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ABSTRACT 

DNA sequence analysis & comparison computation is a vital 

task in terms of memory & time which is used huge size of 

data set for biological research. Perfectly aligned sequence 

find out the matching point or mismatches between two 

sequences. Our proposed algorithm is composed of two major 

part. The first part is Fast Splitting(FS), a “Recursive 

technique” based algorithm which divides the source 

sequence in appropriate and exact length according to the 

preference of target sequence. Second part is Fast_Maximum 

Matches Subsequence Finder(Fast_MMSS). It builds the 

specialized successor table according to the identical 

characters of two strings (TLSS & Target Sequence). Then 

using some special pruning condition, we get the final MMSS. 

In previous work, dynamic programming and some sorts of 

Brute force techniques are applied which are faster in terms of 

time but requires huge memory, while  our proposed 

algorithm maintains the „Time and Space‟ tradeoff. 

Keywords 
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1. INTRODUCTION 
Bioinformatics is a cross field that retrieves information from 

the bio-sequences. Bio-sequence analysis leads to identify the 

similarities, matches or mismatches, alignments between 

various sequences. Sequence alignment or finding similarities 

between two sequences leads to identify the bio-logical 

identity of various species, drug design, and disease 

identification etc. For finding similarities, there are two types 

of alignment: Local and Global[13]. Local alignment firstly, 

takes a portion (substring) of the source sequence and then 

tries to match with the target sequence. But in Global 

alignment we take the whole source sequence and try to make 

an end to end comparison with the target sequence[14]. The 

sequences which are locally optimal, these are must be 

globally optimal. There are a lot of evolutionary methods used 

in various genome projects which can handle a large scale of 

biological data. Alignment of sequence is the initial state of 

every genome project. The common matching or similarities 

indicates the evidence of common genome similarity and 

homologous relationship. So the alignment of the sequence or 

finding maximum matched sequence is the vital part for 

genome projects. There are a lot of algorithms for sequence 

alignment which are used dynamic programming[16], 

pruning[17], parallel implementation techniques[18] and 

recursive backtracking techniques [12]. But using these 

techniques it is difficult to maintain the „Time and Space 

trade-off‟. Because dynamic programming reduces the time 

but takes huge memory for memorization technique.  

First algorithm is the BLAST [1], They proposed a shared 

memory version which can easily compute the local 

optimality. But the main limitation is that it can only search 

for a single query. Needleman–Wunsch[2] proposed a 

dynamic programming based algorithm that is used to align 

the protein or DNA sequences. But the main limitation is that 

it can only compute the global optimality. Besides, it 

consumes considerable amount of memory and exponential 

time complexity is O(nm) where, n and m is the length of two 

sequence[10][11].  

We also examined the Smith-Waterman [3] algorithm which 

can compute local alignment perfectly. But it can‟t perform 

global alignment. Time & space complexity same as 

Needleman-Wunsch. T-coffee[4] proposed a new dynamic 

algorithm that is used to align the sequence. But the time 

complexity of T-coffee is exponential[9] such as 𝑂(𝑁3𝐿), 

where N is the number of sequences and L is the average 

sequence length. ProbCons[5] proposed a posterior 

probability based scoring method for all sub-optimal 

alignment. It also takes exponential time such as 𝑂(𝑘2𝑛2 +
𝑘3)time. Newberg [6] proposed a memory efficient method 

which is used dynamic programming technique for calculating 

the index of the optimal check point. But It also takes 

exponential time complexity of O(M𝑁3) or 𝑂(𝑁4) and 

memory complexity of O(𝑁2M). where M is the no. of states 

and N is the no query sequences. RSAM [7] and another 

algorithm [15] are also proposed a dynamic programming 

based algorithm which can solve the local sequence alignment 

problem. It also takes a considerable amount of time. 

Our proposed algorithm deals with some specific types of 

problem. These types of problem scenarios are discussed 

according to following way: Firstly, In bio-sequence analysis, 

In many cases, the input or source sequence length is very 

long which contains billions of base pairs. On the other hand, 

the target sequence length is so short where the number of 
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base pair is not greater than 50. For this type of situation, we 

badly needed to divide or break the source or input sequence 

into the preference of the target sequence for further analysis 

such as aligning, matching or finding maximum matched 

sequence. So the first part of our algorithm is Fast 

Splitting(FS). FS breakes the huge sized input sequence into a 

feasible length according to the preference of the target. FS 

produces the Target Length Splitted Sequence (TLSS). 

The second part of our proposed algorithm is Fast_MMSS  

Finder. In this part we take the TLSS and target sequence as 

input and find out the maximum matches sequence between 

each TLSS and target sequence. Then store the all maximum 

matched-sequence between every TLSS and target sequence. 

Sequence of alignment whole work we have various 

subsection such as system architecture, analytical 

representation, Complexity Analysis, Experimental set up, 

Experimental Evaluation.  

2. METHODOLOGY  

2.1 System Architecture 
The system architecture of our proposed algorithm are consist 

with four layer. The integrated architecture started from input 

to the systems and stopped at finding Desired subsequence. 

Input Sequences may be any DNA, RNA and proteins. We 

have imposed our system for DNA data shows in Fig.1: 

„Fast_Splitter‟ is used to split the input sequence into desired 

size.„Splitted Sequence store‟ stores the output of 

Fast_Splitter which is Target Length Splitted 

Sequence(TLSS).„Fast_MMSS Finder‟ is used to detect the 

matching point between TLSS & T. „Aligned sequence store‟ 

is finally stored the desired result. Our initial input is two 

sequences. These are: Input or Source Sequence (S) and 

Target or Reference Sequence(T). 

 

Fig. 1. : Complete Flowchart of Fast Splitting 

2.2 Fast Splitting(FS) Procedure 
Algorithm 1: Fast Splitting(FS) 

Input: Input Sequence(S) and Target Sequence(T). 

Output: Target TLSS. 

2.2.1 Fast_Splitting(Sequence_array,Start,End,M

id,Target_TLSS) 
1: Sequence_array ← AAA...TTT 

2: Last ← length of (Sequence_array) 

3: Start ← Sequence_array[0] 

4: End ← Sequence_array[Last] 

5: Mid ← int((Start+End)/2) 

6: Tar_len ← Length of (Target_Sequence) 

7: While Start<End do  

8: Left_Recursor(Sequence_array,Start,Mid) 

9: Right_Recursor(Sequence_array,Mid+1,End) 

10:If(Total_dist(|Start-Mid|)>Tar_len or Total_dist(|End-Mid|) 

> Tar_len)  then 

rget_TLSS←TLSS with desired length. 

11: End While. 

Due to recursive subdivision, we reduce the data size. The  

complete flow chart is: 
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Fig 2: Complete Flowchart of Fast Splitting. 

Let‟s see the successive subdivision for a sample sequence. 

 

Fig 3: Graphical representation of FS 

2.3 Fast_MMSS  
Suppose X ( x1, x2, …, xn), Y = (y1, y2, … , ym) is the two bio-

sequences as well as two TLSS from the Quick splitter, where 

xi , yi {A,C,G,T}. We can denote an array CA of the four 

characters so that CA(1)=“A”, CA(2)=“C”, CA(3)=“G ” and 

CA(4)=“T ”. To find Maximum Matches Sub-sequence 

between TLSS and T, we firstly construct the tables of 

successors of the uniform characters for the two strings. The 

successor tables of X and Y are defined as GX and GY. 
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Definition 1: [8] 

For the sequence X = (x1, x2… xn), its successor table SX of 

identical character is defined as: 

𝐺𝑋 𝑖, 𝑗 =  
min 𝑘 𝑘 ∈ 𝑆𝑋 𝑖, 𝑗  𝑆𝑋 𝐼, 𝑗 ≠ ∅
−                                𝑂𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

Here, SX (i, j)={k| xk = CA(i), k>j}, i = 1,2,3,4, j = 0,1,…n. If 

GX (i, j) is not “-”, it denotes that the index of the next 

character similar to CA (i) after the jth index in sequence X. If 

GX(i, j) is equal to “-”, it denotes that there is no character 

CA(i) after the jth index. 

Example 1: [8] 

Let X =“G C T A T A ”. The corresponding successor tables 

of GX is shown  

Table 1. Successor table of GX 

i CA(i) 0 1 2 3 4 5 6 

1 A 4 4 4 4 6 6 - 

2 C 2 2 2 - - - - 

3 G 1 - - - - - - 

4 T 3 3 3 5 5 - - 

 

Lemma 1[8]. We denoted the length of the maximum matches 

subsequence of X, Y as |MMSS(X, Y)|, then |MMSS(X, 

Y)|=max {level (i, j) |(𝑖, 𝑗)∈S (X, Y)}. 

Algorithm Fast_MMSS 

Input: An array of string which contains the TLSS from 

Fast_Splitter (algo. 1) in each index and the Target Sequence. 

Output: Perfectly aligned sequence with desired accuracy. 

1:Array[N]← {𝑇𝐿𝑆𝑆1, 𝑇𝐿𝑆𝑆2 , ……………… . 𝑇𝐿𝑆𝑆𝑛 } 

Where, N is the no. of TLSS from Fast Splitter.  

Store[N] is an empty array which  contain the final  

output. 

2:𝑆𝑡𝑜𝑟𝑒 𝑁 ← ∅ 

3: for init = 0 to N do  

For each Array[i] Call Procedure 1; 

4: Store[i] ←Output of Procedure 1 for Array[i]} 

5: End for. 

 Procedure 1[8]: 

Input: Target Sequence and Array[i] where i means ith TLSS. 

Output: Perfectly aligned sequence for Array[i]. 

Begin: 

1: Firstly make the tables GX and GY; 

2: Search for all the initial uniform character pairs:     

(GX (k, 0), GY (k, 0)),  k=1, 2, 3, 4; 

3: Then put all the initial uniform pairs (k, GX(k, 0),    

GY(k, 0), 0, ф, action),  k=1,2,3,4  to the table pairs. 

Put this value, For all the initial uniform pairs,    

pos=1, prev=ф and state=action 

4: Repeat 

5: for all action uniform pairs (k, i, j, pos, prev,   

action) in pairs parallel-  

Do Generate all the successors of (k, i, j, pos,  

prev, action). 

Shift the state of (k, i, j, pos, prev, action) into  

inaction.  

End for 

6: Until any record found in action state in table  

pairs. 

7: Calculate z = the maximal level in the table pairs. 

8: For all uniform pairs (k, i, j, z, l, inaction) with  

pos = z in pairs 

Parallel-do 

Pradi = l; Res(z) = xi. 

While Pradi ≠ф do 

8.1.1: take the Pradi-th record (prev, g, h,  

z‟, l‟, inactive) from  table pairs. 

8.1.2: Pradi = l‟; Res(z‟) = xg. 

8.3: End While. 

End. 

3. EXPERIMENTAL RESULT & 

COMPLEXITY ANALYSIS 

3.1 Efficiency of the System  
Let time required by random data set as Random time is = 𝑇𝑟  

Time required by quick splitting process is = 𝑇𝑠  

Total integrated time for all data set time is = 𝑇𝑡   

Overhead time or non-useful time is = 𝑇𝑡 − 𝑇𝑟  (Due to 

random timing)  

Total time spent for all DNA segments are 𝑇𝑡  =𝑛 ∗ 𝑇𝑠 

Here,  

n = Number of segments of DNA.  

So we can define speedup is the ratio between random time 

dataset processing to  Bounding box bounded time 

𝑆𝑝𝑒𝑒𝑑 𝑈𝑝 =  
𝑅𝑎𝑛𝑑𝑜𝑚  𝑇𝑖𝑚𝑒

𝑄𝑢𝑖𝑐𝑘  𝑆𝑝𝑙𝑖𝑡𝑡𝑖𝑛𝑔  𝑇𝑖𝑚𝑒
 = 

𝑇𝑟

𝑇𝑠
  

By using the mathematical equations, we can define as 

𝑇𝑟  = 𝜃(𝑛𝑛) due to its randomness. 

𝑇𝑠  = 𝜃(𝑛𝑙𝑜𝑔𝑛)  

So the speed up is   

𝑆𝑝𝑒𝑒𝑑 𝑢𝑝 =  
 𝜃(𝑛)

𝜃(𝑛𝑙𝑜𝑔𝑛 )
  

Example:  

For the data length n =4 
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The serial time for linear is 256 ns seconds. 

The quick splitting time is 2.41 ns. 

The speedup would appear = 256/2.41 = 106.22ns 

Efficiency is a measure of the fraction of time for which a 

processing element is usefully employed. Mathematically, it is 

given by 

𝐸 =  
𝑆

𝑃
  

Following the bounds on speedup, efficiency can be as low as 

0 and as high as 1. 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑆𝑝𝑒𝑒𝑑  𝑈𝑝

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒  𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠  𝑣𝑜𝑙𝑢𝑚𝑒
=  

𝑆

𝑃
  

3.2 Implementation tools 
Firstly, we needed to set Cygwin environment on our system. 

On that purpose, we preferred the latest version of Windows 

10 Enterprise. Finishing the installation of the environment it 

is required to install the proper libraries for running the 

experiment. Then C++11, GNU GCC, OpenMPI libraries are 

installed with proper manuals and instructions. Code::Blocks 

IDE and Sublime Text Editor is being installed for code 

generation, modifications and experimental purposes. 

3.3 Experimental Result 
CPU utilization time & Execution time comparison with 

different algorithm is (see Fig. 4 & Fig. 5). 

Fig. 4 & Fig. 5 illustrates the execution time & CPU 

utilization time for sequence alignment for different data 

length. The bar chart indicates the CPU utilization time for 

sequence alignment. The skyblue bar indicates CPU 

utilization for QS+Fast_MMSS. Orange and ass bars are 

indicates the CPU time for RSRM and BLAST respectively. 

Less DNA sequence need less CPU time. Our 

QS+Fast_MMSS measures less CPU. QS+Fast_MMSS used 

divide and conquer approach for data splitting and reduced the 

data size. Though, MMSS finding approach performs in 

linearly. But MMSS finding process has less effect in CPU 

utilization. RSRM measures less CPU time than BLAST and 

maximum than QS+Fast_MMSS. RSRM used bounding box 

approach for data splitting. Bounding box approach selects the 

data from large data sets in linearly. It also randomly selects 

the data pattern that need more time than our divide and 

conquer approach. 

Table 2. CPU time comparisons among three algorithms: 

BLAST, RSRM and QS+Fast_MMSS. 

Data Length 
QS+Fast_

MMSS(s) 

RSRM(

s) 
BLAST(s) 

1000000 bp 0.35 0.39 0.47 

1500000 bp 0.37 0.41 0.49 

2000000 bp 0.40 0.43 0.52 

2500000 bp 0.42 0.45 0.53 

3000000 bp 0.43 0.46 0.55 

3500000 bp 0.45 0.48 0.56 

4000000 bp 0.46 0.50 0.58 

4500000 bp 0.50 0.53 0.60 

5000000 bp 0.51 0.55 0.63 

5500000 bp 0.53 0.56 0.66 

6000000 bp 0.55 0.57 0.69 

6500000 bp 0.57 0.59 0.70 

7000000 bp 0.59 0.60 0.71 

7500000 bp 0.60 0.62 0.71 

8000000 bp 0.61 0.64 0.73 

 

 

Fig 6: Visualization CPU utilization time comparison with different algorithm 
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Fig 7: Execution time measurement of RSRM, BLAST and QS+Fast_MMSS. 

3.4 Complexity 
Our main focus is on time complexity. For computing the 

time complexity, we should consider the following parameter: 

Total number of dataset = N, Length of the given data set = n,  

Number of segments = t,  

Random Search Time = 𝑇𝑟 ,  

Splitting Time = 𝑇𝑠  

 Complexity of FS:  

In all Cases: 𝑇 𝑛 = 2𝑇  
𝑛

2
 +  𝛼𝑛 

 = 2  2𝑇  
𝑛

4
 +  

𝛼𝑛

2
 +  𝛼𝑛 

 =  22  2𝑇  
𝑛

8
 +  

𝛼𝑛

4
 + 2𝛼𝑛 

 =  23𝑇  
𝑛

8
 + 3𝛼𝑛 

=  2𝑘𝑇(
𝑛

2𝑘
) + k ∝ 𝑛  

𝑇 𝑛 = 𝑛𝑇 1 + ∝ 𝑛𝑙𝑜𝑔𝑛, 𝑤𝑕𝑖𝑐𝑕 𝑖𝑠 𝑂 𝑛𝑙𝑜𝑔𝑛 .  

 Complexity of Fast_MMSS 

If we use the parallel implementation technique, then the time 

complexity of Fast MMSS is O (n*|MMSS(X,Y)|) in all 

cases[8], here |MMSS(X,Y)| is the length of the MMSS of 

TLSS & Target sequence. Here, n is the total no. of TLSS. So 

the Overall Complexity is = 𝑂 𝑛𝑙𝑜𝑔𝑛  +n |MMSS(X,Y)|). 

 Space Complexity 

Though our algorithm only focused about time efficiency, but 

our algorithm space-efficient also. We compare the memory 

requirement between Needleman-Wunsch [2], BLAST[1] and 

RSAM[7]. 

 

 

Table 3. Comparison of Memory Complexity and Memory 

requirement between Needleman-Wunsch, BLAST and 

our proposed algorithm 

Algorithm Complexity Memory 

requirement 

Needleman-   

 Wunsch 

O(M*N) (M*N) 

BLAST O(w * (m+n)) (m+n+(w*(m+n))) 

FS+Fast_MM

SS 

O(m+n+4*(n+1

)+4*(m+1)) 

m+n+4*(n+m+2) 

 

4. CONCLUSION  
In the paper, we have proposed a time efficient DNA 

sequence analysis algorithm, called FS+Fast_MMSS that can 

manage the huge dataset dynamically. FS+Fast_MMSS 

require very less time than that of BLAST or other previous 

algorithm. Experiment results prove the effectiveness of our 

proposed algorithm. We have worked with experimental 

dataset. Further, this concept will be implemented for real 

world dataset, RNA & Protein sequences and also use this 

concept to handle the dislocated or broken sequences 
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