
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

32

Time Response Pattern Analysis of C Statements for

Performance Evaluation

Iman Kattan
PhD Student

Dept. Computer Engineering
Faculty of Electrical and Electronic

Engineering
University of Aleppo

Amer Bouchi, PhD
Assistant Professor

Dept. Computer Engineering
Faculty of Electrical and Electronic

Engineering
University of Aleppo

Mouhamad Ayman Naal, PhD
Associate Professor

Dept. Computer Engineering
Faculty of Electrical and Electronic

Engineering
University of Aleppo

ABSTRACT

The study and the evaluation of application performance are

closely related to the study and the evaluation of time

response patterns of the used programming language,

including instructions, components, and different

programming structures, as well as data types, according to

specific criteria.

In this paper, the time response of instructions, programming

structures, and basic data types of C language is studied, and

the results are analyzed to determine the programming

patterns having the best performance for the approved

infrastructure.

This paper studies three main points:

- The time response patterns for instructions in C language.

- The best time response programming structures.

- The correlation between the internal architecture of the

processor and the resulting time response pattern.

This paper is a step in a research project having as objective to

find general features of programming model aiming at

enhancing performance of applications. These features are

extracted from the analysis of time response patterns of basic

instructions and programming structures and data types of the

C language. This analysis helps in defining the best time

response patterns for the C language. In addition, the

correlation between programs and the platform (processor

architecture and operating system) is investigated.

General Terms

Application Performance, Programming Patterns

Keywords
Application Performance, Programming Patterns, Data Types,

Time Response, and Out-Of-Order Execution

1. INTRODUCTION
Applications deal directly with the infrastructure of the

computer system (operating system and hardware) or with a

middleware layer. The performance levels of applications

vary according to several factors, the most important factors

are [1]:

1- Instructions, structures and programming

components used to build the application.

2- Data types and their storage location (local or global

variables).

3- Data structures and the way to deal with them.

4- The type of application and its purpose (local,

distributed, web, mobile applications, or other types

of applications).

5- The infrastructure (processor and operating system)

on which the application is run.

Evaluation of application performance starts from analyzing

basic instructions and data structures of the programming

language. Then it continues by studying programming

components and methods of dealing with complex data

structures and files. It ends with evaluating the performance of

programs and applications that use complex data structures

and different kinds of database management systems.

In this paper, the proposed programming model is enhanced

by a deep study of the basic instructions of the C language.

The aim is at defining time-response patterns by studying and

analyzing basic instructions and structures of C programming

language. Assuming that programs are implemented on local

computer (no remote access and no network connection are

needed). Data are stored in local or global variables in the

program (no need of database).

2. CLASSIFICATION OF

PROGRAMMING LANGUAGES
High level compiled programming languages can be classified

into the following categories [2]:

1. Procedural programming: it is based on the concept

of executive units (procedures or functions) and

variables scope.

2. Functional programming: it is based on executive

units in the form of mathematical Functions.

3. Logical programming: the program is a set of

sentences in logical form, expressing facts and rules

about some problem domain.

4. Object-Oriented programming: defines the program

in the form of objects that interact with each other to

perform the required work.

In this paper, the focus is on procedural programming. We

choose the C language due to its high performance compared

to the rest of the programming languages, and its ability to

directly control the system infrastructure. It is also a language

that remains important until now [3, 4].

3. PERFORMANCE EVALUATION OF

PROGRAMMING LANGUAGES
There are many studies about performance evaluation of

programming languages. These studies have focused on

evaluating performance according to two criteria: execution

time and size of consumed memory.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

33

Research [4] uses benchmarks to compare 27 programming

languages in terms of energy consumption, execution time,

and memory consumed. The research compared translated,

interpreted and virtual machine languages. It shows that the C

language was the best of all the programming languages

tested, and that the fastest execution language is the least

energy consumption in terms of C, C ++, Java languages. This

result cannot be generalized to all programming languages.

Research [5] classifies procedural and declarative

programming languages. It studies the memory usage and

shows that SML and Python have a greater ability to manage

memory for very large numbers, unlike C/C ++, which require

the programmer to do memory management. However, this

research does not study the performance of programming

languages, and does not determine programming patterns for

high performance applications.

Research [6] presents a performance comparison between a

set of programming languages by executing benchmarks. It

shows that languages like Ruby, Python and PHP are 100

times slower than C, Fortran, and Java. However, this

research does not provide any criteria or model for high

performance applications.

 Research [7] uses Benchmarks to evaluate and compare

performance and energy consumed for object-oriented (OO)

and procedural languages used in embedded systems. It

concludes that the use of OOP languages for such systems

leads to a significant increase in execution time and energy

consumption. However, this research also does not provide

any criteria or model for building high-performance

applications.

The above mentioned researches showed the importance of

the C language in terms of speed, memory usage, and energy

consumption. Therefore, C language is adopted in this paper.

On the other hand, these researches does not aim at building a

programming model that links programs to processor

architecture in order to improve performance, but rather they

measure performance by executing benchmarks and

comparing results.

The new features of modern multi-core processors, such as:

Out-Of-Order and Speculative execution [8], are more

efficient than all traditional techniques used in parallel

programming. It is important now to switch from the use of

old parallel techniques and optimization methods to exploit

these important features. To achieve this objective, a new

programming model based on the intrinsic architectural

parallelism of modern processors is under development [9].

The proposed model is based on two concepts: correlation of

instructions: the more the instructions are independent, the

more the execution of the program is efficient, and the

modularity of program: the more the program is modular, the

more its execution is efficient. To complete and enhance this

model, a deep study and analysis of relation between the

instructions execution and processor architecture.

4. BENCHMARK PROGRAMS
The basic measures of system performance are response time

and execution rate. Two main classes of benchmarks exist:

synthetic and real programs benchmarks.

Synthetic benchmarks are written to compare basic concepts,

such as a single operation, or narrow aspects of a larger

system. The simplest type of synthetic benchmark programs

can perform only basic operations, such as addition and

Multiplication. Whetstone and Dhrystone are the most popular

synthetic benchmarks [10].

In this paper, the Dhrystone benchmark model is considered

in order to evaluate basic instructions time response.

5. RESEARCH OBJECTIVE AND

METHODOLOGY
The main objective of this research is to suggest performance

criteria for a new programming model that improves the

performance of applications written according to it. This is

achieved through studying and analyzing time response for

instructions and programming structures.

Instructions and programming structures for the C language

are classified to the following categories [11]:

- Basic data types.

- Operators.

- Simple and composed statements.

- Storage class specifiers.

- Processor directives.

- Variables, Macros, Functions.

This research focuses on the first three points (basic data

types, operators, and simple and composed statements), and it

follows the next steps:

1. Obtaining the response times for all instructions shown in

table 1.

Table 1: Categories and types of studied instructions

Mathematical and logical instructions, Pointers and

Arrays

C=A|B A%=B C=A%B A+=B C=A+B

C=~A A^=B C=A^B A-=B C=A-B

C=A<<1 ++A A++ A*=B C=A*B

C=A>>1 --A A-- A/=B C=A/B

sizeof(A) &A A=B A&=B C=A&B

D[i]=i : i=50

Conditional instructions

if (A==0) if (A<0) if (A>0) if (r):r=A>B

if (!(A>=0))
if

(A>=0)
if (A!=0) if (A<=0)

if ((A>=0)&&(B>=0)) if ((A>=0) || (B>=0))

The study considers all possible forms of the instructions, and

mainly two different basic forms of arithmetic instructions:

correlated and non-correlated forms. For example, consider

the addition instruction, the form (C = A + B) is called non-

correlated form because repeating it gives independent

instructions. On the other hand, the form (A + = B) is called

correlated form, because repeating it gives dependent

instructions. Each instruction is repeated /200/ times to be

able to calculate the execution time.

2. All basic data types defined in the C language are studied,

namely: Integer - Short - Sign - Unsigned - Long - Float-

Double – Char.

3. The study is repeated for local and global variables.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

34

4. Comparing time response patterns, and discussing results.

5. This study was done on two different computers (a

desktop and a laptop) with the following specifications:

Table 2: Specifications of computers used in the test

L_I (Laptop) PC1 (Desktop)

Intel Core 2

Duo T5870

Intel Core 2

Quad Q9400
CPU

2.00 GHz 2.66 GHz Freq.

4.00 GB 6.00 GB RAM

32 bits 64 bits System

2 Cores 4 Cores Cores

6. ANALYSIS OF TIME RESPONSE

PATTERNS FOR INSTRUCTIONS

AND BASIC DATA TYPES

6.1 Time response for local and global

integer variables
Time response for correlated and non-correlated arithmetic

instructions on local and global integer variables executed on

Laptop, is shown in Figure 1.

Figure 1: Time response patterns for arithmetic

instructions on Integer data type (Laptop)

On Laptop, the execution time of correlated instructions is

greater than the execution time of non-correlated instructions,

and local variables have better response time than global

variables for all instructions.

Figure 2 shows the time response for conditional and logical

instructions on local and global integer variables executed on

Laptop.

Figure 2: Time response patterns for conditional and

logical instructions on Integer data type (Laptop)

The execution time of correlated logical instructions is greater

than non-correlated logical instructions. There is no clear

difference between local and global variables in conditional

instructions. But for logical instructions local variables have

better response time.

Figure 3 shows the time response for arithmetic instructions

on local and global integer variables executed on desktop.

Figure 3: Time response patterns for arithmetic

instructions on Integer data type (Desktop)

On Desktop, the execution time of correlated instructions is

greater than non-correlated instructions, and division and

modulo instructions take more time than other arithmetic

instructions.

Figure 4 shows the time response for conditional and logical

instructions on local and global integer variables executed on

Desktop.

Figure 4: Time response patterns for conditional and

logical instructions on Integer data type (Desktop)

The execution time of correlated form of logical instructions

is greater than the execution time of non-correlated form.

Conditional instructions don’t take time as other instructions.

In addition, no difference between local and global variables

in all instructions on Desktop.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

35

Figure 5 shows the time response for basic instructions on

local and global integer variables.

Figure 5: Time response patterns for basic instructions on

Integer data type

The integer data type response pattern is the same as the short,

long, signed, unsigned, char data types, and for the two types

of computers used (Laptop & Desktop).

On Laptop, local variables have better response time than

global variables for all except conditional instructions which

have equal time response for local and global variables, on

Desktop local and global variables have the same response

time.

6.2 Time response for local and global float

variables
Time response for correlated and non-correlated arithmetic

instructions on local and global float variables executed on

Laptop, is shown in Figure 6

Figure 6: Time response patterns for arithmetic

instructions on Float data type (Laptop)

The execution time of correlated instructions is greater than

the execution time of non-correlated instructions, and local

variables have better response time than global variables.

Figure 7 shows the time response for conditional instructions

on local and global float variables executed on Laptop.

Figure 7: Time response patterns for conditional

instructions on Float data type (Laptop)

No difference between local and global variables in all forms

of conditional instructions.

Figure 8 shows the time response for arithmetic instructions

on local and global float variables executed on Desktop.

Figure 8: Time response patterns for arithmetic

instructions on Float data type (Desktop)

On Desktop, the execution time of correlated instructions is

greater than non-correlated instructions, and the response time

of correlated multiplication and division arithmetic

instructions on global variables is greater than the same

instructions on local variables.

Figure 9 shows the time response for conditional instructions

on local and global float variables executed on Desktop.

Figure 9: Time response patterns for conditional

instructions on Float data type (Desktop)

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

36

The conditional instructions don't take time on Desktop.

Figure 10 shows the time response for basic instructions on

float data type.

Figure 10: Time response patterns for basic instructions

on Float data type

Time response patterns for local and global variables are the

same for Desktop. For Laptop, local variables are better than

global variables for non-correlated division and correlated

arithmetic instructions.

6.3 Time response for local and global

double variables
Time response for correlated and non-correlated arithmetic

instructions on local and global double variables executed on

Laptop, is shown in Figure 11.

Figure 11: Time response patterns for arithmetic

instructions on Double data type (Laptop)

The execution time of the basic non-correlated arithmetic

instructions is the same. This is due to the use of FPU

(Floating Point Unit). The difference is between correlated

and non-correlated instructions, and the execution time of

correlated division and multiplication instructions is greater

than other correlated instructions.

Figure 12 shows the time response for conditional instructions

on local and global double variables executed on Laptop.

Figure 12: Time response patterns for conditional

instructions on Double data type (Laptop)

No difference between local and global variables in all forms

of conditional instructions.

Figure 13 shows the time response for arithmetic instructions

on local and global double variables executed on Desktop.

Figure 13: Time response patterns for arithmetic

instructions on Double data type (Desktop)

On Desktop, the time response of double data type is the same

as float data type, and the correlated multiplication and

division instructions on local variables have better response

time than global variables.

Figure 14 shows the time response for conditional instructions

on local and global double variables executed on Desktop.

Figure 14: Time response patterns for conditional

instructions on Double data type (Desktop)

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

37

The conditional instructions don't take time on Desktop.

 Figure 15 shows the time response for basic instructions on

double data type.

Figure 15: Time response patterns for basic instructions

on Double data type

The response time of the correlated multiplication and

division instructions differs from the execution time of the

correlated form of the other arithmetic instructions. Time

response for non-correlated and correlated division

instructions is greater than non-correlated and correlated other

basic instructions respectively.

For Laptop, global variables have better response time than

local variables. It is not the case for Desktop, no difference is

found between local and global variables, except for

correlated multiplication and division instructions where local

variables are better in the time response.

6.4 Time response to correlated and non-

correlated instructions
Figure 4 shows the time response with respect to the number

of instructions for correlated and non-correlated instructions.

Non-correlated instructions have better time response than

correlated instructions. This is due to the role that the multi-

processor architecture plays in distributing non-correlated

work over the available cores (Out-Of-Order execution) [12].

Out-Of-Order execution is an important and necessary feature

of modern processor. It enhances the performance of

programs. The processor selects a set of sequential but non-

correlated instructions within the context of the program and

executes them simultaneously on the available cores, allowing

for high efficiency in execution.

This advantage is illustrated in the experimental results

presented in table 3. These results show that the speed of

execution of non-correlated instructions is much greater than

the speed of execution of correlated instructions. For this

reason, the number of non-correlated instructions executed in

the unit of time is much greater than the number of correlated

instructions executed in the same unit of time.

Table 3: shows the number of correlated and non-correlated

instructions executed in the unit of time.

Table 3: Number of instructions executed in a time unit

 Instruction Count

Time Unit C=A+B A=A+B A=A/B C=A/B

0.513277 388 125 37 67

Note that the speed of execution of correlated instructions is

much greater than the speed of execution of non-correlated

instructions, and this is due to the feature of out of order

execution that allows the distribution of non-correlated

instructions to the processor cores.

7. RESULTS AND DISCUSSION
Tables 4,5,6 summarize the average response time for all type

of instructions.

Table 4: Average Response Time for Integer data types

for all instructions on local and global variables

Statement
Local

L_I

Global

L_I

Local

PC1

Global

PC1

Average 1.2546 1.9247 0.1692 0.1692

Table 5: Average Response Time for Float data types for

all instructions on local and global variables

Statement
Local

L_I

Global

L_I

Local

PC1

Global

PC1

Average 0.9475 1.12525 0.12336 0.14803

Table 6: Average Response Time Double data types for all

instructions on local and global variables

Statement
Local

L_I

Global

L_I

Local

PC1

Global

PC1

Average 1.2618 1.0051 0.13364 0.16036

It noticed that instructions executed on local variables have

better response time than those executed on global variables.

Figure 16: Average Time response for all data types for

Local and global Variables

The obtained experimental results can be summarized as

follows:

1- Current computer systems execute non-correlated

instruction much faster than correlated instructions. This is

due to modern architectural enhancements provided to the

modern processors such as Out-Of-Order execution.

2- Time response patterns for C instructions and programming

structures are similar when executed on computers having the

same platform (processor family and operating system). In

this paper, experimental study was done on computers with

Intel processors and Windows operating system. Thus, the

obtained results can be generalized to computer systems

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 20, May 2020

38

having similar platforms. This permits to propose a generic

programming model for specific class of computer systems.

3- Time response of arithmetic and logical instructions is not

related to variables values or data types, except for Double

and Float data types. Instructions executed on all other data

types have the same time response except for the division

operation. Execution time of division is greater because of the

use of more sophisticated and complex unit. Instructions with

Double and Float data types have different time response from

all other data types.

4- For float data type, the response time of addition,

subtraction, multiplication and division arithmetic instructions

is the same. This is due to the use of FPU (Floating Point

Unit). The difference is between correlated and non-correlated

instructions.

5- For double data types, arithmetic instructions have equal

response time in the case of correlated and non-correlated

instructions, except, for Laptop, correlated division has

greater response time, and, for Desktop, correlated and non-

correlated division have greater response time over all other

arithmetic instructions. Note that correlated instructions have

great response time over non-correlated instructions for both

Laptop and Desktop.

6- Local and global variables have the same response time

pattern for desktop computer and for all arithmetic

instructions and data types. An exception is for float and

double data types, where division and multiplication

instructions on local variables has better response time than

on global variables. For laptop, local variables have better

response time than global variables for all instructions and

data types except for double, where results showed that global

variables has better response time than Local variables.

7- The response time of all conditional instructions is equal to

the No Command time, and there is no difference between

local, global variables.

8. REFERENCES
[1] Kumari, P. K. S., Kumar, S., and Sinha, S. 2016. VLSI

systems energy management from a software

perspective-A literature survey. ELSEVIER. pp. 611-

613.

[2] Samuel, M. S. 2017. An Insight into Programming

Paradigms and Their Programming Languages. Journal

of Applied Technology and Innovation, vol. 1, no. 1, pp.

37-57.

[3] Alomari, Z. et al. 2015. Comparative Studies of Six

Programming Languages. ArXiv. Computer Science.

[4] Pereira, R., et al. 2017. Energy Efficiency across

Programming Languages How Does Energy, Time, and

Memory Relate? Vancouver, BC, Canada : Association

for Computing Machinery.

[5] Singh, P., et al. 2017. Performance Evaluation of

Programming Languages. International Conference on

Innovations in information Embedded and

Communication Systems (ICIIECS).

[6] Nose, T. 2012. A Performance Comparison Method Of

Programming Languages Using Source To Source

Translation Technique. s.l. : Master Thesis.

[7] Chatzigeorgiou, A. , Stephanides, G. 2002. Evaluating

Performance and Power of Object-Oriented Vs.

Procedural Programming in Embedded Processors.

Springer-Verlag Berlin Heidelberg.

[8] Kocher P., et al. 2018. Spectre attacks: Exploiting

speculative execution. arXiv:1801.01203.

[9] Kattan, I., Bouchi A. , Naal, M. A. 2020. Role of

Intrinsic Parallelism of Modern Processors on

Performance Improvement , university of aleppo

research journal, N:153.

[10] Sterling, T., Brodowicz, M., Anderson, M. 2018. High

Performance Computing: Modern Systems and Practices.

[11] Pvt.Ltd, Tutorials Point (I). 2014. Learn C++

Programming Language. s.l. : tutorials Point.

[12] Fog, A. 2018. Optimizing software in C++ An

optimization guide for Windows, Linux and Mac

platforms.

IJCATM : www.ijcaonline.org

