback of this work is that it is necessary to

instruct the DNN and therefore Lagrange or Kuhn- Tucker

function is a mandatory usage with the DNN, this makes the

function unfit for usage in any activation function like

sigmoidal. Arctase function is used in this proposal as its

derivative forms an equation that makes it relevant to solve

the equation obtained by using Lagrange or Kuhn-Tucker.

The major loophole of this work is that we need to come

across a few errors when we deal with the approximation of

equality constraints and hence the result stated will not be

appropriate, while in other restrictions to obtain relevant

solutions we introduce the lower limit and valid solution. Our

experimental findings also demonstrate the overwhelming

benefits of the resulting new attacks when attacking

cryptographic systems that are both vulnerable and secure.

We demonstrate that the neural networks can learn how to

conduct forms of encryption and decryption, and also how to

selectively apply these operations to achieve confidentiality

goals.

9. ACKNOWLEDGMENTS
I would like to pay my sincere thanks and gratefulness to my

academic advisor whose constant encouragement and support

acted as an impetus for working hard and completing this

paper with sincerity. Also, I would like to pay my heartiest

gratitude to my family and to my alma mater, Department of

Computer Science, Aligarh Muslim University for their

unforgettable support whenever I needed. There are no words

that can express gratitude for their love, affection and

patience. They always stood by my side, had faith in my work

and always prayed for my success.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

12

10. REFERENCES
[1] Ríos-Mercado, Roger Z., and Conrado Borraz-Sánchez.

"Optimization problems in natural gas transportation

systems: A state-of-the-art review." Applied Energy 147

(2015): 536-555.

[2] Wang, Yong, et al. "Two-echelon logistics distribution

region partitioning problem based on a hybrid particle

swarm optimization–genetic algorithm." Expert Systems

with Applications 42.12 (2015): 5019-5031.

[3] Salari, Majid, Mohammad Reihaneh, and Mohammad S.

Sabbagh. "Combining ant colony optimization algorithm

and dynamic programming technique for solving the

covering salesman problem." Computers & Industrial

Engineering 83 (2015): 244-251.

[4] Zheng, Xiao-long, and Ling Wang. "A multi-agent

optimization algorithm for resource constrained project

scheduling problem." Expert Systems with

Applications 42.15-16 (2015): 6039-6049.

[5] Lanza-Gutierrez, Jose M., and Juan A. Gomez-Pulido.

"Assuming multiobjective metaheuristics to solve a

three-objective optimisation problem for relay node

deployment in wireless sensor networks." Applied Soft

Computing 30 (2015): 675-687.

[6] Ploskas, Nikolaos, and Nikolaos Samaras. "Efficient

GPU-based implementations of simplex type

algorithms." Applied Mathematics and Computation 250

(2015): 552-570.

[7] Kuhn, H. W. "A. V7. Tucker,"Nonlinear

Programming,"." Proc. Second Symp. on Mathematical

Statistics and Probability, Univ. of Calif. 1951.

[8] Wang, Yong. "The hybrid genetic algorithm with two

local optimization strategies for traveling salesman

problem." Computers & Industrial Engineering 70

(2014): 124-133.

[9] Li, Lin, Zhonghai Yu, and Yang Chen. "Evacuation

dynamic and exit optimization of a supermarket based on

particle swarm optimization." Physica A: Statistical

Mechanics and its Applications 416 (2014): 157-172.

[10] Chen, Xiaohui, et al. "A ranging model based on BP

neural network." Intelligent Automation & Soft

Computing 22.2 (2016): 325-329.

[11] Choudhary, Priyankar, Vibhor Kant, and Pragya

Dwivedi. "A Particle Swarm Optimization Approach to

Multi Criteria Recommender System Utilizing Effective

Similarity Measures." Proceedings of the 9th

International Conference on Machine Learning and

Computing. 2017.

[12] Jona, J., and N. Nagaveni. "A hybrid swarm optimization

approach for feature set reduction in digital

mammograms." WSEAS Trans. Inf. Sci. Appl 9.11

(2012): 340-349.

[13] Rohani, Abbas, Morteza Taki, and Masoumeh

Abdollahpour. "A novel soft computing model (Gaussian

process regression with K-fold cross validation) for daily

and monthly solar radiation forecasting (Part:

I)." Renewable Energy 115 (2018): 411-422.

[14] Zhang, Yuchen, and Lin Xiao. "Stochastic primal-dual

coordinate method for regularized empirical risk

minimization." The Journal of Machine Learning

Research 18.1 (2017): 2939-2980.

[15] Choi, Jihun, Kang Min Yoo, and Sang-goo Lee.

"Learning to compose task-specific tree

structures." Thirty-Second AAAI Conference on

Artificial Intelligence. 2018.

[16] Chen, Pin-Yu, et al. "Ead: elastic-net attacks to deep

neural networks via adversarial examples." Thirty-second

AAAI conference on artificial intelligence. 2018.

[17] Madry, Aleksander, et al. "Towards deep learning

models resistant to adversarial attacks." arXiv preprint

arXiv:1706.06083 (2017).

[18] Papernot, Nicolas, et al. "Distillation as a defense to

adversarial perturbations against deep neural

networks." 2016 IEEE Symposium on Security and

Privacy (SP). IEEE, 2016.

[19] Papernot, Nicolas, et al. "Distillation as a defense to

adversarial perturbations against deep neural

networks." 2016 IEEE Symposium on Security and

Privacy (SP). IEEE, 2016.

[20] Frank, Stephen, Ingrida Steponavice, and Steffen

Rebennack. "Optimal power flow: a bibliographic survey

II." Energy Systems 3.3 (2012): 259-289.

[21] Ma, Jiaqi, et al. "Parsimonious shooting heuristic for

trajectory design of connected automated traffic part II:

computational issues and optimization." Transportation

Research Part B: Methodological 95 (2017): 421-441.

[22] Lin, Shen, and Brian W. Kernighan. "An effective

heuristic algorithm for the traveling-salesman

problem." Operations research 21.2 (1973): 498-516.

[23] Pouchet, Louis-Noël, et al. "Iterative optimization in the

polyhedral model: Part II, multidimensional time." ACM

SIGPLAN Notices 43.6 (2008): 90-100.

[24] Sun, Haoran, et al. "Learning to optimize: Training deep

neural networks for wireless resource

management." 2017 IEEE 18th International Workshop

on Signal Processing Advances in Wireless

Communications (SPAWC). IEEE, 2017.

[25] Snoek, Jasper, et al. "Scalable bayesian optimization

using deep neural networks." International conference on

machine learning. 2015.

[26] Snoek, Jasper, et al. "Scalable bayesian optimization

using deep neural networks." International conference on

machine learning. 2015.

[27] Lorenzo, Pablo Ribalta, et al. "Particle swarm

optimization for hyper-parameter selection in deep neural

networks." Proceedings of the genetic and evolutionary

computation conference. 2017.

[28] Kraus, Mathias, Stefan Feuerriegel, and Asil Oztekin.

"Deep learning in business analytics and operations

research: Models, applications and managerial

implications." arXivpreprint arXiv:1806.10897 (2018).

[29] Kraus, Mathias, Stefan Feuerriegel, and Asil Oztekin.

"Deep learning in business analytics and operations

research: Models, applications and managerial

implications." arXivpreprint arXiv:1806.10897 (2018).

[30] Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep

neural networks are easily fooled: High confidence

predictions for unrecognizable images." Proceedings of

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

13

the IEEE conference on computer vision and pattern

recognition. 2015.

[31] Kudugunta, Sneha, and Emilio Ferrara. "Deep neural

networks for bot detection." Information Sciences 467

(2018): 312-322.

[32] Yun, Chulhee, Suvrit Sra, and Ali Jadbabaie. "Global

optimality conditions for deep neural networks." arXiv

preprint arXiv:1707.02444 (2017).

[33] Li, Housen, et al. "NETT: Solving inverse problems with

deep neural networks." Inverse Problems (2020).

[34] Samek, Wojciech, et al. "Evaluating the visualization of

what a deep neural network has learned." IEEE

transactions on neural networks and learning

systems 28.11 (2016): 2660-2673.

[35] Nguyen, Anh, Jason Yosinski, and Jeff Clune. "Deep

neural networks are easily fooled: High confidence

predictions for unrecognizable images." Proceedings of

the IEEE conference on computer vision and pattern

recognition. 2015.

[36] Yosinski, Jason, et al. "How transferable are features in

deep neural networks?." Advances in neural information

processing systems. 2014.

[37] Adler, Jonas, and Ozan Öktem. "Solving ill-posed

inverse problems using iterative deep neural

networks." Inverse Problems 33.12 (2017): 124007.

[38] Maghrebi, Houssem, Thibault Portigliatti, and Emmanuel

Prouff. "Breaking cryptographic implementations using

deep learning techniques." International Conference on

Security, Privacy, and Applied Cryptography

Engineering. Springer, Cham, 2016.

[39] Xie, Pengtao, et al. "Crypto-nets: Neural networks over

encrypted data." arXiv preprint arXiv:1412.6181 (2019).

[40] Abadi, Martín, and David G. Andersen. "Learning to

protect communications with adversarial neural

cryptography." arXiv preprint arXiv:1610.06918 (2016).

[41] Berman, Daniel S., et al. "A survey of deep learning

methods for cyber security." Information 10.4 (2019):

122.

[42] Sagduyu, Yalin E., Yi Shi, and Tugba Erpek. "IoT

network security from the perspective of adversarial deep

learning." 2019 16th Annual IEEE International

Conference on Sensing, Communication, and

Networking (SECON). IEEE, 2019.

[43] Bae, Ho, et al. "Security and privacy issues in deep

learning." arXiv preprint arXiv:1807.11655 (2018).

[44] Mariot, Luca, and Alberto Leporati. "Heuristic search by

particle swarm optimization of boolean functions for

cryptographic applications." Proceedings of the

Companion Publication of the 2015 Annual Conference

on Genetic and Evolutionary Computation. 2015.

[45] Hassan, Shabbir, and Mohammad Ubaidullah Bokhari.

"Computing in Cryptography." 2016 3rd International

Conference on Computing for Sustainable Global

Development (INDIACom). IEEE, 2016.

[46] Bokhari, M. U., and Shabbir Hassan. "A comparative

study on lightweight cryptography." Cyber Security.

Springer, Singapore, 2018. 69-79.

[47] Prof. M. U. Bokhari , Shabbir Hassan, 2020, Design of a

Lightweight Stream Cipher: BOKHARI 256,

International Journal of Engineering Research &

Technology (IJERT) Volume 09, Issue 03 (March 2020).

[48] Shabbir Hassan, Prof. M. U. Bokhari, “Analysis and

Design of LFSR Based Cryptographic Algorithm” in

UGC Approved Journal Journal of Advances and

Scholarly Researches in Allied Education (JASRAE) in

Vol. 16, Issue No. 9, June-2019, ISSN 2230-7540

SCOPUS index..

[49] Shabbir Hassan, Prof. M. U. Bokhari, “Design of Pseudo

Random Number Generator using Linear Feedback Shift

Register” in UGC CARE Approved Journal of

International Journal of Engineering and Advanced

Technology (IJEAT) ISSN: 2249 – 8958, Volume-9

Issue-2, December, 2019 in SCOPUS index.

11. AUTHORS PROFILE
Shabbir Hassan Sun Certified Java Programmer (SCJP)

currently working as Assistant Professor at Centre for

Distance Education, Aligarh Muslim University, Aligarh. He

holds Master in Computer Science and Applications (MCA)

and currently pursuing Ph.D. at Department of Computer

Science, Aligarh Muslim University. His thrust area is

“Analysis and Design of Lightweight Stream Cipher” and area

of interest includes Applied Mathematics, Analysis and

Design of Algorithms, Dynamic Programming, Network

Security and Cryptography. He has qualified UGC-National

Eligibility Test (NET) and has availed Junior Research

Fellowship (JRF) during the research work. Throughout his

career, he has been involved in innovative Software

Development and Academic Teaching of Computer Science

subjects like C, JAVA, Python, Data Structure, Operating

System, Automata Theory and Computer Networks. He has

presented his research work in several National and

International IEEE Conferences and marked his active

participation in many Conferences, Workshops and Symposia.

His research papers have published in many reputed peer

reviewed Journals of International repute like Springer,

Elsevier, JASRAE, InderScience, UGC-CARE Journals and

Scopus Indexed Database. Apart from the Academic Research

and Software Development, he is enriched with the passion of

poetry and philosophy and engages himself in social work

IJCATM : www.ijcaonline.org

