
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

21

A Decoupled Health Software Architecture using

Microservices and OpenEHR Archetypes

Marcio Alexandre
Pereira da Silva

Center for Informatics
Federal University of

Pernambuco, Recife/PE,
Brazil

Valéria Cesário
Times

Center for Informatics
Federal University of

Pernambuco, Recife/PE,
Brazil

André Magno de
Costa Araújo

Department of Information
Systems

Federal University of
Alagoas, Penedo/AL,

Brazil

Paulo Caetano da
Silva

Master Program in
Computing

Salvador University,

SalvadorBA, Brazi

ABSTRACT

Coupling is a challenge in software engineering, because

errors or failures compromise the whole software execution.

To address this issue in the healthcare domain, a Decoupled

Health Software Architecture (DHSA) is proposed in this

paper. This study presents the development of three

components, a tool, and a formal metric. The Connector,

Container and Archetype-based microservice (Archemicro)

components make the DHSA, which is dynamically generated

by the Microservice4EHR tool. For assessing, a legacy

software used in Brazilian hospitals is migrated to the DHSA.

A comparison is performed between three tools (MARCIA,

Template4EHR, and EhrScape). The Archetype-based

Software Architecture Coupling (ASAC) is a formal metric to

measure the coupling level of Health software architectures.

As a result, DHSA increases by 66,6% the decoupling index

of the healthcare software. The healthcare domain therefore is

benefited with a software architecture that maintains the

software operation even if a component from the software

architecture causes errors.

General Terms

Distributed Software Architecture.

Keywords

Health Information Systems (HIS); Distributed Software

Architecture; Electronic Health Record (EHR); OpenEHR

Archetypes; Microservices.

1. INTRODUCTION
Software engineering is the systematic application of

engineering methodologies and approaches to the

development of software from any domain. In turn, software

development is a process by which software components are

created using tools such as computer languages, libraries, and

frameworks [1]. The union of these components are called

software architecture. In literature, software architecture

consists in defining the components of a software, their

external properties and their relationships with other

components [2]. There is a consensus that software

architecture plays a central role in software development and

an important role in the life cycle phases after software

delivery [3].

For decades, this has been a challenge: How to specify the

components of a software architecture in a way that software

execution is not interrupted by an unexpected error or failure?

One solution is to create software architectures based on

―decoupled components‖, which means that all these

components are dissociated, as in not interconnected or

interdependent [4].

A decoupled software architecture allows (i) different parts of

the software to perform its tasks independently, and (ii) its

components remain completely autonomous and unaware of

each other. Thus, unexpected behavior in one component

should not impact any other components, because each

component operates separately and its functionality is self-

contained [5]. Historically, a way of building decoupled

architectures has been the adoption of services [6]. Initially,

organizations have used a finite set of services to execute their

business, creating a new architecture style called SOA

(Service-Oriented Architecture). SOA is the adoption of a set

of software that performs as a service [7].

Due to the need for improvement and evolution in the way

software architectures are designed, a new approach has

emerged in software engineering. Known as microservices,

this approach decomposes applications in basic functions,

making them more decoupled. Each function operates as a

service and can be implemented and deployed independently.

This means that each individual service can run or experience

unexpected behavior without compromising others. The

microservice architecture proposes an application that can be

decomposed in a set of microservices, giving the software a

decoupled approach in relation to the software architecture

[8].

In the healthcare software domain, decoupling is also

important. The openEHR Foundation [9] has specified a

standard called Archetype in order to provide low coupling at

the data level in healthcare software. Archetype gives

autonomy to healthcare data, because it represents it in an

independent and standardized way [9]. However, most

healthcare software applications are strongly coupled at the

architecture level [10, 11]). Some tools reported in literature

bring important contributions to state-of-art and state-of-

practice in the healthcare domain [10, 11, 12]. However, these

tools generate Health software architectures from a set of

archetypes. There are some limitations about the decoupling

of their generated software architectures. For example, if there

is unexpected behavior (e.g., errors or failures) in any part of

the software architecture, it impacts and interrupts the whole

software system execution.

Thus, this paper proposes a Decoupled Health Software

Architecture (DHSA) to support archetype-based Health

software. This proposal specifies components that perform

and interact through a web environment. These components

are Connector, Container and Archetype-based Microservice

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

22

(Archemicro), which are detailed in Section 3. A tool called

Microservice4EHR has also been developed to enable the

redesign of Health legacy software into the DHSA. In this

way, a legacy Health software can migrate its software

architecture to a new decoupled one such as DHSA.

In order to validate the proposed solution in this paper, a real-

world institution operating under the Brazilian Health

Ministry [13] has been used to assess the decoupling of the

software architecture built by cutting-edge tools such as:

MARCIA [10], Template4EHR [11], EhrScape [12], and

Microservice4EHR, the latter being proposed in this paper. To

measure a coupling index of the software architectures, a

metric called Archetype-based Software Architecture

Coupling (ASAC) calculates the coupling index.

This paper is organized as follows: Section 2 describes the

basic concepts used to develop this work, while Section 3

presents and describes the DHSA and the Microservice4EHR

tool. Section 4 shows the assessment on a DHSA-based

software architecture and three other software architectures

generated by state-of-the-art tools. The main results are

debated in Section 5. Finally, the conclusion and suggestions

for future works are presented in Section 6.

2. BACKGROUND AND RELATED

WORKS
This section contextualizes openEHR archetypes (Section

2.1), conceptualizes monolithic and microservice architectures

(Section 2.2), and provides an analysis of related works

identified both in Academia and Industry (Section 2.3).

2.1 OpenEHR Archetype
The openEHR Foundation – an international organization

composed of several Health domain specialists - has specified

archetype as a standard for the computational representation

of the Electronic Health Record (EHR) [9].

An archetype is based on a dual model to create a unique

EHR, preserving the history and evolution of patient clinical

data, whose exchange and reusability can be applied in other

healthcare domains [11]. The dual model architecture allows

the separation of (i) clinical and demographic properties, and

(ii) standards and terminologies that give a semantic meaning

to healthcare data. The first level of the dual model regards

the components of programming language, the information

exchange language, and all other components related to

software development. The second level is represented by

archetypes and templates [14].

In an archetype, attributes specification is performed through

constructors whose data input are called generic data

structures, which allow the representation of EHR

heterogeneity through types such as: ITEM_SINGLE,

ITEM_LIST, ITEM_TREE and ITEM_TABLE [11].

ITEM_SINGLE models a single data attribute (e.g., patient

gender), while ITEM_LIST gathers a set of attributes into a

list (e.g., patient address composed by street name, number

and zip code). ITEM_TREE specifies a hierarchical data

structure which is logically represented as a tree (e.g.,

physical and neurological evaluation of a patient). Finally,

ITEM_TABLE models the data elements through lines for

element definitions and columns for information values (e.g.,

a clinical report, whose clinical exams are shown in lines, and

the respective values are presented in columns).

Each attribute from any data structure is characterized by a

data type and may also have a set of domain constraints and

associated terminologies. Terminologies give a semantic

meaning to clinical data and can be represented by Health

technical terms or textual information defined by a domain

specialist.

Figure 1 depicts a sample of an archetype (i.e., family

history.v2), which models the family history of a patient using

the ITEM_TREE type. In this archetype, data attributes are

organized in a multilevel hierarchical structure. The attribute

Problem/diagnosis has a specific Health terminology (i.e.,

ICD10CM), which standardizes a given diagnosis. There is

also a constraint (i.e., occurrences) which indicates that at

least one diagnosis must be described.

Fig 1: Example of an Archetype structure.

Archetype can be described and specified by a formal

language called Archetype Definition Language (ADL). ADL

technology describe constraints based on domain content

models and has three elements in its syntax: (1) dADL (data

ADL) used for data definitions, (2) cADL (constraint ADL)

can define domain constraints, and (3) FOPL (First-Order

Predicate Logic), whose use is for building logic expressions

based on first-order predicate. All archetypes are freely

available on the Internet, on Clinical Knowledge Manager

(CKM) and can also be used by systems in different formats

(e.g., JSON, XML) [9].

Currently, the archetype standard has been adopted worldwide

in both Academia and Industry [9]. Some state-of-art and

state-of-practice tools propose the use of a set of archetypes in

order to dynamically build software artefacts, e.g., Graphical

User Interface (GUI), data schema, and Application

Programming Interfaces (APIs) [10, 11, 12]. State-of-art

studies suggest that building software from a set of archetypes

is a good practice for maintaining healthcare software in

accordance with international health standards.

Following this perspective, Microservice4EHR is specified to

extract archetypes from an existing GUI, and build the DHSA

from these archetypes, a different approach compared with

software architectures generated by other cutting-edge tools.

2.2 Coupled and Decoupled Architecture
For decades, the use of software architectures whose

components are interconnected and interdependent (i.e.,

coupled) is referred to as monolithic architecture. In the

monolithic architecture shown in Figure 2, components in the

business logic layer do not perform tasks independently.

These components share the resources of the same machine

(computer) and interoperate with a bounded set of other

components, for example: other components that are

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

23

contained in the respective software. For instance, in

monolithic applications (i.e., applications built on a

monolithic architecture), it is not possible to operate the

business logic layer components of a software with the

business logic layer components of another software [15]. To

mitigate the problem of coupling and allow the decoupling of

components from business logic layer (permitting the

operation between them), studies on the use of a small service

(or microservice) into business logic layers have been carried

out. This means that in this approach, the business logic layer

is made of microservices which perform tasks independently

[8].

Figure 2 also shows an approach to develop a single software

composed of a set of microservices. Each microservice

represents either components from the business logic or data

layers, and does not share the resources of the same machine

(computer). Each microservice has its own database, and

databases can be different from each other. The microservice

is also able to interoperate with different sets of other

microservices in order to reach the business targets. The

access to each microservice is performed through Internet or

local networking [16].

Fig 2: Example of Monolithic and Microservice

architectures

The adoption of microservice architectures promotes software

adaptation to new technological demands (e.g., cloud, big

data) [8], as well as non-functional requirements (e.g.,

reusability, loosely coupled design, scalability, resilience) [15,

16]. Because of these features, in this study, a microservice

architecture is used in the DHSA. Some works propose tools

that build software architectures from a set of archetypes,

which are shown below.

2.3 Related Works
A set of state-of-the-art studies that propose the dynamic

generation of Health software artefacts from a set of

archetypes are selected as related works.

The generation of software artefacts from archetypes has been

performed for at least seven years and can be seen in the

following studies: Duftschmid et al. [17] propose to map

archetypes from a legacy database and then generate

templates for a Health application called ArchiMed. Sundvall

et al. [18] propose the use of REST architectures in Health

applications that use archetypes for formatting their

Healthcare data. Frade et al. [19] present a survey of the main

tools that work with archetypes and Health Information

Systems, namely: Liu EEE, OceanEHR Platform, OpenEHR

Serv, OpenEyes, OpenHealth Multicare, and Think!EHR

Platform.

In the last five years, a set of other tools have proposed the

building of software artefact from a set of archetypes: Araújo

et al. [20] built the PolyEHR tool, which promotes the storage

of archetypes in two types of databases (relational and

NoSQL), and does so through web-based services. Muslim et

al. [21] propose a web-based service to transform health data

from archetypes to the HL7 format. Araújo et al. [22] built a

cloud service in order to create archetype-based graphical user

interfaces, and store archetypes using database as a service

(DBaaS). Gomes et al. [12] built an archetype to represent

data from patients diagnosed with Chikungunya, and develop

the MARCIA tool. MARCIA dynamically generates GUI

from a set of archetypes. This architecture uses services to

manage (store and query) Health data. The GUI is on the

client-side, while API and Service are on the server-side.

Reis et al. [23] built a service-based framework to access

health data from different sources (including legacy systems)

while also allowing the integration with archetypes. Araujo et

al. [10] developed the Template4EHR tool, which

dynamically generates two software artefacts from a set of

archetypes: a GUI and a Data Model. Template4EHR

proposes the use of a software architecture based on Client-

Server architecture and REST API. The client-side GUI sends

a JSON document to the server-side REST API. This REST

API processes all archetype-based data from the GUI, whose

data is formatted by a Data Model also generated by the tool.

The following state-of-the-practice tools have been found:

EhrScape [12], EtherCIS [24], and CloudEHRServer [25].

They enable the management of archetype-based Health data

on a web environment. EtherCIS and CloudEHRServer

propose resources for storing and querying data through a web

environment (services and API). EhrScape provides resources

to (i) dynamically build webforms and APIs from a set of

archetypes, whose APIs run on a server that is provided by

EhrScape and (ii) managing data through a web environment.

The above related works propose the execution of archetype-

based Health software (or part of them) on a web

environment. However, none of them use or enable the use of

decoupled software architectures, where an error or failure in

a part of the software architecture does not impact or create

side effects for other parts of the architecture. In the following

section, the proposed software architecture called DHSA is

presented.

3. THE DECOUPLED HEALTH

SOFTWARE ARCHITECTURE

(DHSA) AND THE MICRO SERVICE

4EHR TOOL
This section presents the DHSA and the Microserivce4EHR

tool. Section 3.1 shows an overview of the proposed

architecture and Section 3.2 discusses Microservice4EHR

functionalities.

3.1 The DHSA
Main objective of this study is to allow the migration of a

legacy Health software built with coupled components into a

new software version with decoupled components. Figure 3

illustrates Health software A and B. Health software A has its

business layer composed of a set of coupled units (i.e.,

Data

Monolithic Architecture

User Layer Business Logic

Microservice 1

Microservice n

Microservice 2 User

Layer

Business Logic and Data

Microservice Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

24

monolithic architecture). The business logic layer units are

also based on a set of Health data standards (e.g., a set of

archetypes). Each standard represents the healthcare data from

each unit x, y and z. If one of these units presents unexpected

behavior (an error or failure), it will affect the execution of

other components, stopping the execution of the software.

Health software B business layer components are decoupled.

Each decoupled component is based on a single healthcare

data standard (e.g., a specific archetype). If there is an error or

failure (an unexpected behavior) in one of them, this does not

impact the execution of other components. This occurs

because all of these components are decoupled and

independent each other.

Fig 3: A coupled and a decoupled software architecture.

In this study, three components have been specified to

compose the DHSA (Connector, Container and Archemicro),

which are explained below.

3.1.1 The Archetype-based Microservice

(Archemicro)
Archemicro is a server-side microservice whose scope of task

is related to the data processing of a specific archetype. An

archemicro task is autonomously performed on the Internet

using CRUD (Create, Read, Update and Delete) operations.

Microservice4EHR generates an archemicro for each

archetype.

3.1.2 Container
Container is a server-side component which represents a

standard unit of software that encapsulates the code and all

its dependencies so that the archemicro runs reliably, with no

interruption, in any computing environment. Container

encapsulates an archemicro, ensuring that the environment

needed for the archemicro is available.

3.1.3 Connector
Connector is a client-side component that directly

intermediates the communication between the GUI and

archemicro. Connector (i) receives data from GUI, (ii)

identifies the set of archetypes used in the request, and (iii)

sends the data to the respective set of archemicros. The role of

the Connector is to read the set of archetypes used in the GUI

and establish connections with the respective set of

archemicros.

Figure 4 depicts healthcare software and its interaction with

the openEHR archetypes on the Internet. In the user layer, the

GUI is built based on archetypes. This GUI sends data to the

Connector component, which processes data and sends it to an

archemicro. In the business logic layer, the archemicro

component (whose scope is CRUD operations of an

archetype) receives data from Connector and processes them

in accordance with their task. Finally, the result of this

processing is returned to the GUI.

Fig 4: DHSA conceptual modelling.

3.2 The Microservice4EHR Tool
To build the DHSA, Microservice4EHR has as input data an

existing GUI such as a legacy health software. Thus, there is

an initial phase in order to build the GUI: (i) initially, the user

(e.g., a software engineer) verifies the software requirements;

(ii) after that, the user goes to a repository where archetypes

are stored on the openEHR Foundation website - and chooses

the set of archetypes that matches the software requirements;

(iii) finally, the software engineer or developer writes the GUI

based on these archetypes.

In the last phase, the Microservice4EHR tool is used to

generate the health information system (HIS). The input is a

legacy or new ―Archetype-based GUI‖, which means a GUI

that has been built from a set of archetypes. The archetype-

based GUI must be included, as a data, into a JSON

document.

Figure 5 depicts the input (JSON document) of the

Microservice4EHR tool. After that, Microservice4EHR

dynamically generates the Connector, Container and

archemicro components.

Fig 5: Input and Output of Microservice4EHR tool.

Healthcare Software B

Health Data

Standard User layer

1

1

1

1

1

1

x

y

z

Health Data

Standard
Healthcare Software A

1

n

User layer x y z

= component (unit); = Business Logic layer

Business layer data

Container

Archemicro

aggregation

a

User layer

GUI

Connector

a

a = RequestResponse

A health software

OpenEHR

Archetype

Internet

built from scope of task

= software component

Connector Container Archemicro

Microservice4EHR
JSON

with GUI

OpenEHR Angular SpringBoot

JPA Maven Kubernetes Oauth

Java

Standards and Technologies

verifies

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

25

Also shown in Figure 5, all dynamic generation is based on

industry standards widely adopted in software development

worldwide, for example: openEHR for Health data; Angular

for dynamic interaction between client-side and server-side;

Spring Boot for building the Health software environment;

Kubernetes for managing microservices on the Internet;

JPA/Hibernate for Health data model mapping; Maven for

dependencies in software application; Java as a programming

language for writing the archemicro components, and OAuth2

for access security among components in the software

application.

Fig 6: Microservice4EHR tool algorithm.

The algorithm in Figure 6 shows the Microservice4EHR tool

that generates the Connector, Container, and Archemicro

components. A JSON document is the data input of the

algorithm, which is instantiated in the memory to validate and

extract its data (line 05). After that, a set of variables is

instantiated in memory to manipulate data obtained from the

input JSON document, such as host address, archetype names,

and HTML-based GUI, as shown from line 06 to 14.

The data model and archetypes contained in the HTML-based

GUI is retrieved and used in the respective functions

(buildConnector, buildContainer, and buildMicroservice),

which respectively generate the Connector, Container and

Microservice components, as seen from line 15 to 24. Finally,

the algorithm produces a JSON document with the

programming language written components (line 25).

4. ASSESSING THE DHSA
This section describes the main results obtained in the

assessment of the proposed solution. Section 4.1 shows an

analysis of state-of-the-art and state-of-the-practice in relation

to Microservice4EHR tool, while Section 4.2 discusses the

metric used to calculate the coupling level in software

architectures.

In the scope of this assessment, a real-word scenario of public

hospitals in Northeastern Brazil are chosen. Their set of

software requirements, which is ruled by the Brazilian Health

Ministry, contains: registration of patient admission, blood

pressure, and respiration.

Figure 7 illustrates a legacy desktop health software from a

public hospital in Northeastern Brazil. Some observations can

be obtained: (i) The software is not build based on openEHR

archetypes; (ii) the GUI is developed through Java Swing

component, which is meant for desktop software; (iii) the

business logic layer is built with Java Bean components,

which runs on a local machine; (iv) the database is MySQL

Server; and, finally, (v) the software supports the following

software requirements: registration of patient admission,

blood pressure and respiration.

Fig 7: A public hospital legacy software.

To migrate this legacy software to a web environment, four

tools that propose the dynamic generation of health software

from a set of archetypes are considered: MARCIA,

Template4EHR, EhrScape, and Microservice4EHR.

To make this assessment feasible, two phases are developed.

In Phase 1, a set of openEHR archetypes is chosen to

represent healthcare data. For the registration of patient

admission, the archetype individual_personal.v0 was chosen,

blood_pressure.v2 for the registration of blood pressure data,

and respiration.v2 for the registration of respiration data. Still

in this first phase, the same set of archetypes was used to

dynamically build software generated by the four tools

01 Algorithm Microservice4EHR_Tool

02 Input: a JSONDocument

03 Output: a JSONDocument

04 BEGIN

05 READ JSONDocument

06 SET host as URL

07 SET archetypeNames as Array to empty

08 SET htmlGUI as XMLDocument

09 FOR EACH jsonObject on the JSONDocument

10 SET host GET Host on the jsonObject

11 SET archetypeNames GET Archetypes

12 on the jsonObject

13 SET htmlGUI GET Gui on the jsonObject

14 END FOR

15 SET datamodel as Object

16 FOR EACH node on the htmlGUI

17 SET datamodel APPEND Model

18 END FOR

19 SET jsonDoc as JSONDocument

20 SET jsonDoc APPEND buildConnector(host,

21 datamodel, archetypeNames)

22 SET jsonDoc APPEND buildContainer (host)

23 SET jsonDoc APPEND buildMicroservice(host,

24 datamodel, archetypeNames)

25 RETURN jsonDoc

26 END

A = Patient admission;

B = Blood pressure;

C = Respiration;

 = Form in Java Swing

 = Business Logic as Java Beans

GUI (Java Swing)

A B C

Client

Business Logic

A B C

Database

(MySQL)

Local Server

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

26

mentioned above.

In phase 2, to evaluate the decoupling aspect of the

components from each software architecture, the output

software of each tool was modelled, as described in Section

4.1.

4.1 Analyzing the Software Architectures

Generated by Microservice4EHR and

Related Tools
MARCIA tool generates a health software whose architecture

is implemented according to a Client-Server architecture, a

REST API and a service. To query and save data, this

architecture uses services. As shown in Figure 8, there is a

GUI on client-side, while the API and service are on server-

side. MARCIA API scope of task is the data processing of all

archetypes contained in the respective GUI. Even if there is

more than one archetype in the GUI, all modules are

performed inside the same API. These components are

interconnected and interdependent, and cannot execute tasks

independently. This means that if one module from one

specific archetype changes, fails or generates an error, it will

impact the other modules.

Fig 8: Software Architecture generated by MARCIA tool.

Template4EHR tool dynamically generates an archetype-

based GUI and data Model. Its software architecture is

implemented based on a client-Server architecture and a

REST API. As illustrated in Figure 9, there is a GUI in the

client layer, and a REST API in the server layer. The GUI

interacts with the API, which interacts with a database.

Similarly to the MARCIA tool, the task scope of

Templates4EHR API is the data processing of all archetypes

contained in a GUI. Even if there is more than one archetype

in a GUI, all business logic layer components are performed

inside the same API. These components are interconnected

and interdependent, and cannot execute tasks independently.

This means that if one module from one specific archetype

has an unexpected behaviour (e.g., error or failure), it will

impact the other modules.

Fig 9: Software Architecture generated by Template4EHR

tool

EHRScape tool generates health software whose architecture

is based on a client-Server architecture and a REST API. As

presented in Figure 10, there is a GUI in client layer, and an

API and a database in the server layer. The GUI interacts with

the API, which interacts with a database. EhrScape API

processes data of all archetypes contained in the respective

GUI. This processing is done in one module, even if there is

more than one archetype in GUI. These components are

interconnected and interdependent, and thus cannot execute

tasks independently.

Fig 10: Software Architecture generated by EHRScape

tool

The Microservice4EHR tool dynamically generates a DHSA

made of three components: Connector, Container and

Archemicro. As depicted in Figure 11, there is an archemicro

for each archetype used in the GUI. The GUI (legacy or new)

sends data to Connector, which intermediates the

communication between the GUI and the set of containers and

archemicros via a web environment. Each archemicro has its

own database.

The decoupling aspect of the first three software architectures

generated by MARCIA, Template4EHR, and EhrScape are

similar. For instance, in the MARCIA software architecture, if

there is an unexpected behaviour in component A (related to

archetype respiration.v2), all other components (B and C)

would be impacted by this behaviour (i.e., all execution of this

API would be interrupted). This occurs because there is no

separation or dissociation between them; they are

interconnected and interdependent. In this way, the first three

software architectures (MARCIA, Template4EHR and

EhrScape) are described as monolithic architectures (as

described in Section 2.2).

A = respiration.v2

B = blood-pressure.v2

C = individual-personal.v0

 = component

Client-side

GUI

EHRScape server

REST API

A B C

Database

A = respiration.v2

B = blood-pressure.v2

C = individual-personal.v0

 = component

Client-side

GUI

Data

Model

Server-side

REST API

A C B

Database

Client-side

GUI

Server-side

Service

Database

API

A B C

A = respiration.v2

B = blood-pressure.v2

C = individual-personal.v0

 = component

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

27

Fig 11: Software Architecture generated by

Microservice4EHR tool.

On the other hand, in the DHSA (i.e., Microservice4EHR

software architecture), all components from business logic are

built as small, separate services (i.e., microservice). For

example, if there is an unexpected behaviour (e.g., error or

failure) in archemicro A, this does not impact any other

components (B and C). This occurs because they are separated

and execute tasks autonomously.

4.2 A Formal Method to Evaluate the

Coupling level
A formal metric is specified, in this study, to evaluate the

"coupling level" in healthcare software architectures. This

metric is dubbed Archetype-based Software Architecture

Coupling (ASAC).

This metric considers two quantities: (i) the number of

archetypes used in a software, and (ii) the coupling coefficient

of each component in a software architecture. In this study,

"coupling coefficient" and "component" have particular

meaning: "Coupling coefficient" means the impact that an

unexpected behaviour (e.g., error or failure) generates from a

component onto another one. Then, each impact represents the

sum of 1 (one) point in the equation. If there is no impact, it is

0 (zero). "Component" means any processing unit from the

business logic layer (e.g., a module, a method, a service, or a

microservice).

To exemplify this, let us assume that for each existing

archetype in the client layer, there is a respective server-side

component that processes it. Thus, {ASAC = (a1→i) +

(c1→i)}, where a1→i is the number of archetypes used in

each software, and c1→i is the sum of all coupling

coefficients found in the server-side components.

The ASAC metric measures the coupling in software that uses

a set of archetypes (i.e., there is a coupling between the

software and archetypes). For this, the ASAC metric cannot

be zero, there is an ―initial coupling index‖ regarding the

number of archetypes that compose the software. This occurs

because if there is some change in archetypes, the software

must be rebuilt to maintain the compliance between software

and the health data standard (i.e., archetype). This compliance

dependency, in this study, is seen as coupling. Finally, for the

ASAC metric, a lower result means a less coupled (or more

decoupled) software architecture.

MARCIA, Template4EHR and EHRScape software

architectures have the same behaviour. As illustrated in Figure

8, 9 and 10, respectively to each software architecture, if there

is an unexpected behaviour in component A, this will impact

two other components (B and C). The same occurs with

component B (impacts A and C) and component C (impacts A

and B), which means each component (A, B and C) has two

points of coupling coefficient. Thus, MARCIA,

Template4EHR and EHRScape ASAC metrics are 3+(2+2+2).

These health software are built from three archetypes, and the

coupling coefficients of the components are 2. The results of

all these three software architecture ASAC are 9 (nine).

Microservice4EHR software architecture: As presented in

Figure 11, DHSA has a particular behaviour. Components A,

B or C do not impact any other component, even if there is an

error or failure in them. This means that each component has a

coupling coefficient of zero. Thus, Microservice4EHR ASAC

metric is 3+(0+0+0); there are 3 archetypes and the coupling

coefficient of each component is 0 (no component impacts

another). The DHSA ASAC result is 3 (three).

As illustrated in Figure 12, the first three software built by

MARCIA, Template4EHR and EHRScape have equal ASAC

metrics (9). The ASAC metric related to the DHSA-based

software (built by Microservice4EHR) is 3.

Fig 12: ASAC metrics on generated software.

As a result, the DHSA is a software architecture 66,6% less

coupled (or more decoupled) than other software architectures

built by other state-of-the-art tools. This result is obtained by

applying the rule of three on the ASAC metrics described

above.

5. CONCLUSION
This paper introduces the Decoupled Health Software

Architecture (DHSA), which is a software architecture

generated from a set of archetypes (an international health

data standard specified by the openEHR Foundation). DHSA

is composed of autonomous and independent components,

which perform tasks through a web environment. This study

A = respiration.v2

B = blood-pressure.v2

C = individual-personal.v0

Client-side

Server-side

 Archemicro

A

Archemicro

B

Archemicro

C

Container A

Container B

Container C

Database

Database

Database

GUI

Connector

3

ASAC

Metric

Software

9 9 9

A B C D

A = Software built by MARCIA;

B = Software built by Template4EHR;

C = Software built by EHRScape;

D = DHSA-based Software built by Microservice4EHR.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

28

has also developed (i) the Microservice4EHR tool (to

dynamically build the DHSA), and (ii) the Archetype-based

Software Architecture Coupling (ASAC) metric. An

assessment is performed in a real-world scenario in Brazilian

public hospitals, whose result shows that DHSA is 66,6%

more decoupled than software architectures generated by

state-of-art tools like MARCIA, Template4EHR, and

EHRScape. Thus, the healthcare sector is benefited with a

solution that decreases the coupling of a health software

architecture, and this means that unexpected behaviour (e.g.,

error or failure) in a part of the health software does not imply

its interruption, improving its functionality for the Health

community.

As future works, the behaviour of the DHSA components

working with blockchain should be investigated.

6. ACKNOWLEDGMENTS
This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES) –

Finance Code 171220.

7. REFERENCES
[1] Pressman, R., Maxim, B. (2019) Software Engineering:

A Practitioner's Approach. McGraw-Hill Education,

ISBN: 1259872971.

[2] Bass, L., Clements, P. and Kazman, R. (2012). Software

Architecture in Practice (3rd ed.). Addison-Wesley

Professional.

[3] Cha, J., Kim, J., and Jeong, Y. (2016). "Architecture

Based Approaches Supporting Flexible Design of Self-

Adaptive Software," 2016 Int. Conf. on Computational

Science and Computational Intelligence (CSCI), Las

Vegas, NV, pp. 1424-1425. doi:

10.1109/CSCI.2016.0280.

[4] Bjuhr, O., Segeljakt, K., Addibpour, M., Heiser, F. and

Lagerström, R. (2017) "Software Architecture

Decoupling at Ericsson," 2017 IEEE Int. Conference on

Software Architecture Workshops (ICSAW),

Gothenburg, 2017, pp. 259-262. Doi:

10.1109/ICSAW.2017.7.

[5] Knoche, H. and Hasselbring, W. (2018) "Using

Microservices for Legacy Software Modernization," in

IEEE Software, vol. 35, no. 3, pp. 44-49, May/June

2018. Doi: 10.1109/MS.2018.2141035.

[6] Qian, K., Liu, J., and Tsui, F. (2006) "Decoupling

Metrics for Services Composition," 5th IEEE/ACIS Int.

Conference on Computer and Information Science and

1st IEEE/ACIS Int. Workshop on Component-Based

Software Engineering,Software Architecture and Reuse

(ICIS-COMSAR'06), Honolulu, HI, 2006, pp. 44-47.

Doi: 10.1109/ICIS-COMSAR.2006.30.

[7] Megha Mayreddy and B.tarakeswara Rao. (2015) Secure

SOA Framework for Multi-Cloud Storage and

Computing. International Journal of Computer

Applications 114(8):10-16, March.

[8] Kakivaya, G., Xun, L., Hasha, R., et al., (2018) "Service

fabric: a distributed platform for building microservices

in the cloud," in Proceedings of the 13 EuroSys Conf.

(EuroSys '18). ACM, New York, NY, USA, 2018,

Article 33, 15 pages. DOI: 10.1145/3190508.3190546.

[9] OpenEHR Foundation (2020). OpenEHR. Accessed on:

Apr.26, 2020. [Online]. Available:

https://www.openehr.org.

[10] Think!EHR Platform (2017) EHR Scape. Accessed on:

Apr. 26, 2020. [Online]. Available:

https://www.ehrscape.com.

[11] Gomes, F., Paiva, J., Bezerra, A. et al. (2018)

"MARCIA: Applied Clinical Record Management :

Electronic Health Record Applied with EHRServer,"

2018 IEEE 20th Int. Conf. on e-Health Networking,

Applications and Services (Healthcom), Ostrava, 2018,

pp. 1-6. doi: 10.1109/HealthCom.2018.8531096.

[12] Araujo, A., Times, V. and Silva, M. (2020) "A Tool for

Generating Health Applications Using Archetypes," in

IEEE Software, vol. 37, no. 1, pp. 60-67, Jan.-Feb. 2020.

Doi: 10.1109/MS.2018.110162508.

[13] Brazil Ministry of Health (2002). Ordinance No. 2048.

Accessed on: Apr. 26, 2020. [Online]. Available:

http://bvsms.saude.gov.br/bvs/saudelegis/gm/2002/prt20

48_05_11_2002.html (in Portuguese).

[14] Moner, D., Maldonado, J.A., Robles, M. (2018)

"Archetype modeling methodology," J. of Biomedical

Informatics, Volume 79, 2018, Pages 71-81, ISSN 1532-

0464, https://doi.org/10.1016/j.jbi.2018.02.003.

[15] Chaitanya K Rudrabhatla. (2018) A Systematic Study of

Micro Service Architecture Evolution and their

Deployment Patterns. International Journal of Computer

Applications 182(29):18-24, November.

[16] Larrucea, X., Santamaria, I., Colomo-Palacios, R., et al.

(2018), "Microservices," in IEEE Software, vol. 35, no.

3, pp. 96-100, May/June 2018. Doi:

10.1109/MS.2018.2141030.

[17] Duftschmid, G., Chaloupka, J. and Rinner, C. (2013)

"Towards plug-and-play integration of archetypes into

legacy electronic health record systems: the ArchiMed

experience, " BMC Med Info Decis Mak; 13: 11. doi:

10.1186/1472-6947-13-11.

[18] Sundvall, E., Nystrom, M., and Karlsson, D. (2013)

"Applying representational state transfer (REST)

Architecture to archetype-based electronic health record

systems". BMC Medical Informatics and Decision

Making. 13:57. DOI: 10.1186/1472-6947-13-57.

[19] Frade, S., Freire, S. M., Sundvall, E. et al., (2013)

"Survey of openEHR storage implementations,"

Proceedings of the 26th IEEE International Symposium

on Computer-Based Medical Systems, Porto, 2013, pp.

303-307. Doi: 10.1109/CBMS.2013.6627806.

[20] Araújo, A., Times, V., Silva, M. (2016) "PolyEHR: A

Framework for Polyglot Persistence of the Electronic

Health Record, " 2016 Int. Conf. Internet Computing and

Internet of Things. ISBN: 1-60132-439-1. CSREA Press.

[21] Muslim, A., Puspitodjati, S., Mutiara, A.B., et al. (2017)

"Web services of transformation data based on

OpenEHR into Health Level Seven (HL7) standards,"

2017 Second International Conference on Informatics

and Computing (ICIC), Jayapura, 2017, pp. 1-4. Doi:

10.1109/IAC.2017.8280571.

[22] Araújo, A., Times, V., Silva, M. (2018) "A Cloud

Service for Graphical User Interfaces Generation and

Electronic Health Record Storage". In: Latifi S. (eds)

Information Technology - New Generations. Advances

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 28, June 2020

29

in Intelligent Systems and Computing, vol 558. Springer.

2018. Print ISBN: 978-3-319-54977-4.

[23] Reis, L. F., Ferreira, D. G., Maranhao, P. A. et al. (2018)

"Integration through mapping — An OpenEHR based

approach for research oriented integration of health

information systems," 2018 13th Iberian Conference on

Information Systems and Technologies (CISTI), Caceres,

2018, pp. 1-5. doi: 10.23919/CISTI.2018.8399258.

[24] Ripple Foundation (2019) Ether CIS. Accessed on: Feb.

02, 2020. [Online]. Available: http://ethercis.org.

[25] CaboLabs (2020) CloudEHRServer. Accessed on: Feb.

02, 2020. [Online]. Available:

https://cloudehrserver.com.

IJCATM : www.ijcaonline.org

