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ABSTRACT 

The increasing dependency in this technologically advancing 

world on data is making us vulnerable to frequent cyber-

attacks. This study aims at classifying executable 

binaries(Portable Executable files) based on its run-time 

behaviour. Traditional approaches to detecting windows-

based malware include comparing files hashes, strings, etc., 

which clearly failed to detect the new world malware kinds - 

morphed and obfuscated. Although the dynamically based 

detection distinctly outperformed static based detection 

techniques, it failed to effectively detect advanced malicious 

programs. System-call injection attacks usually inject 

irrelevant calls to alter an execution sequence of malware, 

thereby making it undetectable to calls based detection 

systems. The proposed method aims at extracting traces of 

API calls made to generate possible unique alternative traces 

in order to detect other malicious API patterns which may be 

left out due to prevent call injection attacks. A classification 

model is built by employing the RandomForest algorithm, and 

its efficiency is  compared with other baseline classifiers. This 

model classifies the data effectively with 91.9% accuracy.   
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1. INTRODUCTION 
With the rise in sophistication of computing systems, 

malicious attacks became more advanced and complex. 

Maintaining the security of an organization’s systems and the 

network is a day to day struggle, for instance in the first half 

of 2019, approximately 4.1 billion records of data were 

breached. Hackers on an average attack 2244 times a day and 

every 24 seconds. Coming up with new ways like crypto-

jacking - hacking third party computers to mine 

cryptocurrencies, it took on an average of 206 days to identify 

a data breach. This rate of advancement needs tantamount 

tackling measures to curb cyber-crime. Almost 92% of 

malware attacks were carried out by sending out emails and 

Ransomware attacks - Clop, RaaS, NotPetya, WannaCry and 

fake windows update, caused millions of dollars to enterprises 

and individuals. Also, sources say that, by the end of 2020, 

83% of enterprise workloads will be on the cloud. Hence 

protection of information systems and networks from these 

kinds of attacks is of utmost importance.  

Existing antivirus detection methods mainly still include 

signature-based detection from databases which typically 

compares the patterns in the databases with that of the file. 

Also, the databases need to be updated frequently which 

makes it vulnerable to the new kinds of attacks if a user hasn’t 

updated it. With the development in malware kinds - morphed 

and obfuscated, it is hard to compare a file as some files can 

have multiple patterns and some even come with packed 

programming contents which makes it difficult to identify it’s 

patterns. An increase in creative attacking strategy requires an 

extra effort with the update of detection strategies. 

As of now, two basic types of detection used include static 

and dynamic. Static methods mainly focus on the 

functionality of a file by finding strings, checking whether 

packed or not and scanning PE file headers. Whereas dynamic 

behaviour focuses on run-time behaviour of a file by 

monitoring it’s API calls made, registries used, the semantics 

of program and list of other system services used[1]. The 

static method for malware detection may skip these minute 

details which would eventually provide faulty outputs. Being 

able to monitor at its semantic level, it makes difficult for 

malware to evade the detection mechanisms. Therefore, there 

is a need to devise new run-time behaviour based strategies 

for making it anti-escape-proof. 

In this paper, they came up with a different and an effective 

malware detection strategy, which not only makes use of 

system-level windows API calls sequences but also looks for 

possible alternative API call patterns thereby making it 

resilient against irrelevant-calls injection attacks and 

polymorphic malware. This mechanism observes the 

behaviour of the program by tracing a pattern of system calls 

made and using it to create the dataset and train model. File’s 

semantic-patterns were exploited to extract and generate 

alternative similar patterned paths after crossing a certain 

threshold value. There exists unnecessary system calls in trace 

of calls(patterns) which misleads and has no pre-defined 

objective. After getting a log file containing sequential 

process calls they generate Sequenced Execution Trace 

Graph(SETG) to generate possible similar trace call patterns. 
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Average path probability metric is used to separate  more 

semantically relevant paths which have more chances of  

depicting a program's behaviour. This generation of 

alternative paths that also carry almost all information about 

the behaviour acts as a strong defence for polymorphic 

malware. They use all these semantically relevant patterns to 

construct their vector feature space made and train it. 

Eventually, increasing the level of accuracy of the proposed 

model by considering both the original trace of calls and it’s 

alternative relevant paths.  

2. THE PROBLEM 
Malware authors and hackers continuously evolve their anti-

detection techniques to evade malware detection. They do so 

by incorporating false, independent, or irrelevant system calls 

into malicious code. These techniques are sometimes also 

called obfuscation, polymorphism and metamorphism. These 

methods help malware to attack with the same motive by 

constantly changing it’s form thereby making it able to 

covertly carry out its operations with malicious intent. 

3. RELATED WORK 
They proposed a solution to the above-described problem of 

malware detection. Most modern-day malware is aware of 

existing detection methods and is able to escape the anti-

malware systems. One major challenge to anti-malware 

detection mechanisms is to identify zero-day or novel 

malware attacks. Their approach observes the run-time 

behaviour of malware for detection and overcomes the 

limitations of static detection methods. They discuss the 

related work of researchers that considers the dynamic 

behaviour of malware for detection by employing methods 

like graph construction and n-gram. 

Authors in [2] have introduced an approach based on API call 

sequences, for feature extraction and selection which uses text 

mining and topic modelling. A same kind of approach was 

followed by authors [3], to construct their feature vector space 

by making use of API calls and to remove unnecessary calls 

they employed two feature selection methods fisher score and 

CFSSUBSETEVAL.  

3.1 N-gram Based 
N-gram approach involves a selection of n features from the 

trace of system-calls over a fixed-sized sliding window. The 

first attempt ever made to detect malware by employing API 

calls was done by Hofmeyr et al. (1998) [4]. The authors in 

[5] have presented an approach that checks for n-feature- 

fingerprints, present in malware files but absent in benign 

files. Adversely, then the n-gram approach has some 

limitations like only contiguous features, the only n features to 

be considered and lacks when it comes to dimensionality.  

3.2 Graph-Based 
Graph-based representation characterises the dynamic 

behaviour of malware into a cluster. This approach involves 

the construction of a network of features that helps in 

identifying the control flow or information flow. This 

generated graph consists of execution traces of system-calls 

and the ultimate objective of this malware can also be 

obtained by intercepting other paths carrying almost all 

similar information. The author [6] presents an approach that 

extracts semantically-relevant path with help of Asymptotic 

Equipartition Property(AEP) and uses Average Logarithmic 

Branching Factor(ALBF) metric to classify paths generated 

into respective bins for the construction of their feature vector 

space model. Other similar approaches are followed in 

[7],[8],[9] papers. Although their proposed robust approach 

employs graph construction, it doesn’t rely solely on exact 

original call traces but also helps in determining other similar 

patterned traces as shown in their experiments. 

4. PROPOSED SYSTEM 
To detect and analyse malware only syntactic comparison is 

not sufficient as it can mutate to other forms continuously and 

carry out its functionality covertly. Hence, their proposed 

mechanism targets dynamic behaviour and is not limited to a 

static level. In order to understand it’s behaviour, it is 

necessary to observe and understand its semantics and control 

flow. Therefore, they executed the malware in controlled 

space to know it. However, advanced malware is virtual 

environment-sensitive ie., it can sense it’s execution in a 

virtual environment and conceal its original malicious intent 

to seem benign. 

The extraction of information-rich paths with high chances 

from the original trace of calls required a metric which could 

be used for quantifying program semantics. And for this, they 

used the Average Probability Metric(APM) to separate fewer 

probability paths from information-rich ones. By extracting 

similar patterned call sequences they build the feature vector 

space for classification.  

4.1 Methodology 
Their approach of run-time behaviour analysis was a major 

reason for not being vulnerable to irrelevant system-calls 

injection or metamorphic attacks. Two major factors that 

made the model efficient were multiple path selection and 

program-specific features. Modern malware mostly depicts 

mutation ie., exhibits the same behaviour with different 

program call sequences. For instance, if a hacker wants to 

keep a log file of a user to know the software used he/she can 

do so in one of the given ways as - 

1. NtCreateFile->NtOpenFile->NtWriteFile-

>NtReadFile->NtCloseFile,  

2. NtWriteFile->NtReadFile->NtCloseFile. 

Now they log the information of the paths that more closely 

depicts  the behaviour of the program(malware) and has a 

higher probability of occurring. Further, to eliminate the 

possibility of string evasion they convert these paths into 

numbers. This study helps in identifying malware by 

transforming it into multiple semantically relevant paths and 

then utilizing it to build the classification model, thereby 

checking the efficiency of the model. 

4.2 SETG Construction 
In order to construct the Sequenced Execution Trace 

Graph(SETG) graphs, they monitor the execution of binary 

executable and the system calls invoked are recorded. Now in 

order to convert these calls into graphs, they considered 

process calls invoked as nodes and then added an edge 

between two transitioning nodes. For example, if two process 

calls are invoked P1 and P2 respectively, then after 

considering P1 and P2 as nodes or vertices, a directed edge is 

added to it. So that it represents the transition from node P1 to 

P2. One important thing to note is that if there is a transition 

from P2 to P1 in the latter part of the sequence then a different 

directed edge is also added between them such that sequential 

call transitions are preserved all the time. At first, they used 

ProcMon and Cuckoo sandbox to intercept the calls during the 

execution of the malware on the Windows platform. Process 

hacker was also used to monitor the process created, modified 

and deleted. To create a log file they run the ProcMon in the 

background then run the malware and this ProcMon captures 
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all the system calls made. 

However, intercepting API calls is time-consuming which 

adds extra overhead to the overall process. One can use virtual 

machines or emulators - VirMon, Cuckoo, Kirda, any.run, and 

Anubis, to analyse the program’s behaviour during execution. 

Afterwards due to inconvenience caused by using ProcMon 

they used Cuckoo sandbox. 

Definition 1 An SETG G = (N, E) is a directed graph with N 

set of nodes and an edge E for each transition occurring.  Let 

pij be the transition probability from node Ni to  Nj, such that 

an edge can be represented as  

E = { Eij | Ni →Nj; Ni, Nj ∈N }  

We know that in Markov chains the future state rather than 

depending on past states is contingent upon the current state. 

Therefore, for a general transition from node Ni to Nj, the 

transition probability must satisfy Markov’s property[10] and  

can be represented as  

 pij = count(Ni →Nj) / ∑n
h=1 count(Ni → Nh)                      (1) 

∀i   ∑n
j=1  pij  =  0  , Ni is isolated node ∀i               (2) 

1, or else   

Let us consider a sequence of system-calls invoked as ξ = { 

N1 , N2 , N3 , N4 , N4 , N2 , N4 , N1 ,N3 } and it’s execution trace 

be represented by P. 

Definition 2 Assuming a path as P = { N1 , N2 , …….. Nn} 

where starting node is N1 and the destination node is Nn with a 

total of n system calls invoked. 

In this case, the execution trace is converted into a SETG with 

each link representing the transition to subsequent calls 

invoked. In a SETG, path probability from source to 

destination (NS -> ND) is calculated by computing transition 

probability of all the individual links present in a  selected 

path. For instance, if path probability is represented by Pr(P) 

then, 

Pr(P) =  p12*  p23*......*  pn(n-1)                                                (3) 

After computing Pr(P) for a given path P then this is 

multiplied by the initial probability of the source node(NS). 

The aim is to derive all the possible paths from source to 

destination (NS -> ND) which is an NP-complete problem[11] 

and calculate Pr(P) for all the paths. And once the Pr(P) of a 

path crosses a certain threshold value it is considered along 

with ξ to construct the feature vector space. However, if the 

execution trace is very less detailed or overly-detailed than 

these paths may be rejected as it may act as noise and hamper 

the model. To elaborate, a file with a short execution trace 

may not provide essential information required for 

classification as it covers limited instances while a file with 

very long execution trace may provide too much detailed data 

that the model over learns from it and may misclassify the 

files. 

For the considered ξ, it’s constructed SETG and transition 

probability matrix is shown below in Fig 1 along with path 

probability of all possible paths from source to destination (N1 

->N4) in Fig. 3. 

 

Fig 1: Sequenced Execution Trace Graph (SETG) and 

Transition Probability Matrix (TPM) 

Table 1. Path Probability 

Paths Path Probability 

P1 : 1-2-4 0.0370 

P2 : 1-3-4 0.1111 

P3 : 1-2-3-4 0.0370 

 

After computing path probability for all the paths, Average 

Probability metric(APM) of the execution trace(ξ) is 0.0617 

and out of three possible paths path with trace calls (N1 - N3 - 

N4) is selected for building up feature space. Similarly, this 

process is repeated for all the other samples. 

4.3 Feature Selection  
The main aim of the last step of this experiment was to check 

the impact of the number of features considered on the 

proposed model(ie., a trade-off between less numbered 

features and overly numbered features). Selection of apt data 

for building the feature space (S) has a great influence over a 

model's prediction ability. Data is gathered from all the 

semantically relevant paths and loaded into a binary matrix. A 

high ranked attribute is the one with high influence, which 

carries most information and causes less randomisation or 

deviation in a feature space. According to the author’s 

research in [12], it was observed that out of four categories of 

features - Registry Edits, DLLs, File Modifications, and 

System Calls, when 2000 features were considered major 

contribution was of System Call category over 85% while the 

rest with below 5% contribution. 

After the construction of feature space, the model was trained 

using an ensemble-based machine learning algorithm - 

RandomForest algorithm. In this algorithm, randomly, data 

and features are selected from training data as a subset for a 

decision tree. It consists of various decision trees with a 

predefined length of trees and attributes. It generalises the 

data obtained from various decision trees and predicts with 

less deviation due to noise. However, they have also 

compared the results of RandomForest algorithm with that of 

logistic Regression, Naïve Bayes and decision tree for a 

comparative study.  

5. ANALYSIS AND RESULTS 
In this section, they assess their experimental outcomes and 

also, the efficacy of machine learning algorithms used. 

Performed by maintaining a balance between the number of 

malware and benign samples used.    
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5.1 Dataset 
In this experiment to avoid any kind of bias generated by 

skewed data, they used 124 malware samples and 135 benign 

samples to create the dataset. Real-world malware and benign 

samples were used to train this model. The problem with 

signature-based datasets is that it is restricted to only original 

forms, malware and defenceless against polymorphic 

malware. An almost balanced mix of good and bad files was 

used to train the model. The malware and benign samples 

were obtained from a trusted online malware analyser- 

virustotal.com. Since some malware prohibits it’s execution 

the moment it senses an emulator to conceal it’s behaviour 

samples were run in Cuckoo sandbox which runs malware 

virtually on Windows platform simultaneously to intercept 

system-process calls, registry and network activities. Once all 

the log files were obtained, a feature selection criteria was 

applied to filter data and generate the dataset. From Fig 2 it is 

clearly evident that malware files generally had way longer 

path length than benign files. The features generated were 

over 150 and the same features were used for all the training 

data.  

 

Fig 2:  Path length of sample files 

5.2 Classification Efficiency 
After the features selection measure was employed, training 

data was fed to the classification algorithms. Several measures 

were used to compensate for the change in the efficiency 

measures and finally, the one with high accuracy was 

selected. Still, to fit the data properly they had to experiment 

with the number of features selected. The number of selected 

features ranged from 100 to 200. After selecting a branching 

factor the model’s predictions were closely observed to notice 

the impact of the number of features selected. 

For calibration and checking the efficiency of their model 

they have incorporated widely used and well-known 

measures[13]- True Positive Percentage(TPP), True Negative 

Percentage(TNP), False Positive Percentage(FPP), False 

Negative Percentage(FNP). On one hand, for an efficient 

model, TPP and TNP should be as high as possible, on the 

other hand, FPP and FNP should be as low as possible. TPP 

tells about the number of malware instances correctly 

classified while TNP indicates the fraction of benign files 

correctly classified. To check the efficiency, the only accuracy 

is not sufficient as it doesn’t reveal the entire statistics. The 

highest accuracy achieved by the model was 91.9%.  It can be 

observed from the data in the above table 2 that TPP 

fluctuated for different values of N but is highest at N=110. In 

this case, the model was able to correctly identify 24 malware 

samples out of  27 randomly selected. Also after N=130, the 

value of TPP decreased. Interestingly, at N=130, although the 

TPP is 84.3%, the FPP and TNP values 0 and 1 indicate that 

the model was able to correctly classify all the benign 

samples. One benefit of this is that it will allow the execution 

of trusted applications without interruptions. Sometimes, in 

terms of process and network activities, kernel and memory 

accesses, benign files behave similarly to malware files. It 

was observed that the high values of FNP and FPP were 

because of this resemblance, which eventually contributed to 

the misclassification of files. However, the value of FPP and 

FNP is the lowest at N=130 when compared to other values of 

N. From Fig 3, it can be deduced that the poor performance of 

the model for values of N lesser than 130 is because of the 

exclusion of some high-frequency information-rich links. 

Additionally, higher values of N provides excessive data, 

which leads to a generalisation of data and results in 

decreased efficiency. Hence it can be concluded that although 

the model efficiently classified malware at N=110, the 

accuracy was highest at N=130 and provided overall optimal 

classification results. 

Table 2. Classification Efficiency(Percentage) 

No. of 

features

(N) 

TPP FPP TNP FNP 

100 81.8 3.4 96.5 18.1 

110 88.8 11.4 88.5 11.1 

120 85.7 5.8 94.1 14.4 

125 81.8 6.6 93.3 18.1 

130 84.3 0 1 15.6 

150 82.1 11.7 88.2 17.8 

188 77.7 17.1 82.8 22.2 

200 
80.7 16.6 83.3 19.2 

 

 

Fig 3: Accuracy(Classifiers) vs Features 
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Fig 4: Precision(Classifiers) vs Features 

 

Fig 5: F1-measure(Classifiers) vs Features  

For a malware detection model, FPP and FNP denote the 

number of malware files being predicted as benign and benign 

files as malware respectively. In this model malware files are 

considered as positive and benign as negative. Precision 

represents the fraction of files correctly identified as positive 

out of all positive files. From Fig 4, it can be inferred that 

with the increasing value of N, precision also increased and 

achieved the highest value at N=130. After this point 

precision decreased substantially and remained almost flat 

after N=188. A similar trend can also be observed in F1-

measure(Fig 5). F1-measure is an important metric for a 

malware detection model as it considers FPP and FNP for 

evaluation. And in the case of this model F1-measure metric 

proves more valuable than accuracy. The proposed model was 

able to achieve the highest value of F1-measure of 92.3% at 

N=130, which shows the effectiveness of the model in 

classifying malware. 

Table 3. Classification Accuracy(N=130) 

Algorithms Accuracy F1-measure 

Logistic 

Regression 

81.8 84.1 

RandomForest 91.9 92.3 

Decision Tree 83.8 85.7 

Naïve Bayes 68.9 77.1 

After the branching of features was done, the same dataset 

was fed to different classification algorithms to check the 

efficiency. As we were nearing an optimal figure of the 

number of features selected for some algorithms the accuracy, 

precision and F1-measure fluctuated. The RandomForest 

algorithm showed the best overall classification results. 

However, the efficiency of some algorithms plummeted after 

features selection number exceeded 130 or were nearing its 

limit. And became almost flat after 188 for almost all 

algorithms. 

6. CONCLUSION 
In this paper, they have focused on the dynamic behaviour of 

malware and used machine learning algorithms to build a 

dataset, and train the model. Their proposed method helps 

them to identify zero-day malicious executable binaries which 

are most difficult to identify due to polymorphism or 

metamorphism. To perform this experiment they ran a large 

set of binaries through emulators and Windows XP(although 

Microsoft has stopped providing official support to it now) to 

generate an execution trace. These system-calls are then 

converted to numerals and finally as nodes or vertices to 

generate Ordered System-call Graph(SSCG). Average 

Probability metric(APM) was used then to select semantically 

relevant paths with high chances of occurring. These paths 

comprehensively constitute the average behaviour of 

executable binaries. In addition to the random forest classifier, 

few others were used to compare the accuracy, F-measure and 

precision. Random forest yielded the best results with high 

accuracy and F1-measure after optimal feature selection was 

applied to the dataset. On average it was observed that their 

mechanism was more efficient than existing approaches. 

Future work will focus on using a large set of executable 

binaries with a proper balance of malware and benign files to  

avoid bias, if any, designing of a new path computation 

algorithm to reduce the computation time, and introduce an 

additional state change of the OS attribute in the feature 

selection process to yield higher accuracy. 
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