
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 27, June 2020

36

A Context Free Spell Correction Method using

Supervised Machine Learning Algorithms

Ahmed Yunus
Software Engineer, AlgoMatrix, Sylhet

B.Sc. (Engg.), Shahjalal University of Science and
Technology,

Department of Computer Science and Engineering,
Sylhet-3114, Bangladesh

Md Masum
Associate Professor,

Shahjalal University of Science and Technology,
Department of Computer Science and Engineering,

Sylhet-3114, Bangladesh

ABSTRACT
Spell correction is a modern day necessity for a system that lets

a user extract the proper result while searching different things.

Misspelled words are highly likely to occur while typing in

queries to these systems and when users misspell query, the

users may get inconclusive or false information returned by the

system. Spell correction can be context-free or context-sensitive

based on the usage. This paper traverses a spell correction

method using supervised machine learning algorithms in which

the wrong word does not rely on any context. Also this paper

includes the comparison between different supervised machine

learning algorithms for this case and additionally provides the

best case and limitation of this spell correction method.

General Terms
Spell Correction, Machine Learning, Context Free, Dictionary

Keywords
Supervised Machine Learning, Tf-idf, Tokenization,

KNeighbour Classifier, Multinomial Naive Bayes, Decision

Tree Classifier, Random Forest Classifier, Logistic Regression,

F1-score, Accuracy, Precision, stop words, QWERTY keyboard

etc.

1. INTRODUCTION
A basic spell checking system starts with scanning a text,

compares it with a known list of correct words and then pushes

out the closely matched word against the input text. A spell

checker can be either context-free or context-sensitive. A

context-free spell correction system is a system where the wrong

word does not rely on anything but itself. In this system, the

wrong word does not care about the previous words, the word

after it or neither about the total meaning of the sentence. This

condition makes the system a little bit complex as the less data is

available to use for algorithms to predict the wrong word

outcome. This paper proposes a new method in context-free

spell correction that uses supervised machine learning

algorithms which follows the below structure:

● Related Works: This section provides the necessary

background study on some works relevant to the spell

correction system. Although much work has been

done on context-sensitive spell correction, only few

works have been conducted on context-free spell

correction using supervised machine learning.

● Data Collection and Processing: This section

insights briefly about the data processing system on

wrong words that would be used to feed into machine

learning algorithms.

● Methodology:This section provides a brief

description on the architecture that would be used to

predict the wrong word using supervised machine

learning algorithms.

● Experiments and Results:Describes the experimental

setup, along with some models used for comparative

evaluations. Analysis of the results along with possible

reasons are discussed.

● Best Use Case and Limitation:This section describes

what could be the best use case for using this

methodology in order to predict unknown wrong

words and it‟s limitations also.

● Future Works and Conclusion: The paper concludes

with some recommendations and provides scope for

future research on this field.

2. RELATED WORKS
In the history of computer science, algorithmic techniques for

detecting and correcting spelling errors in text have a long and

robust history [1]. Different methodologies like edit distance [2],

rule-based techniques [3], n-grams [4], probabilistic techniques

[5] etc. have been proposed. All of these are based on the idea of

calculating the similarity between the misspelled word and the

words contained in a dictionary. [7]

There has been research on developing algorithms that are

capable of recognizing a misspelled word, even if the word itself

is in the vocabulary, based on the context of the surrounding

words. The most successful algorithm to date is Andrew

Golding and Dan Roth's "Winnow-based spelling correction

algorithm" published in 1999, which has accuracy of 96% in

detection and correcting of context-sensitive spelling errors, in

addition to ordinary non-word spelling errors. [6]

There is also research on correction of misspelling words which

uses revised n-gram models by selecting the most promising

candidates from a ranked list of correction candidates that is

derived based on n-gram statistics and lexical resources. The

proposed algorithm, in the following, is a language independent

spell-checker that is based on an enhancement of the n-gram

model. It is able to detect the correction suggestions by

assigning weights to a list of possible correction candidates,

based on n-gram statistics and lexical resources, in order to

detect the non-word errors and to derive correction candidates.

[7]

Also there is a neural network approach like the PENN system,

introduced to correct misspelled words. The PENN System does

not flag a word misspelled initially. Words that are misspelled

and corrected enough times are characterized as possible errors

in the system. These corrections are used to train a feed-forward

neural network so that if the same error is remade, the network

can flag the offending word as a possible error.[8]

https://en.wikipedia.org/wiki/Context_(language_use)
https://en.wikipedia.org/wiki/Winnow_(algorithm)

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 27, June 2020

37

There are numerous projects available online on spelling

correction using neural nets. These are also context-sensitive.

Kunal Bhashkar deployed his spell checker system using

Tensorflow, Sequence to Sequence Model, Bi-directional LSTM

etc. [10] This is just one of many systems available online.

So a very little has been done on context-free spell correction

using supervised machine learning algorithms. But a notable

work has been done using supervised learning on Arabic

spelling correction. The system used Naive-Bayes classifier with

python NLTK‟s implementation to find out which one is the

most likely to be the correction for the incorrect word. [9]

This paper introduces a new method that will convert a wrong

word to a differently customized wrong word and feed these

data to traditional supervised machine learning algorithms to

predict the wrong data. For achieving this task different

algorithms like Multinomial Naive Bayes,

DecisionTreeClassifier, RandomForestClassifier and

LogisticRegression will be used and we will compare the final

outcomes using different measurement scales.

3. DATA COLLECTION AND

PROCESSING:
The proposed methodology that will be discussed through this

paper can be applied to any language based on the wrong and

correct words. But we will focus on English language as a

convenient solution. English comprises more than a million

words, 171,476 words that are in current use and 20,000-30,000

words used by each individual person [11]. There are available

sources to collect English words but the problem relies with the

wrong words list against a correct word. The wrong word here

means that this is occurred due to spelling mistakes.

To start with, the first main task is to gather correct words from

different sources. The first source is to take 1000 most common

words in English [12]. Then we focused on most searched items

on Amazon [13]. We also collected random English words for

example brand names, product names and different vegetable,

fruit names as our data. It is to be said, these selections are

completely random and one can choose any English words they

tend to use for the proposed model. Upon collecting this data,

we have filtered and made a custom data set of 1000 English

words that comprises different verbs, nouns, adjectives etc. The

words that do not exceed the length of 3 are ignored in this

dataset as those are not highly like to be misspelled.

The next task starts with fetching the wrong words that tend to

be occurred by a user against a correct word. As we have

selected random English words, it is quite difficult to get a list of

wrong words against a single correct word. So we have taken

another approach where we make wrong words

programmatically. These methods are followed to prepare the

wrong word dataset:

● Swap letter: Any two letters are being swapped in a word

to make a wrong word of that correct word.

● Add a letter: Adds a new random letter in a correct word

to convert it to a wrong word.

● Keyboard character mapping: As we are working with

English language, to input any queries to a system, users

use a QWERTY keyboard where the layout of the

characters in the QWERTY keyboard leads a user to

misspell a word. Based on this idea, a correct word can

generate multiple wrong words. For example, while typing

the letter „e‟, a user may mistakenly type „r‟ or „w‟ as these

are adjacent characters of „e‟ in the QWERTY keyboard or

the user might completely forget to type this letter. Figure

1 shows a keyboard mapping where there is possibility of

changing the left side letter to right side values. These are

selected mostly based on the adjacency of characters in the

QWERTY keyboard. So to generate wrong words, the

program will traverse the words from start to the length of

the correct word, pick a single letter, and replace it with the

right side values one by one and thus generate a wrong

word. An example is that a word is „come‟. So „m‟ is the

third letter. „m‟ letter can be mistyped with „n‟, „k‟, „mm‟

or blanks. So from „come‟ word‟s third letter „m‟, 4 wrong

words can be generated and they are: „cone‟, „coke‟,

„comme‟ and „coe‟. So this is how the wrong words list can

be generated programmatically.

Figure 1: Keyboard mapping for possible wrong typo for a

correct letter in a word.

Remove two letters: Sometimes a user can miss two letters in a

word. So this can be a candidate for generating wrong words

against a correct word.

It is to be noted, the first letter of a correct word is unchanged in

every wrong letter that is being generated from a correct word.

Following the rules mentioned above, we could generate more

than 50 wrong words from one single correct word which is

enough to feed into supervised machine learning algorithms to

verify our methodology. In our case, from 1000 correct words,

we have generated about 44000 wrong words as train and test

data. For example a word ‘grapefruit’, we could have generated

these wrong words:

Table 1: Wrong words of word ‘grapefruit’

grpaefruit

grapefrfuit

gtapefruit

geapefruit

gyapefruit

grapefrut

grapefrupt

grapefruot

grapefrueit

grapefruyt

https://medium.com/@BhashkarKunal?source=post_page-----366fabcc7a2f----------------------

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 27, June 2020

38

gapefruit

grpefruit

grzpefruit

grepefruit

grspefruit

gropefruit

graepefruit

graapefruit

graefruit

grappefruit

graoefruit

grafefruit

graptfruit

grapfruit

grapwfruit

grapofruit

grapeefruit

grapafruit

graprfruit

grapeafruit

graperuit

grapepruit

grapegruit

grapeffruit

grapedruit

grapeftuit

grapefeuit

grapefyuit

grapefuit

grapefrit

grapefriit

grapefrauit

grapefrouit

grapefryit

grapefreuit

gapefryi

grapefruait

grapefruut

gapefrui

gpefrui

gzpefrui

gepefrui

gspefrui

gopefrui

gaepefrui

gaapefrui

gaefrui

gappefrui

gaoefrui

gafefrui

gaptfrui

gapfrui

gapwfrui

gapofrui

gapeefrui

gapafrui

gaprfrui

gapeafrui

gaperui

gapeprui

gapegrui

gapeffrui

gapedrui

gapeftui

gapefeui

gapefyui

gapefui

gapefri

gapefrii

gapefraui

gapefroui

gapefreui

4. METHODOLOGY
Text data requires special preparation before starting to use it for

predictive modeling. The text must be parsed to remove words,

called tokenization. Then the words need to be encoded as

integers or floating point values for use as input to a machine

learning algorithm, called feature extraction (or vectorization).

The scikit-learn library in Python offers easy-to-use tools to

perform both tokenization and feature extraction text data. Word

counts are a good starting point, but are very basic. One issue

with simple counts is that some words like “the” will appear

many times and their large counts will not be very meaningful in

the encoded vectors. An alternative is to calculate word

frequencies, and by far the most popular method is called Tf-idf.

This is an acronym that stands for “Term Frequency – Inverse

Document” Frequency which are the components of the

resulting scores assigned to each word. Without going into the

math, Tf-idf are word frequency scores that try to highlight

words that are more interesting, e.g. frequent in a document but

not across documents [14].

Supervised machine learning algorithms use text classification

to predict the wrong words. As this is a supervised system, the

train data must be labelled first. In our case, we have already

selected 1000 correct words for this system. To be noted, correct

words can be any dictionary of words selected by a human

interpreter and this system will work according to that

dictionary. In section 3, we have discussed how to generate

wrong words from one single correct word and to conduct our

research, we have generated about 44000 wrong words for 1000

correct words.

The next phase is to prepare the data to be fed for supervised

machine learning algorithms. This is the most crucial part of this

paper as the success of this proposed method heavily depends on

the structure of input data rather than the algorithms. We have

introduced three types of input as wrong words against a correct

word that are to be fed into algorithms to predict an unknown

wrong word. We have introduced three special terms here: Word

Based Tokenization (WBT), Character Based Tokenization

(CBT) and Advance Character Based Tokenization (ACBT).

In WBT, the whole wrong word is identified as the wrong word.

For example: the wrong word of „grapefruit‟ is „gapefruit‟ and

this „gapefruit‟ will be directly identified as the wrong word. In

our case, the Table-1 shows all the wrong words for the correct

word „grapefruit‟. Supervised Algorithms here learn the

mapping of input to output, and in this case wrong words to a

correct word. So every wrong word is a feature and algorithms

try to find patterns to make classification based on the inputs.

The problem is that the inputs are all different and it causes a

great number of features, leading to no match with one feature to

another that makes the classification very hard.

In CBT, the whole word is divided into characters and all these

characters are fed as a wrong word against a correct word.

Table-2 depicts this idea.

Table-2: CBT transformation

Correct word WBT CBT

grapefruit gapefruit g a p e f r u i i t

grapefruit grapefriit g r a p e f r i i t

.

.

.

.

.

.

.

.

.

In the case of WBT, there is actually no pattern among wrong

words as inputs. But in CBT, we can clearly find out that there is

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 27, June 2020

39

a pattern between „g a p e f r u i i t‟ and „g r a p e f r i i t‟. So

what actually CBT does is, it breaks the characters and makes a

sentence consisting of characters. So it helps the algorithms to

find the patterns among the wrong words to make a

classification. The wrong words must be vectored and for this

reason Tf-idf has been chosen. But the above mentioned method

also creates a problem in Tf-idf. As these are broken into

characters, Tf-idf recognizes them as stop_words, which means

these are commonly used words (such as “the”, “a”, “an”, “in”)

that a search engine has been programmed to ignore [15]. As

CBT breaks the word into individual letters, Tf-idf recognizes

them as stop_words for which it removes entire data. So „g a p e

f r u i i t‟ cannot be fed into the algorithms. One way to

overcome this is to append the same letter with itself so that the

letters would become a word and Tf-idf would not recognize

those words as stop_words. This appending would not affect the

results as data dimensions will be the same across all train, test

and new unknown wrong words. According to this rule, CBT

will have a new shape that is shown in the next table.

Table-3: Final CBT transformation

Correct word WBT CBT

grapefruit gapefruit gg aa pp ee ff rr

uu ii ii tt

grapefruit grapefriit gg rr aa pp ee ff

rr ii ii tt

.

.

.

.

.

.

.

.

.

In this method, if words consist of English letters only, features

are reduced dramatically which is only 26 and they are „aa‟,

„bb‟, „cc‟, „dd‟, „ee‟, „ff‟, „gg‟, „hh‟, „ii‟, „jj‟, „kk‟, „ll‟, „mm‟,

„nn‟, „oo‟, „pp‟, „qq‟, „rr‟, „ss‟, „tt‟, „uu‟, „vv‟, „ww‟, „xx‟, „yy‟

and „zz‟. As all wrong words are now made of these features,

supervised machine learning will find a pattern among different

wrong words for one class and according to that, the algorithms

will make a prediction on new unknown wrong words to make a

prediction from the dictionary.

To increase the number of features, ACBT has been introduced.

ACBT adds up character positions to make this more unique

among the wrong words of a correct word. Here the wrong word

is „gapefruit‟ where g‟s position is 0, a‟s position is 1 and so on

(assuming this „gapefruit‟ is an array of characters). So if we add

these positions, this might help classifiers to train, test and

predict data with better accuracy. Table-4 shows ACBT

formation.

Table-4: ACBT transformation

Correct

word

WBT CBT ACBT

grapefruit gapefruit gg aa pp ee

ff rr uu ii ii

tt

gg g0 aa a1

pp p2 ee e3

ff f4 rr r5

uu u6 ii i7

ii i8 tt t9

grapefruit grapefriit gg rr aa pp

ee ff rr ii ii

tt

gg g0 rr r1

aa a2 pp p3

ee e4 ff f5

rr r6 ii i7 ii

i8 tt t9

.

.

.

.

.

.

.

.

.

.

.

.

5. EXPERIMENTS AND RESULTS
So we have prepared three kinds of inputs to test if supervised

machine learning algorithms can predict unknown wrong words

that happen due to spelling mistakes. We have selected multiple

algorithms which are given below:

KNeighborsClassifier

● Multinomial Naive Bayes

● DecisionTreeClassifier

● RandomForestClassifier

● LogisticRegression

We have selected 1000 correct words that are defined by human

interpreters and generated 44277 wrong words using different

methods stated in Section 3. We splitted data into 30% as our

test data and 70% as our train data. We fed our data into

algorithms and the results we have found are mentioned below

in the tables.

Table-5: Feature Information

Method Name Total Features

WBT 32837

CBT 26

ACBT 604

Table-6: Mean and Standard Deviation (STD) Information

Model \

Method

WBT

CBT ACBT

KNeighbors

Classifier

Mean :

0.043138

STD :

0.004887

Mean :

0.763191

STD :

0.006133

Mean :

0.892916

STD :

0.007697

Multinomia

l Naive

Bayes

Mean :

0.141836

STD :

0.007306

Mean :

0.507213

STD :

0.009165

Mean :

0.667203

STD :

0.006328

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 27, June 2020

40

DecisionTr

eeClassifier

Mean :

0.328743

STD :

0.011555

Mean :

0.682109

STD :

0.010430

Mean :

0.808221

STD :

0.007296

RandomFor

estClassifie

r

Mean :

0.204394

STD :

0.007309

Mean :

0.719149

STD :

0.007349

Mean :

0.826064

STD :

0.004893

LogisticReg

ression

Mean :

0.185135

STD :

0.007029

Mean :

0.657886

STD :

0.007435

Mean :

0.829931

STD :

0.005252

Table-7: Accuracy, F1-Score,

Model \

Method

WBT

CBT ACBT

KNeighbors

Classifier

Accuracy:

12.78 %

F1-Score:

0.07

Support:

8856

Accuracy:

77.30 %

F1-Score:

0.64

Support:

8856

Accuracy:

90.14 %

F1-Score:

0.80

Support:

8856

Multinomia

l Naive

Bayes

Accuracy:

15.50 %

F1-Score:

0.06

Support:

8856

Accuracy:

51.88 %

F1-Score:

0.26

Support:

8856

Accuracy:

67.56 %

F1-Score:

0.37

Support:

8856

DecisionTr

eeClassifier

Accuracy:

19.73 %

F1-Score:

0.17

Support:

8845

Accuracy:

59.26 %

F1-Score:

0.56

Support:

8856

Accuracy:

82.46 %

F1-Score:

0.72

Support:

8856

RandomFor

estClassifie

r

Accuracy:

20.71 %

F1-Score:

0.17

Support:

8854

Accuracy:

72.73 %

F1-Score:

0.59

Support:

8856

Accuracy:

83.51%

F1-Score:

0.72

Support:

8856

LogisticReg

ression

Accuracy:

19.58 %

F1-Score:

Accuracy:

66.82 %

F1-Score:

Accuracy:

84.74%

F1-Score:

0.10

Support:

8854

0.40

Support:

8856

0.67

Support:

8856

We have used a completely unknown wrong word to predict the

correct word. The unknown word is „gapeefruutttt‟. The result is

stated below:

Table-8: Prediction on unknown word ‘gapeefruutttt’

Model \

Method

WBT

CBT ACBT

KNeighbors

Classifier

broth grapefruit grapefruit

Multinomia

l Naive

Bayes

energizer-

alkaline-

batteries

grapefruit grapefruit

DecisionTr

eeClassifier

broth figure grapefruit

RandomFor

estClassifie

r

fund grapefruit agreement,

20%

probability

contribute,

20%

probability

grapefruit,

20%

probability

LogisticReg

ression

classificatio

n

grapefruit grapefruit

From Table-6, Table-7 and Table-8, we can clearly understand

how CBT and ACBT outperforms the WBT method. It is

expected as the features extracted via WBT method does not

help the classifiers to predict unknown words. Also, it can be

clearly understood that adding position feature in ACBT

increases Accuracy, F1-Score and also predicts much better than

CBT and WBT.

6. BEST USE CASE AND LIMITATION
The mentioned method works greatly if the dictionary is custom

defined by a human interpreter. For example if this system is

deployed behind an ecommerce system, then there would be

words consisting of different brand names, product names etc.

which will not have the same pattern of characters among

themselves. If the words have the same patterns e.g. „research‟

and „search‟ in the dictionary, this system might not predict the

wrong word to the correct word properly. This would work fine

in a system where the letters are from English alphabets but the

words might be different from English language dictionaries for

example in a medical or pharmaceutical company.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 27, June 2020

41

7. FUTURE WORKS AND CONCLUSION
There are many scopes to improve the research. The research

was conducted on 1000 correct words only which can be

extended using all the English language‟s vocabulary to find out

the accuracy. Also this method has the opportunity to be used

other than English and that is a huge area of research. Also there

is an opportunity to use Artificial Neural Network for this

method and look at how that system performs. And lastly we

hope to see the implementation of this method in various areas

like in searching systems of websites in the future.

8. REFERENCES
[1] K. Kukich, “Techniques for automatically correcting words

in text,” ACM Computing Surveys, 24(4), 377–439, 1992.

[2] R. A. Wagner and M. J. Fisher, “The string to string

correction problem,” Journal of Assoc. Comp. Mach.,

21(1):168-173, 1974

[3] E. J. Yannakoudakis and D. Fawthrop, “An intelligent

spelling error corrector,” Information Processing and

Management, 19:1, 101-108,1983.

[4] Jin-ming Zhan, Xiaolong Mou, Shuqing Li, Ditang Fang,

“A Language Model in a Large-Vocabulary Speech

Recognition System,” in Proc. Of Int. Conf. ICSLP98,

Sydney, Australia, 1998.

[5] K. Church and W. A. Gale, “Probability scoring for

spelling correction,”Statistics and Computing, Vol. 1, No.

1, pp. 93–103, 1991.

[6] Golding, Andrew R.; Roth, Dan (1999). "Journal Article".

Machine Learning. SpringerLink. 34: 107–130.

doi:10.1023/A:1007545901558

[7] Revised N-Gram based Automatic Spelling Correction

Tool to Improve Retrieval Effectiveness,December 2009,

DOI: 10.17562/PB-40-6

[8] Personalized Spell Checking using Neural Networks by

Tyler Garaas, Mei Xiao, and Marc Pomplun

[9] Arabic Spelling Correction using Supervised Learning,

September 2014, DOI: 10.3115/v1/W14-3615

[10] https://medium.com/@BhashkarKunal/spelling-correction-

using-deep-learning-how-bi-directional-lstm-with-

attention-flow-works-in-366fabcc7a2f

[11] https://englishlive.ef.com/blog/language-lab/many-words-

english-language/

[12] https://www.ef.com/wwen/english-resources/english-

vocabulary/top-1000-words/

[13] https://ahrefs.com/blog/top-amazon-searches/

[14] https://machinelearningmastery.com/prepare-text-data-

machine-learning-scikit-learn/

[15] https://www.geeksforgeeks.org/removing-stop-words-nltk-

python/

IJCATM : www.ijcaonline.org

https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/Digital_object_identifier
https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.17562%2FPB-40-6?_sg%5B0%5D=E1oOaropqw-U1s25Qi0_s-uR_NeaVjSAD8J-K5iNJmc4RVap-3CSo9pNLVAMuE714_B8lf9cFv2fUz0ruxck7Drq5g.vDADrZWfEB8iPm0zdsvziqgLbZ0y78MvL0yYWjVi4nLNF1uAuO8x8-nZpRn1Lf3RBEfKndP7Bg2Q7_RlVLricA

