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ABSTRACT 
Optimization which implies minimization and maximization 

of some objective functions often becomes heuristics, as all 

the problems are not just in the form of linear or polynomial. 

To optimize problems we may apply heuristics method or any 

other type of approximation method that can be employed. On 

the application of derivatives and partial derivatives, these 

evolutionary algorithms liberalize the objective functions and 

their restrictions at a specific point. The objective function 

approximation method of (NLO) Non-linear optimization 

which used to resolve the optimization problems efficiently. 

This study paper proposes the critical use of artificial neural 

networks to strategically optimize these problems so that to 

apply other possible techniques or methods if it could not be 

optimized directly. We have enforced the conversion of 

problems into polynomials so that the solution of 

Optimization problems (OP) can be calculated accurately. 
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Deep leering neural network (DNN), Neural network model, 

Optimization problems (OP), Non-linear optimization (NLO), 

Particle Swarm Optimization (PSO), Method of 

Approximation (MAP), Unprotected AES implementation. 
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1. INTRODUCTION 
DNN is some part of soft computing and has applied to 

different fields so that as intelligence, industry, logistics, 

information theory or control system [1, 3]. The best 

techniques to get an optimized solution are by involving 

objective maximizing and minimizing functions and some 

linear limitations. Optimization problems play a crucial role in 

all kinds of fields regarding DNN and AI. In the case of non-

linear restrictions heuristics are used to obtain a pseudo 

optimal solution. Linear restrictions are easily solvable by 

Simplex [1, 2, 6] algorithms. This restricts the deeper study of 

these kinds of problems. In many cases, Lagrange Multipliers 

or Kuhn-Tucker multipliers can't solve all the problems in 

most numerical terms, so in such kind of cases used heuristics 

and met heuristics, the solution comes into the picture such as 

genetic algorithms  PSO [8, 9] Simulated annealing ant colony 

optimization. Here we go for the usage of neural networks 

such as heuristics when Lagrange multipliers don't make the 

work fruitful. In the case of objective functions, we use a 

multilayer perception as the way we implement it on 

restrictions of optimization. For some defined variables we 

check required conditions to conduct the training, the 

activation function to be used is established through the work. 

This process could result in a transformed objective function 

that can be resolved without using meta-heuristics. Thus the 

objective function resulted can be approximated with non-

linear regression which gives us a way to solve the problem 

incurred [27, 28, 29]. We choose the activation function in a 

way such that after its application on the objective function it 

results in a form that depicts a polynomial when derivation is 

made. Once we have the new objective functions in our hands 

it's easy to calculate the problem in other ways. Non-equality 

restrictions can be made easy in this manner but we need to 

make use of gaps to satisfy the restrictions [31]. 

2. APPLICATION OF HEURISTICS IN  

OPTIMIZATION 
In some cases, optimization cannot be done using simplex or 

Lagrange tests because simplex texts are used only when the 

problem is linear whereas Lagrange solves when the problem 

is non-linear, but it is not true in all the cases so when the 

algorithm does not follow the optimal solution we use 

heuristics and Met heuristics. Heuristics such as ant colony 

optimization uses graphs [21, 12] although intelligence [30, 

33], industry [16, 12], logistics [2, 3] information theory [4] or 

control system [5] to solve problems. Few heuristic methods 

work on approximation functions, in mathematics. The 

approximation functions are defined on a certain point which 

makes it feasible to work on polynomials using Taylor’s 

theorem. On working with this idea we can even solve non-

linear optimization problems using Taylor’s non-linear 

functions. This idea is applied in algorithms like Frank-Wolfe 

[3, 15] in this, we derivate a certain problem on a point 

calculating straight lines, planes, and hyperplane crosses 

through that point. The solutions are calculated iteratively 

using a new hyperplane over each iteration. MAP is the 

generalized version of the Frank Wolfe algorithm permitting 

the linearization of restrictions. The hectic work of calculating 

a new approximation for each tentative solution alternatively 

can be made by the simple use of neural networks. 

3. RELATED WORK 
Deep Belief Networks (DBN) has been introduced by Anna L. 

Buczak et al [41]. It is a class of DNNs made up of multiple 

layers of hidden units that link the layers, but not each layer. 

DBNs are uncontrollably educated. They are normally trained 

individually to recreate the inputs by changing weights in 

each hidden layer. The Autoencoders are a type of neural 

network that is unconsidered and in which the network takes a 

vector as its input and tries to adapt the output to the same 

vector. By entering, changing the dimension and restoring the 

input, a higher or lower dimension of data can be generated. 

Such neural network types are incredibly flexible as they 

know unattended compressed data encoding. Besides, the 

computational resources required to construct an efficient 

model can be trained one layer at a time [7]. The Network is 

used for encoding the data if the bulky layers are of a smaller 

dimension than the input and output layers [8]. A noise 
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remover can be rendered by an autoencoder to re-engineer the 

input from a noisy input version (refer to Fig 4), called a 

debruising autoencoder [19] and become stronger by training 

an autoencoder. It has been demonstrated that this technique is 

more common and reliable than traditional auto-encoders. 

In the Literature of machine-learning applications, Yalin E. 

Sagduyu et al [42] have addressed safety problems for IoT 

systems. In order to first differentiate between the traffic 

generated by IoT and non-IoT devices and then decide the IoT 

device class, a machine learning multistage Meta 

classification was equipped. In order to automatically identify 

device types linked to the IoT network and to implement rules 

to limit the contact of compromised devices to mitigate the 

harm resulting from their compromise, machine learning has 

been employed. Deep learning has been used to detect IoT 

devices' data injection and screening. In [20] machine learning 

was applied to detect errors in data sent from edge equipment 

within an IoT gateway. The leaning of an opponent engine has 

started to identify wireless communications applications. By 

changing the input data to a modulation classifier based on 

profound learning the white box and black box attacks were 

planned. Our methodology varies as it focuses on 

transmission and spectrum measurement processes and 

explains specifically how to input data should be treated in 

research and training processes. Deep education was used to 

develop jamming attacks and protection mechanisms, while a 

spectrum poisoning attack was studied but retraining was not 

included in these studies. 

Ho Bae et al. [43] has developed data-driven systems for 

numerous practical applications, including the use of vast 

volumes of medical prediction data for health care network 

logs for standalone device security assessments [16], and 

visually impaired car driving [15]. However, in significant 

number of literature, vulnerabilities in DL systems have 

recently been found. Such implementations may be dangerous 

because they are based on a restricted understanding of the 

DL systems' protection and privacy. 

4. RESEARCH GAP 
There are several limitations and problems associated with the 

above-said area are: 

4.1 Global optimality conditions for DNN 
Several errors field of deep linear and nonlinear neural 

networks. Minimizing the loss of a deep linear neural network 

is a non-convex problem, and our understanding of this 

surface of loss is still incomplete despite recent advances [13]. 

To be a global minimum, we pose necessary and adequate 

conditions for deep linear networks to be a critical point of the 

risk function. Surprisingly, our conditions have a globally 

optimal test that can be easily tested, whereas those tests are 

usually intractable in non-convex optimization [32]. 

4.2 Solving inverse problems with DNN 
A core task in various scientific fields is to recover a function 

or high-dimensional parameter vector from indirect 

measurements. Recently, new algorithms have emerged that 

use deep learning and neural networks for inverse problems 

[11]. These techniques, though still in their infancy, show 

astounding problems for applications such as low-dose CTs or 

various sparse data. However, in inverse problems, there are 

few theoretical findings for profound research [33]. 

4.3 Risk versus uncertainty in DL 
There is an important difference between risk and uncertainty 

in sequential decision problems. The demarcation between 

risk and uncertainty is related to the particular model type, in 

this case, a Bernoulli random variable; even the outcome of a 

coin might not be risky at all with a more detailed model of 

flip dynamics. Our distinction is that unlike risk, uncertainty 

captures the volatility of the posterior belief of an agent that 

can be resolved by statistical analysis of the relevant data 

[10]. This distinction reflects a key dichotomy for a learning 

agent looking to optimize accumulated utility over time [34, 

35]. A result of linear regression with a little and a large 

amount of data is in Fig 1 and 2 below: 

 

Fig 1: Linear regression with insufficient evidence of data 

And here is the simulation report of linear regression with 

sufficient loss of data 

  

Fig 2: Linear regression with sufficient loss of data 

4.4 Low confidence predictions for UI 
Recently, deep neural networks (DNNs) have achieved state-

of-the-art success on various pattern-recognition tasks or an 

unrecognizable image (UI), most notably visual classification 

issues. Since DNNs are now able to classify objects into near-

human-level performance images, questions naturally arise as 

to what disparities between machine and human vision still 

exist. A recent study revealed that altering an image (e.g. a 

lion) in a manner that is imperceptible to humans can cause a 

DNN to mark the picture entirely as something else such as 

mislabeling a library lion [35]. It is possible to create 

unrecognizable images for human eyes that DNNs almost 

certainly believe to be familiar objects, which we call "fooling 

pictures" more generally, fooling examples. Our findings shed 

light on fascinating variations between human vision and 

current DNNs and raise concerns regarding DNN machine 

vision in general [36]. 

4.5 Problems in safety verification of DNN 
Deep neural networks have produced remarkable 

experimental results in the classification of images, but can be 

surprisingly unstable concerning adversarial perturbations, i.e. 

small changes in the input image that cause the network to 

misclassify it [29]. 
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4.6 Unsolved ill-posed inverse problems 
Use iterative deep neural networks to solve ill-positioned 

inverse problems. The approach results in a gradient-like 

iterative scheme where the function "gradient" is learned in 

each iteration using a co-evolutionary network that includes 

the gradients of the data discrepancy and the regularize as 

input [37]. 

5. CRYPTOGRAPHIC APPLICATIONS  

OF DNN 
The question we are discussing is the following: how can a 

customer use a third-party predictive model without 

sacrificing private information. A hospital, for example, may 

want to use a cloud service to predict a patient's risk of 

readmission. Nonetheless, the patient's medical files cannot be 

released due to legislation [14, 45]. The goal is to make an 

inference using the model, without jeopardizing the prediction 

accuracy or data privacy. We use neural networks to achieve 

high precision which has been shown to outperform other 

learning models for many tasks. To satisfy the privacy 

requirements, in the following protocol we use homomorphic 

encryption: the data owner encrypts the data and sends the 

ciphertexts to the third party to obtain a prediction from a 

qualified model. The code works on such ciphertexts and 

sends back the prediction that is encrypted. Not only the data 

remain private in this protocol, but even the expected values 

are accessible only to the data owner [39]. Using 

homomorphic encryption and modifications to neural network 

activation functions and training algorithms, we demonstrate 

that protocol is possible and maybe feasible. This approach 

paves the way for the development of stable neural network 

prediction services based on the cloud without violating the 

privacy of users [28, 46]. 

The most popular and effective profiled side-channel attack is 

a template attack. It relies on a rational assumption about the 

noise of the system under attack: a multivariate Gaussian 

distribution is the probability density function of the results. 

To ease this presumption, a recent line of research has been 

exploring new approaches to profiling mainly through the 

application of machine learning techniques. Compared with 

template attack, the results obtained are commensurate, and in 

some specific cases stronger. In this work, we propose to 

continue this recent research line through the application of 

more sophisticated profiling techniques focused on profound 

learning [38, 47]. 

Another problem is whether neural networks can learn to 

shield knowledge from other neural networks using hidden 

keys. Specifically, in a multi-agent scheme, we concentrate on 

preserving confidentiality properties and define those 

properties as an adversary. Thus, a framework that consists of 

neural networks called Alice and Bob, and we intend to 

restrict what a third neural network called Eve learns from 

eavesdropping about Alice and Bob's communication. Such 

neural networks are not recommended for unique 

cryptographic algorithms; rather, we practice end-to-end, 

adversarial [40, 44]. 

6. THE PROPOSED IDEA 
Any continuous function can be precisely defined as 

Kolmogorov's theorem using a multilayer perception with a 

three-layer. However, for the approximation to be exact, we 

define the activation function and parameters. It is not 

possible to apply any activation function just as it is because 

the objective of the function needs to be accounted for. A 

dataset is generated that trains neural networks in the domain 

of variables. A multilayer perception is used to regenerate the 

objective function of the optimization problem. Hence 

generating a polynomial equation. At last, the objective 

function is calculated forming a new solution that is therefore 

applied to resolve a problem. Finally, another solution is 

applied to resolve the new objective function calculated [17, 

25]. The definition of neural networks must include 

parameters such as the connections, number of layers, 

activation functions, propagation rules, etc. There are two 

stages in a multilayer perception that is the learning stage and 

the prediction process [18, 30]. The layers number and 

activation functions are the same in both cases. Learning rate 

and momentum are irrelevant in prediction stage Propagation 

rule is the weighted sum in case of multilayer perception 

which is defined as in equation (1). Fig 3 represents the 

working principle of LOP in neural networks [29] 

 

Fig 3: Workflow of linear optimization problems 

 𝑝

𝑛

𝑗=1

 ∀ 𝑝 = 𝑤𝑗 ,𝑘𝑦𝑖(𝑡) (1) 

Where weight 𝑤𝑗 ,𝑘  is the foundation of DNN connects neuron 

′𝒋′ in weight input layer allow with artificial neuron ′𝒌′ in 

weight hidden layer, 𝑦𝑖 is the weight output layer with 

artificial neuron ′𝒋′ in the weight input layer, ′𝒏′ is number 

artificial neuron of weight input layer ′𝒋′ at a time ′𝒕′ [18, 26]. 

In the case of having an artificial bias neuron, what would 

result in equation (2) [20, 23]? 

 𝑝
𝑛

𝑗=1
+ Ө(k) (2) 

If the result from activating function is linear then the neuron 

′𝒌′ is combined in linear with neurons of the input layer, and 

𝑦1(𝑘) as a linear function then, the present answer 

corresponds to the answer of a neuron when the activation 

function is identical [19, 20, 24]. When ′𝑴′ is in the output 

layer has the activating function𝑓1, the solution is written as 

an equation (3). 

𝑦1k(t) = 𝑓1   𝑝
𝑛

𝑗=1
+ Ө(k)  (3) 

We should apply the activation function after calculating the 

propagation rules. The multilayer perception has three layers 

[21, 33]. We need to apply the propagation rule on two cases 

to transmit the values from input layer neurons to output layer 

neurons. 
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𝑦1M(t) =   𝑤𝑘(𝑀) ∙
𝑚1

𝑗=1
𝑦𝑗  t + Ө(M) (4) 

Where artificial neuron ′𝑴′  represents in the weight output 

layer, and 𝒎𝟏 represents many hidden layer of artificial 

neurons [26, 29, 34]. 

 

Fig 4 (a): Sigmoid function 

 

Fig 4 (b): Arc Tan activation 

 

Fig 4 (c): Soft Sign activation 

Where 𝒎𝟏 represents the number of neurons in the hidden 

layer and ′𝑴′ represents neuron in the output on replacing 

equation (4) with equation (3) we remain with the output in 

neuron ′𝒌’ defined with respect to equation (5) [22, 24, 27]. 

 

Fig 5 (a): Derivative of Arc Tan activation function 

 

Fig 5 (b): Derivative of Sigmoid Activation function 

𝑦1M t =   𝑇
𝑚1

𝑗=1
 𝑓1   𝑝

𝑛

𝑗=1
+ Ө(k) +  Ө M  (5) 

where T = 𝑤𝑘(M)  

7. ANALYSIS OF THE PROPOSED 

IDEA 
So, it would be possible to approximate the trained function 

with pre-trained multilayer perception with an identical 

activating function. An optimization problem with non-linear 

objective function is given; it’s a cake-walk to solve the 

function in accordance with equation (5) as it turns out to be 

linear. Of course, we had approx. functions defined already; 

we couldn’t stop it from turning into the hyperplane, so the 

activation function is nonlinear. Here, we selected Arc Tan 

function to easily simplify the function as its derivative is also 

simple [48, 49]. For example. Lagrange can solve 

trigonometric or exponential functions easily by turning it into 

polynomials. Fig 4(a) shows an Arc Tan activation function. It 

is similar to Fig 4(b) which is a sigmoidal function; as such, 

similar training is made on neuronal networks with both 

activation functions. The Sigmoidal function is used more 

often but here we use Arc Tan function because the derivative 

equation is simple compared to the expression of the 

sigmoidal. Though these are similar functions that are shown 

in Fig 5(a) and 5(b), while the derivate equation of Arc Tan is 

shown in the equation (6), and the derivative of sigmoidal can 

be obtained from equation (7) [46]. 

arc tan(𝑓1) =
𝑓1′

1 + 𝑓1
2 (6) 
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Sigmoid(𝑓1) = −
𝑓1′𝑒𝑓1

(1 + 𝑓1)2
 (7) 

𝑓1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛  subject to  

𝑟1(𝑦1, 𝑦2 , ……… . . , 𝑦𝑛) ≤ 0 (8) 

…………  

r𝑚1(𝑦1, 𝑦2, ……… . . , 𝑦𝑛)  ≤ 0  

Here, 𝑟𝑖  is the constraint and 𝑓1 is the objective function. 

Hence the approximation of DNN can be done using equation 

(5). 

𝑓1(𝑦1 , 𝑦2 , ……… . . , 𝑦𝑛) 

=  𝑇
𝑚1

𝑗=1
 𝑓1   𝑝

𝑛

𝑗=1
+ Ө k  +  Ө(M) 

 

Subject to  

𝑟1(𝑦1, 𝑦2 , ……… . . , 𝑦𝑛) ≤ 0 (9) 

………….  

r𝑚1(𝑦1, 𝑦2, ……… . . , 𝑦𝑛)  ≤ 0  

Hence, the subsequent optimization problems solve with 

Kuhn -Tucker, applying the equation. 

∂𝑓1 𝑦1 ,𝑦2 ,………..,𝑦𝑛  

∂𝑦𝑗
+  𝜆𝑗

𝑚1

𝑗=1

∂𝑟𝑗  𝑦1 ,𝑦2 ,………..,𝑦𝑛  

∂𝑦𝑗
  

≤ 0 ∀ 𝑘 = 1, 2, 3, . . . . . . 𝑚1 

 

 

𝜆1 ∗  𝑟1(𝑦1, 𝑦2 , ……… . . , 𝑦𝑛) = 0 
 

……………… 
 

λ𝑚1 ∗ r𝑚1(𝑦1, 𝑦2, ……… . . , 𝑦𝑛) = 0 
(10) 

Defined the optimization problems with the Lagrange through 

equation (11) 

𝑓1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛  subject to 

 

𝑟1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛 = 0 

(11) 

r𝑚1 𝑦1, 𝑦2, ……… . . , 𝑦𝑛 = 0 

 

According to optimization problems, it would be solved. 

𝐿1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛 , 𝜆1, 𝜆2, 𝜆3, ………… . . 𝜆𝑚1
  

=  𝑇
𝑚1

𝑗=1
 𝑓1   𝑝

𝑛

𝑗=1
+ Ө k  + 

Ө M +  𝜆𝑖

𝑚1

𝑗=1

. 𝑟𝑖  
∂𝐿1

∂𝑦𝑗
 = 0 

∀ 𝑗 ∈ {1, 2, 3. . . . . . . . 𝑛) 

 

∂𝐿1

∂𝑦𝑘
 = 0 ∀ 𝑘 ∈ {1, 2, 3. . . . . . . . 𝑚1) 

(12) 

From equation (10) and (12) we can say that it is essential to 

use the activation function to simplify the derivative and find 

the solution. Based on training made in the DNN, we can 

introduce a threshold for restrictions with inequality. For a 

lower threshold to be maintained, it is better to have a neural 

network that is prior trained with the variables around the 

defined constraints. In other terms for an obstacle with the 

same restrictions as equation (13) a set of data is generated to 

be used in the training process which is similar to the variable 

𝑦𝑗 . The change that is a difference in values that come one 

after the other and the error to define the threshold is in 

proportional. 

𝑎𝑗 ≤ 𝑦𝑗 ≤ 𝑏𝑗  

𝑦𝑗 ≥ 𝑎𝑗  

𝑦𝑗 ≤ 𝑏𝑗  

(13) 

Equation (15) defined here will be based on expression (5) 

and the restrictions defined according to equation (14) along 

with the threshold calculated. 

rs(𝑦1, 𝑦2 , ……… . . , 𝑦𝑛)  ≤ 0 (14) 

 𝑇
𝑚1

𝑗=1
𝑓1   𝑝

𝑛

𝑗=1
+ Ө(k) +  Ө(M) + ẞ (15) 

At last, expression (16) here is defined based on the 

optimization problem as in expression (8). 

𝑓1 𝑦1, 𝑦2 , ……… . . , 𝑦𝑛  

=  𝐴𝑓1

𝐵

𝑗=1
  𝐶

𝑛

𝑗=1
∙ D + E +  𝐹 

 

Where: 

A = 𝑤1k M , B =  𝑚1, C = 𝑤1j k  

D = 𝑦1j(t), E = Ө(k) and F = Ө(M) 

 

Subject to:  

 𝐴1

𝑩1

𝑗=1
𝑓1   𝐶1

𝑛1

𝑗=1
𝐷1 + 𝐸1 + 𝐹1 + ẞ1 (16) 

 𝐴2

𝑩2

𝑗=1
𝑓1   𝐶2

𝑛2

𝑗=1
𝐷2 + 𝐸2 +  𝐹2 + ẞ2  

……………  

 𝐴𝑚
𝑩𝑚

𝑗=1
𝑓1   𝐶𝑚

𝑛𝑚

𝑗=1
𝐷𝑚 + 𝐸𝑚 +  𝐹𝑚 + ẞ𝑚  

An Application of Support Vector Regression (SVR) is 

another technique to approximate functions which is an 

alternative to the use of neural networks. SVR approximates 

the functions as a linear combination in a higher dimension 

space than the original [25]. 

8. CONCLUSION 
As to test the performance of recommendation, we evaluate 

different OP and compared the optimal values and predicted 

in the system. The neural network tool designed by our 

research group is used to test the optimization problems. 
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Under the domain of variables, the set of the dataset that we 

made use of training a neural network is generated objective 

function contains input variables and objective function 

obtained for these values contains output variables. The 

variable domain is defined on the constraints of the OP. 

Firstly, the system’s performance was analyzed with a simple 

optimization problem. A multilayer perception is used to 

approximate a linear function by activating hidden and output 

linear layer functions. 

minimum:  

𝑓(𝑥) = (𝑥1
2 + 𝑥2

2 − 1)2  

subject to:  

−1 ≤ 𝑥1 ≤ 1,−1 < 𝑥2 ≤ 1 (17) 

The objective function returned 𝟏. 𝟑𝟒𝟒𝟎𝟓 when 𝑥1 =
−0.707 and 𝑥2 = −0.707 when it is replaced with the 

function that is approximated with the DNN. The result 

𝟏. 𝟑𝟒𝟒𝟎𝟓 was of the objective function and the values of 𝑥1 

and 𝑥1 is −𝟎. 𝟕𝟎𝟕. This was the result obtained by a quick 
training of neural networks; hence it could be improved 

easily. 

Fig 6 (a) shows the original function whereas Fig 6 (b) shows 

an approximated one. It shows that the approximation worked 

well. There are two input layers in the neural network and 

seventeen neurons in the hidden layer, and Arc Tan activation 

function, and the objective function as an output. The 

momentum is 𝟎. 𝟎𝟎𝟏 and the learning rate is +𝟎. 𝟎𝟏. The 

DNN is trained manually and is stopped when the constant is 

the error of 𝟎. 𝟎𝟑𝟓, furthermore 𝒚𝟏 = 𝟎. 𝟒𝟔 and 𝒚𝟏 = 𝟎. 𝟑 

were the results obtained from PSO. In this case, the results of 

the PSO algorithm worked well. 

maximum:  

cos 𝑥1 ∙ 𝑥2 =  𝑥1 + 𝑥2 
𝑥1 ∙ 𝑥2

100
sin 𝑥1 + 𝑥2  

 

subject to:  

𝑥1 + 𝑥2 ≥ 0.5 

𝑥1 ∙ 𝑥2  ≤ 15 

𝑥1 ≥ 0 

𝑥1  ≤ 1.5 

𝑥2 ≥ −1 

𝑥2 ≤ 1 

(18) 

As we can see the result depicts multilayer perception with 

approximate objective functions and hence uses these results 

to solve OP. In a few instances when the new perspective 

calculated matches with the solution stated, meta-heuristics 

cannot provide a solution.  

 

Fig 6(a): The original function 

 

Fig 6 (b): The estimated function 

The major drawback of this work is that it is necessary to 

instruct the DNN and therefore Lagrange or Kuhn- Tucker 

function is a mandatory usage with the DNN, this makes the 

function unfit for usage in any activation function like 

sigmoidal. Arctase function is used in this proposal as its 

derivative forms an equation that makes it relevant to solve 

the equation obtained by using Lagrange or Kuhn-Tucker. 

The major loophole of this work is that we need to come 

across a few errors when we deal with the approximation of 

equality constraints and hence the result stated will not be 

appropriate, while in other restrictions to obtain relevant 

solutions we introduce the lower limit and valid solution. Our 

experimental findings also demonstrate the overwhelming 

benefits of the resulting new attacks when attacking 

cryptographic systems that are both vulnerable and secure. 

We demonstrate that the neural networks can learn how to 

conduct forms of encryption and decryption, and also how to 

selectively apply these operations to achieve confidentiality 

goals. 
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