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ABSTRACT 
Spell correction is a modern day necessity for a system that lets 

a user extract the proper result while searching different things. 

Misspelled words are highly likely to occur while typing in 

queries to these systems and when users misspell query, the 

users may get inconclusive or false information returned by the 

system. Spell correction can be context-free or context-sensitive 

based on the usage. This paper traverses a spell correction 

method using supervised machine learning algorithms in which 

the wrong word does not rely on any context. Also this paper 

includes the comparison between different supervised machine 

learning algorithms for this case and additionally provides the 

best case and limitation of this spell correction method. 
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1. INTRODUCTION 
A basic spell checking system starts with scanning a text, 

compares it with a known list of correct words and then pushes 

out the closely matched word against the input text. A spell 

checker can be either context-free or context-sensitive. A 

context-free spell correction system is a system where the wrong 

word does not rely on anything but itself. In this system, the 

wrong word does not care about the previous words, the word 

after it or neither about the total meaning of the sentence. This 

condition makes the system a little bit complex as the less data is 

available to use for algorithms to predict the wrong word 

outcome. This paper proposes a new method in context-free 

spell correction that uses supervised machine learning 

algorithms which follows the below structure: 

● Related Works: This section provides the necessary 

background study on some works relevant to the spell 

correction system. Although much work has been 

done on context-sensitive spell correction, only few 

works have been conducted on context-free spell 

correction using supervised machine learning.  

● Data Collection and Processing: This section 

insights briefly about the data processing system on 

wrong words that would be used to feed into machine 

learning algorithms.  

● Methodology:This section provides a brief 

description on the architecture that would be used to 

predict the wrong word using supervised machine 

learning algorithms. 

● Experiments and Results:Describes the experimental 

setup, along with some models used for comparative 

evaluations. Analysis of the results along with possible 

reasons are discussed. 

● Best Use Case and Limitation:This section describes 

what could be the best use case for using this 

methodology in order to predict unknown wrong 

words and it‟s limitations also.  

● Future Works and Conclusion: The paper concludes 

with some recommendations and provides scope for 

future research on this field. 

2. RELATED WORKS 
In the history of computer science, algorithmic techniques for 

detecting and correcting spelling errors in text have a long and 

robust history [1]. Different methodologies like edit distance [2], 

rule-based techniques [3], n-grams [4], probabilistic techniques 

[5] etc. have been proposed. All of these are based on the idea of 

calculating the similarity between the misspelled word and the 

words contained in a dictionary. [7] 

There has been research on developing algorithms that are 

capable of recognizing a misspelled word, even if the word itself 

is in the vocabulary, based on the context of the surrounding 

words. The most successful algorithm to date is Andrew 

Golding and Dan Roth's "Winnow-based spelling correction 

algorithm" published in 1999, which has accuracy of 96% in 

detection and correcting of context-sensitive spelling errors, in 

addition to ordinary non-word spelling errors. [6] 

There is also research on correction of misspelling words which 

uses revised n-gram models by selecting the most promising 

candidates from a ranked list of correction candidates that is 

derived based on n-gram statistics and lexical resources. The 

proposed algorithm, in the following, is a language independent 

spell-checker that is based on an enhancement of the n-gram 

model. It is able to detect the correction suggestions by 

assigning weights to a list of possible correction candidates, 

based on n-gram statistics and lexical resources, in order to 

detect the non-word errors and to derive correction candidates. 

[7] 

Also there is a neural network approach like the PENN system, 

introduced to correct misspelled words. The PENN System does 

not flag a word misspelled initially. Words that are misspelled 

and corrected enough times are characterized as possible errors 

in the system. These corrections are used to train a feed-forward 

neural network so that if the same error is remade, the network 

can flag the offending word as a possible error.[8] 

https://en.wikipedia.org/wiki/Context_(language_use)
https://en.wikipedia.org/wiki/Winnow_(algorithm)
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There are numerous projects available online on spelling 

correction using neural nets. These are also context-sensitive.  

Kunal Bhashkar deployed his spell checker system using 

Tensorflow, Sequence to Sequence Model, Bi-directional LSTM 

etc. [10] This is just one of many systems available online. 

So a very little has been done on context-free spell correction 

using supervised machine learning algorithms. But a notable 

work has been done using supervised learning on Arabic 

spelling correction. The system used Naive-Bayes classifier with 

python NLTK‟s implementation to find out which one is the 

most likely to be the correction for the incorrect word. [9] 

This paper introduces a new method that will convert a wrong 

word to a differently customized wrong word and feed these 

data to traditional supervised machine learning algorithms to 

predict the wrong data. For achieving this task different 

algorithms like Multinomial Naive Bayes, 

DecisionTreeClassifier, RandomForestClassifier and 

LogisticRegression will be used and we will compare the final 

outcomes using different measurement scales.  

3. DATA COLLECTION AND 

PROCESSING: 
The proposed methodology that will be discussed through this 

paper can be applied to any language based on the wrong and 

correct words. But we will focus on English language as a 

convenient solution. English comprises more than a million 

words, 171,476 words that are in current use and 20,000-30,000 

words used by each individual person [11]. There are available 

sources to collect English words but the problem relies with the 

wrong words list against a correct word. The wrong word here 

means that this is occurred due to spelling mistakes.  

To start with, the first main task is to gather correct words from 

different sources. The first source is to take 1000 most common 

words in English [12]. Then we focused on most searched items 

on Amazon [13]. We also collected random English words for 

example brand names, product names and different vegetable, 

fruit names as our data. It is to be said, these selections are 

completely random and one can choose any English words they 

tend to use for the proposed model. Upon collecting this data, 

we have filtered and made a custom data set of 1000 English 

words that comprises different verbs, nouns, adjectives etc. The 

words that do not exceed the length of 3 are ignored in this 

dataset as those are not highly like to be misspelled.  

The next task starts with fetching the wrong words that tend to 

be occurred by a user against a correct word. As we have 

selected random English words, it is quite difficult to get a list of 

wrong words against a single correct word. So we have taken 

another approach where we make wrong words 

programmatically. These methods are followed to prepare the 

wrong word dataset: 

● Swap letter: Any two letters are being swapped in a word 

to make a wrong word of that correct word. 

● Add a letter: Adds a new random letter in a correct word 

to convert it to a wrong word. 

● Keyboard character mapping: As we are working with 

English language, to input any queries to a system, users 

use a QWERTY keyboard where the layout of the 

characters in the QWERTY keyboard leads a user to 

misspell a word. Based on this idea, a correct word can 

generate multiple wrong words. For example, while typing 

the letter „e‟, a user may mistakenly type „r‟ or „w‟ as these 

are adjacent characters of „e‟ in the QWERTY keyboard or 

the user might completely forget to type this letter.  Figure 

1 shows a keyboard mapping where there is possibility of 

changing the left side letter to right side values. These are 

selected mostly based on the adjacency of characters in the 

QWERTY keyboard. So to generate wrong words, the 

program will traverse the words from start to the length of 

the correct word, pick a single letter, and replace it with the 

right side values one by one and thus generate a wrong 

word. An example is that a word is „come‟. So „m‟ is the 

third letter. „m‟ letter can be mistyped with „n‟, „k‟, „mm‟ 

or blanks. So from „come‟ word‟s third letter „m‟, 4 wrong 

words can be generated and they are: „cone‟, „coke‟, 

„comme‟ and „coe‟. So this is how the wrong words list can 

be generated programmatically.  

 

Figure 1: Keyboard mapping for possible wrong typo for a 

correct letter in a word. 

Remove two letters: Sometimes a user can miss two letters in a 

word. So this can be a candidate for generating wrong words 

against a correct word. 

It is to be noted, the first letter of a correct word is unchanged in 

every wrong letter that is being generated from a correct word. 

Following the rules mentioned above, we could generate more 

than 50 wrong words from one single correct word which is 

enough to feed into supervised machine learning algorithms to 

verify our methodology. In our case, from 1000 correct words, 

we have generated about 44000 wrong words as train and test 

data. For example a word ‘grapefruit’, we could have generated 

these wrong words: 

Table 1: Wrong words of word ‘grapefruit’ 

grpaefruit 

grapefrfuit 

gtapefruit 

geapefruit 

gyapefruit 

grapefrut 

grapefrupt 

grapefruot 

grapefrueit 

grapefruyt 

https://medium.com/@BhashkarKunal?source=post_page-----366fabcc7a2f----------------------
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gapefruit 

grpefruit 

grzpefruit 

grepefruit 

grspefruit 

gropefruit 

graepefruit 

graapefruit 

graefruit 

grappefruit 

graoefruit 

grafefruit 

graptfruit 

grapfruit 

grapwfruit 

grapofruit 

grapeefruit 

grapafruit 

graprfruit 

grapeafruit 

graperuit 

grapepruit 

grapegruit 

grapeffruit 

grapedruit 

grapeftuit 

grapefeuit 

grapefyuit 

grapefuit 

grapefrit 

grapefriit 

grapefrauit 

grapefrouit 

grapefryit 

grapefreuit 

gapefryi 

grapefruait 

grapefruut 

gapefrui 

gpefrui 

gzpefrui 

gepefrui 

gspefrui 

gopefrui 

gaepefrui 

gaapefrui 

gaefrui 

gappefrui 

gaoefrui 

gafefrui 

gaptfrui 

gapfrui 

gapwfrui 

gapofrui 

gapeefrui 

gapafrui 

gaprfrui 

gapeafrui 

gaperui 

gapeprui 

gapegrui 

gapeffrui 

gapedrui 

gapeftui 

gapefeui 

gapefyui 

gapefui 

gapefri 

gapefrii 

gapefraui 

gapefroui 

gapefreui 

 

4. METHODOLOGY 
Text data requires special preparation before starting to use it for 

predictive modeling. The text must be parsed to remove words, 

called tokenization. Then the words need to be encoded as 

integers or floating point values for use as input to a machine 

learning algorithm, called feature extraction (or vectorization). 

The scikit-learn library in Python offers easy-to-use tools to 

perform both tokenization and feature extraction text data. Word 

counts are a good starting point, but are very basic. One issue 

with simple counts is that some words like “the” will appear 

many times and their large counts will not be very meaningful in 

the encoded vectors. An alternative is to calculate word 

frequencies, and by far the most popular method is called Tf-idf. 

This is an acronym that stands for “Term Frequency – Inverse 

Document” Frequency which are the components of the 

resulting scores assigned to each word.  Without going into the 

math, Tf-idf are word frequency scores that try to highlight 

words that are more interesting, e.g. frequent in a document but 

not across documents [14].  

Supervised machine learning algorithms use text classification 

to predict the wrong words. As this is a supervised system, the 

train data must be labelled first. In our case, we have already 

selected 1000 correct words for this system. To be noted, correct 

words can be any dictionary of words selected by a human 

interpreter and this system will work according to that 

dictionary. In section 3, we have discussed how to generate 

wrong words from one single correct word and to conduct our 

research, we have generated about 44000 wrong words for 1000 

correct words. 

The next phase is to prepare the data to be fed for supervised 

machine learning algorithms. This is the most crucial part of this 

paper as the success of this proposed method heavily depends on 

the structure of input data rather than the algorithms. We have 

introduced three types of input as wrong words against a correct 

word that are to be fed into algorithms to predict an unknown 

wrong word. We have introduced three special terms here: Word 

Based Tokenization (WBT), Character Based Tokenization 

(CBT) and Advance Character Based Tokenization (ACBT). 

In WBT, the whole wrong word is identified as the wrong word. 

For example: the wrong word of „grapefruit‟ is „gapefruit‟ and 

this „gapefruit‟ will be directly identified as the wrong word. In 

our case, the Table-1 shows all the wrong words for the correct 

word „grapefruit‟. Supervised Algorithms here learn the 

mapping of input to output, and in this case wrong words to a 

correct word. So every wrong word is a feature and algorithms 

try to find patterns to make classification based on the inputs. 

The problem is that the inputs are all different and it causes a 

great number of features, leading to no match with one feature to 

another that makes the classification very hard. 

In CBT, the whole word is divided into characters and all these 

characters are fed as a wrong word against a correct word. 

Table-2 depicts this idea. 

Table-2: CBT transformation 

Correct word WBT CBT 

grapefruit gapefruit g a p e f r u i i t 

grapefruit grapefriit g r a p e f r i i t 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

In the case of WBT, there is actually no pattern among wrong 

words as inputs. But in CBT, we can clearly find out that there is 
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a pattern between „g a p e f r u i i t‟ and „g r a p e f r i i t‟. So 

what actually CBT does is, it breaks the characters and makes a 

sentence consisting of characters. So it helps the algorithms to 

find the patterns among the wrong words to make a 

classification. The wrong words must be vectored and for this 

reason Tf-idf has been chosen. But the above mentioned method 

also creates a problem in Tf-idf. As these are broken into 

characters, Tf-idf recognizes them as stop_words, which means 

these are commonly used words (such as “the”, “a”, “an”, “in”) 

that a search engine has been programmed to ignore [15]. As 

CBT breaks the word into individual letters, Tf-idf recognizes 

them as stop_words for which it removes entire data. So „g a p e 

f r u i i t‟ cannot be fed into the algorithms. One way to 

overcome this is to append the same letter with itself so that the 

letters would become a word and Tf-idf would not recognize 

those words as stop_words. This appending would not affect the 

results as data dimensions will be the same across all train, test 

and new unknown wrong words. According to this rule, CBT 

will have a new shape that is shown in the next table. 

Table-3: Final CBT transformation 

Correct word WBT CBT 

grapefruit gapefruit gg aa pp ee ff rr 

uu ii ii tt 

grapefruit grapefriit gg rr aa pp ee ff 

rr ii ii tt 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

In this method, if words consist of English letters only,  features 

are reduced dramatically which is only 26 and they are „aa‟, 

„bb‟, „cc‟, „dd‟, „ee‟, „ff‟, „gg‟, „hh‟, „ii‟, „jj‟,  „kk‟, „ll‟, „mm‟, 

„nn‟, „oo‟, „pp‟, „qq‟, „rr‟, „ss‟, „tt‟, „uu‟, „vv‟, „ww‟, „xx‟, „yy‟ 

and „zz‟. As all wrong words are now made of these features, 

supervised machine learning will find a pattern among different 

wrong words for one class and according to that, the algorithms 

will make a prediction on new unknown wrong words to make a 

prediction from the dictionary. 

To increase the number of features, ACBT has been introduced. 

ACBT adds up character positions to make this more unique 

among the wrong words of a correct word. Here the wrong word 

is „gapefruit‟ where g‟s position is 0, a‟s position is 1 and so on 

(assuming this „gapefruit‟ is an array of characters). So if we add 

these positions, this might help classifiers to train, test and 

predict data with better accuracy. Table-4 shows ACBT 

formation. 

Table-4: ACBT transformation 

Correct 

word 

WBT CBT ACBT 

grapefruit gapefruit gg aa pp ee 

ff rr uu ii ii 

tt 

gg g0 aa a1 

pp p2 ee e3 

ff f4 rr r5 

uu u6 ii i7 

ii i8 tt t9  

grapefruit grapefriit gg rr aa pp 

ee ff rr ii ii 

tt 

gg g0 rr r1 

aa a2 pp p3 

ee e4 ff f5 

rr r6 ii i7 ii 

i8 tt t9  

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

 

5. EXPERIMENTS AND RESULTS 
So we have prepared three kinds of inputs to test if supervised 

machine learning algorithms can predict unknown wrong words 

that happen due to spelling mistakes. We have selected multiple 

algorithms which are given below:  

KNeighborsClassifier 

● Multinomial Naive Bayes 

● DecisionTreeClassifier 

● RandomForestClassifier 

● LogisticRegression 

We have selected 1000 correct words that are defined by human 

interpreters and generated 44277 wrong words using different 

methods stated in Section 3. We splitted data into 30% as our 

test data and 70% as our train data. We fed our data into 

algorithms and the results we have found are mentioned below 

in the tables. 

Table-5: Feature Information 

Method Name Total Features 

WBT 32837 

CBT 26 

ACBT 604 

 

Table-6: Mean and Standard Deviation (STD) Information 

Model \ 

Method  

WBT 

 

CBT ACBT 

KNeighbors

Classifier 

Mean : 

0.043138 

STD : 

0.004887 

Mean : 

0.763191 

STD : 

0.006133 

Mean : 

0.892916   

STD : 

0.007697 

Multinomia

l Naive 

Bayes 

Mean : 

0.141836   

STD : 

0.007306 

Mean : 

0.507213  

STD : 

0.009165 

Mean : 

0.667203   

STD : 

0.006328 
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DecisionTr

eeClassifier 

 

Mean : 

0.328743 

STD : 

0.011555 

Mean : 

0.682109  

STD : 

0.010430 

Mean : 

0.808221  

STD : 

0.007296 

RandomFor

estClassifie

r 

Mean : 

0.204394 

STD : 

0.007309 

Mean : 

0.719149 

STD : 

0.007349 

Mean : 

0.826064  

STD : 

0.004893 

LogisticReg

ression 

Mean : 

0.185135  

STD : 

0.007029 

Mean : 

0.657886   

STD : 

0.007435 

Mean : 

0.829931 

STD : 

0.005252 

 

Table-7: Accuracy, F1-Score, 

Model \ 

Method  

WBT 

 

CBT ACBT 

KNeighbors

Classifier 

Accuracy:  

12.78 % 

F1-Score: 

0.07 

Support: 

8856 

Accuracy:  

77.30 % 

F1-Score: 

0.64 

Support: 

8856 

Accuracy:  

90.14 % 

F1-Score: 

0.80 

Support: 

8856 

Multinomia

l Naive 

Bayes 

Accuracy: 

15.50 % 

F1-Score: 

0.06 

Support: 

8856 

Accuracy: 

51.88 % 

F1-Score: 

0.26 

Support: 

8856 

Accuracy: 

67.56 % 

F1-Score: 

0.37 

Support: 

8856 

DecisionTr

eeClassifier 

 

Accuracy:  

19.73 % 

F1-Score: 

0.17 

Support: 

8845 

Accuracy:  

59.26 % 

F1-Score: 

0.56 

Support: 

8856 

Accuracy:  

82.46 % 

F1-Score: 

0.72 

Support: 

8856 

RandomFor

estClassifie

r 

Accuracy:  

20.71 % 

F1-Score: 

0.17 

Support: 

8854 

Accuracy:  

72.73 % 

F1-Score: 

0.59 

Support: 

8856 

Accuracy:  

83.51% 

F1-Score: 

0.72 

Support: 

8856 

LogisticReg

ression 

Accuracy:  

19.58 % 

F1-Score: 

Accuracy:  

66.82 % 

F1-Score: 

Accuracy:  

84.74% 

F1-Score: 

0.10 

Support: 

8854 

0.40 

Support: 

8856 

0.67 

Support: 

8856 

 

We have used a completely unknown wrong word to predict the 

correct word. The unknown word is „gapeefruutttt‟. The result is 

stated below: 

Table-8: Prediction on unknown word ‘gapeefruutttt’ 

Model \ 

Method  

WBT 

 

CBT ACBT 

KNeighbors

Classifier 

broth grapefruit grapefruit 

Multinomia

l Naive 

Bayes 

energizer-

alkaline-

batteries 

grapefruit grapefruit 

DecisionTr

eeClassifier 

 

broth figure grapefruit 

RandomFor

estClassifie

r 

fund grapefruit agreement, 

20% 

probability 

contribute, 

20% 

probability 

grapefruit, 

20% 

probability 

LogisticReg

ression 

classificatio

n 

grapefruit grapefruit 

 

From Table-6, Table-7 and Table-8, we can clearly understand 

how CBT and ACBT outperforms the WBT method. It is 

expected as the features extracted via WBT method does not 

help the classifiers to predict unknown words. Also, it can be 

clearly understood that adding position feature in ACBT 

increases Accuracy, F1-Score and also predicts much better than 

CBT and WBT. 

6. BEST USE CASE AND LIMITATION 
The mentioned method works greatly if the dictionary is custom 

defined by a human interpreter. For example if this system is 

deployed behind an ecommerce system, then there would be 

words consisting of different brand names, product names etc. 

which will not have the same pattern of characters among 

themselves. If the words have the same patterns e.g. „research‟ 

and „search‟ in the dictionary, this system might not predict the 

wrong word to the correct word properly. This would work fine 

in a system where the letters are from English alphabets but the 

words might be different from English language dictionaries for 

example in a medical or pharmaceutical company. 
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7. FUTURE WORKS AND CONCLUSION 
There are many scopes to improve the research. The research 

was conducted on 1000 correct words only which can be 

extended using all the English language‟s vocabulary to find out 

the accuracy. Also this method has the opportunity to be used 

other than English and that is a huge area of research. Also there 

is an opportunity to use Artificial Neural Network for this 

method and look at how that system performs. And lastly we 

hope to see the implementation of this method in various areas 

like in searching systems of websites in the future. 
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