
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 22, May 2020

15

File Checker: Determining Behavioural Signatures of

an Executable Binary to Detect Malware

Harshal R. Shinde
SRM Institute of Science and

Technology
Vadapalani, Chennai

Tamil Nadu, India

Himanshu Shukla
SRM Institute of Science and

Technology
Vadapalani, Chennai,

Tamil Nadu, India

A. Jothimani
Assistant Professor

SRM Institute of Science and
Technology

Vadapalani, Chennai
Tamil Nadu, India

Anurag Singh Baghel
SRM Institute of Science and Technology

Vadapalani, Chennai
Tamil Nadu, India

ABSTRACT

The increasing dependency in this technologically advancing

world on data is making us vulnerable to frequent cyber-

attacks. This study aims at classifying executable

binaries(Portable Executable files) based on its run-time

behaviour. Traditional approaches to detecting windows-

based malware include comparing files hashes, strings, etc.,

which clearly failed to detect the new world malware kinds -

morphed and obfuscated. Although the dynamically based

detection distinctly outperformed static based detection

techniques, it failed to effectively detect advanced malicious

programs. System-call injection attacks usually inject

irrelevant calls to alter an execution sequence of malware,

thereby making it undetectable to calls based detection

systems. The proposed method aims at extracting traces of

API calls made to generate possible unique alternative traces

in order to detect other malicious API patterns which may be

left out due to prevent call injection attacks. A classification

model is built by employing the RandomForest algorithm, and

its efficiency is compared with other baseline classifiers. This

model classifies the data effectively with 91.9% accuracy.

General Terms

Malware Detection, RandomForest Algorithm, Machine

Learning Algorithms

Keywords

Executable Binaries, Portable Executable, Malware, Hashes,

Morphed, Obfuscated, System-Call Injection Attacks, API

Patterns.

1. INTRODUCTION
With the rise in sophistication of computing systems,

malicious attacks became more advanced and complex.

Maintaining the security of an organization’s systems and the

network is a day to day struggle, for instance in the first half

of 2019, approximately 4.1 billion records of data were

breached. Hackers on an average attack 2244 times a day and

every 24 seconds. Coming up with new ways like crypto-

jacking - hacking third party computers to mine

cryptocurrencies, it took on an average of 206 days to identify

a data breach. This rate of advancement needs tantamount

tackling measures to curb cyber-crime. Almost 92% of

malware attacks were carried out by sending out emails and

Ransomware attacks - Clop, RaaS, NotPetya, WannaCry and

fake windows update, caused millions of dollars to enterprises

and individuals. Also, sources say that, by the end of 2020,

83% of enterprise workloads will be on the cloud. Hence

protection of information systems and networks from these

kinds of attacks is of utmost importance.

Existing antivirus detection methods mainly still include

signature-based detection from databases which typically

compares the patterns in the databases with that of the file.

Also, the databases need to be updated frequently which

makes it vulnerable to the new kinds of attacks if a user hasn’t

updated it. With the development in malware kinds - morphed

and obfuscated, it is hard to compare a file as some files can

have multiple patterns and some even come with packed

programming contents which makes it difficult to identify it’s

patterns. An increase in creative attacking strategy requires an

extra effort with the update of detection strategies.

As of now, two basic types of detection used include static

and dynamic. Static methods mainly focus on the

functionality of a file by finding strings, checking whether

packed or not and scanning PE file headers. Whereas dynamic

behaviour focuses on run-time behaviour of a file by

monitoring it’s API calls made, registries used, the semantics

of program and list of other system services used[1]. The

static method for malware detection may skip these minute

details which would eventually provide faulty outputs. Being

able to monitor at its semantic level, it makes difficult for

malware to evade the detection mechanisms. Therefore, there

is a need to devise new run-time behaviour based strategies

for making it anti-escape-proof.

In this paper, they came up with a different and an effective

malware detection strategy, which not only makes use of

system-level windows API calls sequences but also looks for

possible alternative API call patterns thereby making it

resilient against irrelevant-calls injection attacks and

polymorphic malware. This mechanism observes the

behaviour of the program by tracing a pattern of system calls

made and using it to create the dataset and train model. File’s

semantic-patterns were exploited to extract and generate

alternative similar patterned paths after crossing a certain

threshold value. There exists unnecessary system calls in trace

of calls(patterns) which misleads and has no pre-defined

objective. After getting a log file containing sequential

process calls they generate Sequenced Execution Trace

Graph(SETG) to generate possible similar trace call patterns.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 22, May 2020

16

Average path probability metric is used to separate more

semantically relevant paths which have more chances of

depicting a program's behaviour. This generation of

alternative paths that also carry almost all information about

the behaviour acts as a strong defence for polymorphic

malware. They use all these semantically relevant patterns to

construct their vector feature space made and train it.

Eventually, increasing the level of accuracy of the proposed

model by considering both the original trace of calls and it’s

alternative relevant paths.

2. THE PROBLEM
Malware authors and hackers continuously evolve their anti-

detection techniques to evade malware detection. They do so

by incorporating false, independent, or irrelevant system calls

into malicious code. These techniques are sometimes also

called obfuscation, polymorphism and metamorphism. These

methods help malware to attack with the same motive by

constantly changing it’s form thereby making it able to

covertly carry out its operations with malicious intent.

3. RELATED WORK
They proposed a solution to the above-described problem of

malware detection. Most modern-day malware is aware of

existing detection methods and is able to escape the anti-

malware systems. One major challenge to anti-malware

detection mechanisms is to identify zero-day or novel

malware attacks. Their approach observes the run-time

behaviour of malware for detection and overcomes the

limitations of static detection methods. They discuss the

related work of researchers that considers the dynamic

behaviour of malware for detection by employing methods

like graph construction and n-gram.

Authors in [2] have introduced an approach based on API call

sequences, for feature extraction and selection which uses text

mining and topic modelling. A same kind of approach was

followed by authors [3], to construct their feature vector space

by making use of API calls and to remove unnecessary calls

they employed two feature selection methods fisher score and

CFSSUBSETEVAL.

3.1 N-gram Based
N-gram approach involves a selection of n features from the

trace of system-calls over a fixed-sized sliding window. The

first attempt ever made to detect malware by employing API

calls was done by Hofmeyr et al. (1998) [4]. The authors in

[5] have presented an approach that checks for n-feature-

fingerprints, present in malware files but absent in benign

files. Adversely, then the n-gram approach has some

limitations like only contiguous features, the only n features to

be considered and lacks when it comes to dimensionality.

3.2 Graph-Based
Graph-based representation characterises the dynamic

behaviour of malware into a cluster. This approach involves

the construction of a network of features that helps in

identifying the control flow or information flow. This

generated graph consists of execution traces of system-calls

and the ultimate objective of this malware can also be

obtained by intercepting other paths carrying almost all

similar information. The author [6] presents an approach that

extracts semantically-relevant path with help of Asymptotic

Equipartition Property(AEP) and uses Average Logarithmic

Branching Factor(ALBF) metric to classify paths generated

into respective bins for the construction of their feature vector

space model. Other similar approaches are followed in

[7],[8],[9] papers. Although their proposed robust approach

employs graph construction, it doesn’t rely solely on exact

original call traces but also helps in determining other similar

patterned traces as shown in their experiments.

4. PROPOSED SYSTEM
To detect and analyse malware only syntactic comparison is

not sufficient as it can mutate to other forms continuously and

carry out its functionality covertly. Hence, their proposed

mechanism targets dynamic behaviour and is not limited to a

static level. In order to understand it’s behaviour, it is

necessary to observe and understand its semantics and control

flow. Therefore, they executed the malware in controlled

space to know it. However, advanced malware is virtual

environment-sensitive ie., it can sense it’s execution in a

virtual environment and conceal its original malicious intent

to seem benign.

The extraction of information-rich paths with high chances

from the original trace of calls required a metric which could

be used for quantifying program semantics. And for this, they

used the Average Probability Metric(APM) to separate fewer

probability paths from information-rich ones. By extracting

similar patterned call sequences they build the feature vector

space for classification.

4.1 Methodology
Their approach of run-time behaviour analysis was a major

reason for not being vulnerable to irrelevant system-calls

injection or metamorphic attacks. Two major factors that

made the model efficient were multiple path selection and

program-specific features. Modern malware mostly depicts

mutation ie., exhibits the same behaviour with different

program call sequences. For instance, if a hacker wants to

keep a log file of a user to know the software used he/she can

do so in one of the given ways as -

1. NtCreateFile->NtOpenFile->NtWriteFile-

>NtReadFile->NtCloseFile,

2. NtWriteFile->NtReadFile->NtCloseFile.

Now they log the information of the paths that more closely

depicts the behaviour of the program(malware) and has a

higher probability of occurring. Further, to eliminate the

possibility of string evasion they convert these paths into

numbers. This study helps in identifying malware by

transforming it into multiple semantically relevant paths and

then utilizing it to build the classification model, thereby

checking the efficiency of the model.

4.2 SETG Construction
In order to construct the Sequenced Execution Trace

Graph(SETG) graphs, they monitor the execution of binary

executable and the system calls invoked are recorded. Now in

order to convert these calls into graphs, they considered

process calls invoked as nodes and then added an edge

between two transitioning nodes. For example, if two process

calls are invoked P1 and P2 respectively, then after

considering P1 and P2 as nodes or vertices, a directed edge is

added to it. So that it represents the transition from node P1 to

P2. One important thing to note is that if there is a transition

from P2 to P1 in the latter part of the sequence then a different

directed edge is also added between them such that sequential

call transitions are preserved all the time. At first, they used

ProcMon and Cuckoo sandbox to intercept the calls during the

execution of the malware on the Windows platform. Process

hacker was also used to monitor the process created, modified

and deleted. To create a log file they run the ProcMon in the

background then run the malware and this ProcMon captures

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 22, May 2020

17

all the system calls made.

However, intercepting API calls is time-consuming which

adds extra overhead to the overall process. One can use virtual

machines or emulators - VirMon, Cuckoo, Kirda, any.run, and

Anubis, to analyse the program’s behaviour during execution.

Afterwards due to inconvenience caused by using ProcMon

they used Cuckoo sandbox.

Definition 1 An SETG G = (N, E) is a directed graph with N

set of nodes and an edge E for each transition occurring. Let

pij be the transition probability from node Ni to Nj, such that

an edge can be represented as

E = { Eij | Ni →Nj; Ni, Nj ∈N }

We know that in Markov chains the future state rather than

depending on past states is contingent upon the current state.

Therefore, for a general transition from node Ni to Nj, the

transition probability must satisfy Markov’s property[10] and

can be represented as

 pij = count(Ni →Nj) / ∑n
h=1 count(Ni → Nh) (1)

∀i ∑n
j=1 pij = 0 , Ni is isolated node ∀i (2)

1, or else

Let us consider a sequence of system-calls invoked as ξ = {

N1 , N2 , N3 , N4 , N4 , N2 , N4 , N1 ,N3 } and it’s execution trace

be represented by P.

Definition 2 Assuming a path as P = { N1 , N2 , …….. Nn}

where starting node is N1 and the destination node is Nn with a

total of n system calls invoked.

In this case, the execution trace is converted into a SETG with

each link representing the transition to subsequent calls

invoked. In a SETG, path probability from source to

destination (NS -> ND) is calculated by computing transition

probability of all the individual links present in a selected

path. For instance, if path probability is represented by Pr(P)

then,

Pr(P) = p12* p23*......* pn(n-1) (3)

After computing Pr(P) for a given path P then this is

multiplied by the initial probability of the source node(NS).

The aim is to derive all the possible paths from source to

destination (NS -> ND) which is an NP-complete problem[11]

and calculate Pr(P) for all the paths. And once the Pr(P) of a

path crosses a certain threshold value it is considered along

with ξ to construct the feature vector space. However, if the

execution trace is very less detailed or overly-detailed than

these paths may be rejected as it may act as noise and hamper

the model. To elaborate, a file with a short execution trace

may not provide essential information required for

classification as it covers limited instances while a file with

very long execution trace may provide too much detailed data

that the model over learns from it and may misclassify the

files.

For the considered ξ, it’s constructed SETG and transition

probability matrix is shown below in Fig 1 along with path

probability of all possible paths from source to destination (N1

->N4) in Fig. 3.

Fig 1: Sequenced Execution Trace Graph (SETG) and

Transition Probability Matrix (TPM)

Table 1. Path Probability

Paths Path Probability

P1 : 1-2-4 0.0370

P2 : 1-3-4 0.1111

P3 : 1-2-3-4 0.0370

After computing path probability for all the paths, Average

Probability metric(APM) of the execution trace(ξ) is 0.0617

and out of three possible paths path with trace calls (N1 - N3 -

N4) is selected for building up feature space. Similarly, this

process is repeated for all the other samples.

4.3 Feature Selection
The main aim of the last step of this experiment was to check

the impact of the number of features considered on the

proposed model(ie., a trade-off between less numbered

features and overly numbered features). Selection of apt data

for building the feature space (S) has a great influence over a

model's prediction ability. Data is gathered from all the

semantically relevant paths and loaded into a binary matrix. A

high ranked attribute is the one with high influence, which

carries most information and causes less randomisation or

deviation in a feature space. According to the author’s

research in [12], it was observed that out of four categories of

features - Registry Edits, DLLs, File Modifications, and

System Calls, when 2000 features were considered major

contribution was of System Call category over 85% while the

rest with below 5% contribution.

After the construction of feature space, the model was trained

using an ensemble-based machine learning algorithm -

RandomForest algorithm. In this algorithm, randomly, data

and features are selected from training data as a subset for a

decision tree. It consists of various decision trees with a

predefined length of trees and attributes. It generalises the

data obtained from various decision trees and predicts with

less deviation due to noise. However, they have also

compared the results of RandomForest algorithm with that of

logistic Regression, Naïve Bayes and decision tree for a

comparative study.

5. ANALYSIS AND RESULTS
In this section, they assess their experimental outcomes and

also, the efficacy of machine learning algorithms used.

Performed by maintaining a balance between the number of

malware and benign samples used.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 22, May 2020

18

5.1 Dataset
In this experiment to avoid any kind of bias generated by

skewed data, they used 124 malware samples and 135 benign

samples to create the dataset. Real-world malware and benign

samples were used to train this model. The problem with

signature-based datasets is that it is restricted to only original

forms, malware and defenceless against polymorphic

malware. An almost balanced mix of good and bad files was

used to train the model. The malware and benign samples

were obtained from a trusted online malware analyser-

virustotal.com. Since some malware prohibits it’s execution

the moment it senses an emulator to conceal it’s behaviour

samples were run in Cuckoo sandbox which runs malware

virtually on Windows platform simultaneously to intercept

system-process calls, registry and network activities. Once all

the log files were obtained, a feature selection criteria was

applied to filter data and generate the dataset. From Fig 2 it is

clearly evident that malware files generally had way longer

path length than benign files. The features generated were

over 150 and the same features were used for all the training

data.

Fig 2: Path length of sample files

5.2 Classification Efficiency
After the features selection measure was employed, training

data was fed to the classification algorithms. Several measures

were used to compensate for the change in the efficiency

measures and finally, the one with high accuracy was

selected. Still, to fit the data properly they had to experiment

with the number of features selected. The number of selected

features ranged from 100 to 200. After selecting a branching

factor the model’s predictions were closely observed to notice

the impact of the number of features selected.

For calibration and checking the efficiency of their model

they have incorporated widely used and well-known

measures[13]- True Positive Percentage(TPP), True Negative

Percentage(TNP), False Positive Percentage(FPP), False

Negative Percentage(FNP). On one hand, for an efficient

model, TPP and TNP should be as high as possible, on the

other hand, FPP and FNP should be as low as possible. TPP

tells about the number of malware instances correctly

classified while TNP indicates the fraction of benign files

correctly classified. To check the efficiency, the only accuracy

is not sufficient as it doesn’t reveal the entire statistics. The

highest accuracy achieved by the model was 91.9%. It can be

observed from the data in the above table 2 that TPP

fluctuated for different values of N but is highest at N=110. In

this case, the model was able to correctly identify 24 malware

samples out of 27 randomly selected. Also after N=130, the

value of TPP decreased. Interestingly, at N=130, although the

TPP is 84.3%, the FPP and TNP values 0 and 1 indicate that

the model was able to correctly classify all the benign

samples. One benefit of this is that it will allow the execution

of trusted applications without interruptions. Sometimes, in

terms of process and network activities, kernel and memory

accesses, benign files behave similarly to malware files. It

was observed that the high values of FNP and FPP were

because of this resemblance, which eventually contributed to

the misclassification of files. However, the value of FPP and

FNP is the lowest at N=130 when compared to other values of

N. From Fig 3, it can be deduced that the poor performance of

the model for values of N lesser than 130 is because of the

exclusion of some high-frequency information-rich links.

Additionally, higher values of N provides excessive data,

which leads to a generalisation of data and results in

decreased efficiency. Hence it can be concluded that although

the model efficiently classified malware at N=110, the

accuracy was highest at N=130 and provided overall optimal

classification results.

Table 2. Classification Efficiency(Percentage)

No. of

features

(N)

TPP FPP TNP FNP

100 81.8 3.4 96.5 18.1

110 88.8 11.4 88.5 11.1

120 85.7 5.8 94.1 14.4

125 81.8 6.6 93.3 18.1

130 84.3 0 1 15.6

150 82.1 11.7 88.2 17.8

188 77.7 17.1 82.8 22.2

200
80.7 16.6 83.3 19.2

Fig 3: Accuracy(Classifiers) vs Features

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 22, May 2020

19

Fig 4: Precision(Classifiers) vs Features

Fig 5: F1-measure(Classifiers) vs Features

For a malware detection model, FPP and FNP denote the

number of malware files being predicted as benign and benign

files as malware respectively. In this model malware files are

considered as positive and benign as negative. Precision

represents the fraction of files correctly identified as positive

out of all positive files. From Fig 4, it can be inferred that

with the increasing value of N, precision also increased and

achieved the highest value at N=130. After this point

precision decreased substantially and remained almost flat

after N=188. A similar trend can also be observed in F1-

measure(Fig 5). F1-measure is an important metric for a

malware detection model as it considers FPP and FNP for

evaluation. And in the case of this model F1-measure metric

proves more valuable than accuracy. The proposed model was

able to achieve the highest value of F1-measure of 92.3% at

N=130, which shows the effectiveness of the model in

classifying malware.

Table 3. Classification Accuracy(N=130)

Algorithms Accuracy F1-measure

Logistic

Regression

81.8 84.1

RandomForest 91.9 92.3

Decision Tree 83.8 85.7

Naïve Bayes 68.9 77.1

After the branching of features was done, the same dataset

was fed to different classification algorithms to check the

efficiency. As we were nearing an optimal figure of the

number of features selected for some algorithms the accuracy,

precision and F1-measure fluctuated. The RandomForest

algorithm showed the best overall classification results.

However, the efficiency of some algorithms plummeted after

features selection number exceeded 130 or were nearing its

limit. And became almost flat after 188 for almost all

algorithms.

6. CONCLUSION
In this paper, they have focused on the dynamic behaviour of

malware and used machine learning algorithms to build a

dataset, and train the model. Their proposed method helps

them to identify zero-day malicious executable binaries which

are most difficult to identify due to polymorphism or

metamorphism. To perform this experiment they ran a large

set of binaries through emulators and Windows XP(although

Microsoft has stopped providing official support to it now) to

generate an execution trace. These system-calls are then

converted to numerals and finally as nodes or vertices to

generate Ordered System-call Graph(SSCG). Average

Probability metric(APM) was used then to select semantically

relevant paths with high chances of occurring. These paths

comprehensively constitute the average behaviour of

executable binaries. In addition to the random forest classifier,

few others were used to compare the accuracy, F-measure and

precision. Random forest yielded the best results with high

accuracy and F1-measure after optimal feature selection was

applied to the dataset. On average it was observed that their

mechanism was more efficient than existing approaches.

Future work will focus on using a large set of executable

binaries with a proper balance of malware and benign files to

avoid bias, if any, designing of a new path computation

algorithm to reduce the computation time, and introduce an

additional state change of the OS attribute in the feature

selection process to yield higher accuracy.

7. REFERENCES
[1] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R.

E. Bryant, “Semantics-aware malware detection,” in

Proc. of IEEE Symposium on Security and Privacy

(SP’10), 2005, pp. 32–46.

[2] Sundarkumar, G.G., Ravi, V., Nwogu, I. and

Govindaraju, V., 2015, August. Malware detection via

API calls, topic models and machine learning. In 2015

IEEE International Conference on Automation Science

and Engineering (CASE) (pp. 1212-1217). IEEE.

[3] A. Sami, H. Rahimi, and B. Yadegari, “Malware

detection by behavioural sequential patterns,” Comput.

Fraud and Secur., vol. 2013, no. 8, pp. 11 – 19, 2013.

[4] Hofmeyr, S. A., Forrest, S., & Somayaji, A. (1998).

Intrusion detection using sequences of system calls.

Journal of Computer Security, 6, 151–180.

[5] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu,

and E. Kirda, “Accessminer: Using system-centric

models for malware protection,” in Proc. of the 17th

ACM Conference on Computer and Communications

Security (CCS’10), 2010, pp. 399–412.

[6] S. Naval, V. Laxmi, M. Rajarajan, M. S. Gaur and M.

Conti, "Employing Program Semantics for Malware

Detection," in IEEE Transactions on Information

Forensics and Security, vol. 10, no. 12, pp. 2591-2604,

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 22, May 2020

20

Dec. 2015.

[7] M. Fredrikson, S. Jha, M. Christodorescu, R. Sailer, and

X. Yan “Synthesizing near-optimal malware

specifications from suspicious behaviours,” in Proc. of

IEEE Symposium on Security and Privacy (SP’10), 2010,

pp. 45–60.

[8] G. Jacob, R. Hund, C. Kruegel, and T. Holz,

“Jackstraws: Picking command and control connections

from bot traffic,” in Proc. of the 20th USENIX

Conference on Security (SEC’11), 2011, pp. 29–48.

[9] D. Quist and L. Liebrock, “Visualizing compiled

executables for malware analysis,” in Proc. of 6th

International Workshop on Visualization for Cyber

Security (VizSec’09), Oct 2009, pp. 27–32.

[10] J. R. Norris, Markov Chains. Cambridge University

Press, 1998.

[11] M. J. Quinn and N. Deo, “Parallel graph algorithms,”

ACM Comput. Surv., vol. 16, no. 3, pp. 319–348, Sep.

1984.

[12] A. Cabrera and R. A. Calix, "On the Anatomy of the

Dynamic Behavior of Polymorphic Viruses," 2016

International Conference on Collaboration Technologies

and Systems (CTS), Orlando, FL, 2016, pp. 424-429.

[13] T. Fawcett, “An introduction to ROC analysis,” Pattern

Recognition Lett., vol. 27, no. 8, pp. 861–874, 2006.

IJCATM : www.ijcaonline.org

