
International Journal of Computer Applications (0975 – 8887)

Volume 176– No.29, June 2020

46

Enhancing the NTRU Cryptosystem

Awnon Bhowmik
Department of Mathematics and Computer Science

CUNY York College
94 – 20 Guy R. Brewer Blvd

Jamaica, NY 11451

Unnikrishnan Menon
Department of Electrical and Electronics Engineering

Vellore Institute of Technology, Vellore
Tamil Nadu 632014

ABSTRACT
NTRU is an open-source public key cryptosystem that uses

lattice-based cryptography to encrypt and decrypt data. Unlike

other popular public-key cryptosystems, it is resistant to

attacks using Shor's Algorithm and its performance has been

shown to be significantly greater. This paper talks about how

Koblitz encoding from Elliptic Curve Cryptography (ECC)

can be used to convert each character in a dataset to a point on

an elliptic curve. A sum of squares analogy is pitted against

the cantor pairing function to turn the point to a single

number, which is converted to a sequence of coefficients in .

A polynomial is then generated for each of these characters.

Then the polynomial is reduced, and then shown that choosing

appropriate parameters for the cryptosystem can make it

highly secure and that the decryption algorithm turns out

taking linear time. Since each character is represented by its

own polynomial, it increases obscurity thereby increasing the

complexity for decryption and thus the security level. A form

of data compression has also been implemented and it has

been tested whether data compression and expansion during

the encryption-decryption process results in original data with

no or minimal loss.

General Terms

Data Security

Keywords

Post quantum cryptography, lattice-based encryption,

quantum cryptography, Koblitz encoding, post quantum

cryptosystem, ntru cryptography, ntru cryptosystem.

1. INTRODUCTION

1.1 Why Lattice Cryptography
The real reason (Zhang, 2017)

 In 1994, Shor’s Algorithm broke RSA and ECC

with quantum computers

 2015, NSA announcement: prepare for the quantum

apocalypse

 2017, NIST call for competition/standardization

Further usefulness (Zhang, 2017)

 Good understanding of underlying hard problem

 Fast, parallelable, hardware friendly

 Numerous applications, FHE, ABE, MMap,

Obfuscation

Data vaulting attack (Zhang, 2017)

 Also known as harvest-then-decrypt attack

 Data needs to be secret for, let’s say, 30 years

 Quantum computer arrives in, let’s say, 15 years

 Perhaps the most practical attack in cryptography

Encrypt Schemes (Zhang, 2017)

 NTRUEncrypt – standardized by IEEE and ASC X9

Signature Schemes (Zhang, 2017)

 BLISS (NTRU)

 pqNTRUSign (NTRU)

This paper focuses on the NTRUEncrypt and NTRUDecrypt

algorithm

2. KOBLITZ ENCODING AND

DECODING ALGORITHM
The encoding algorithm (Brady, Davis, & Tracy, 2010) is as

follows

 Given a message , convert each character into

a number using Unicode, where and

 Convert the message into an integer using

In practice an is chosen such that

satisfies

 A number is fixed such that

. In practice the

prime is chosen large enough so that can

be allowed.

 For integers , the following are

performed

 coordinate of a point on the elliptic curve is

computed as

 where

 Compute

 If

 , then coordinate of a point

on the elliptic curve is defined as

 . Return the point .

Thus, the message is encoded as an element of the Abelian

group . The following is performed for decryption.

 Considering each point and setting

International Journal of Computer Applications (0975 – 8887)

Volume 176– No.29, June 2020

47

Which is essentially means

 . Thus,

each character is recovered and concatenated to produce

the original message .

3. EQUIVALENCE CLASS MODULO 3
Any number divided by can result in remainders . So,

any number divided by is one of . This is

useful in constructing the trinary basis . The

elements in the basis forms the coefficients of the polynomial

in (1).

Theorem 1. Let be an equivalence class on a set .

Then the set of -classes constitutes the whole of .

Proof.

 Definition of equivalence class

 Assertion of universality

 Definition of set union

 Assertion of universality

 Definition of a subset

Also:

 Definition of equivalence class

 Assertion of universality

By definition of set equality

And so, the set of all -classes constitutes the whole of

(Union of Equivalence Classes is Whole Set, n.d.)

4. CANTOR PAIRING FUNCTION
This is an elegant function proposed by the Russian

mathematician George Cantor that takes in two natural

numbers and turns it into a single number. This function is a

primitive recursive pairing function. (Szudzik, 2006)

And is defined by

Due to the way its defined, this is a one-to-one and onto

function, which means it is invertible. This consequently

means that given a single number, it can be readily mapped

back to a unique ordered pair.

In order to retrieve an ordered pair from a given , the

following transformations are used

From the second equation, cross multiplying gives a quadratic

in

Solving it gives us

which is a strictly increasing and continuous function

when is non-negative real. Since

This implies that

And thus

Finally calculate and from as follows

5. LATTICE CRYPTOGRAPHY
What is a lattice? (Zhang, 2017)

A lattice is a (maximal) discrete subgroup of for some -

basis, or equivalently it consists of all the integral

combinations of linearly independent vectors over .

Where is the dimension and is the

basis. Here is an example.

Here and hence .

The discriminant of is the volume of a fundamental

domain

 Vol

Lattices have been extensively studied since (at least) the 19th

century and have applications throughout mathematics,

physics and computer science. For many applications, both

theoretical and practical, one is interested in finding short

non-zero vectors in . (Silverman, 2015)

Short Vectors – Theory (Silverman, 2015)

A famous theorem of Hermite (1870s) says that a lattice

contains a non-zero vector satisfying

The optimal value for , called Hermite’s constant, is

known only for , but for large the following holds true

The shortest vector problem (SVP) (Micciancio, 2005) is

that of determining the shortest non-zero vector in .

Hermite’s theorem suggests that in a “random” lattice,

The closest vector problem (CVP) (Micciancio, Closest

Vector Problem, 2005) is that of determining the vector in

that is closest to a given non-lattice vector .

International Journal of Computer Applications (0975 – 8887)

Volume 176– No.29, June 2020

48

In low dimension it is not too hard to find short(est) vectors.

But as the dimension increases, it becomes very hard. A

computational breakthrough is the

LLL Algorithm 1982. Let and let denote

the length of the shortest non-zero vector in . Then there is a

polynomial time algorithm to find a non-zero vector

satisfying

Many improvements have been made, but there is currently no

algorithm that finds a vector satisfying

faster than . This suggests using SVP and CVP as the

basis for cryptographic algorithms.

 All crypto talks begin with an image of a dim-2

lattice

 There is an infinitude of bases which is formed due

to matrix multiplication of and some other matrix

 It involves solving the shortest vector problem

(SVP). The exact version of the problem is only

known to be NP-hard for randomized reductions

(Ajtai, 1996). In this paper, something similar has

been discussed in the proposed algorithm. Here a

parameter is calculated with the sum of squares

and cantor pairing function separately, rather than

the norm.

6. NTRUEncrypt
NTRU operations are based on objects in a truncated

polynomial ring with convolution

multiplication and all polynomials in the ring have integer

coefficients and degree at most (Stallings, 2017):

 (1)

where . The product is denoted by . In

terms of convolutions, (Silverman, 2015)

7. PROPOSED ALGORITHM
1. Input an arbitrary string containing alphanumeric

and/or special characters.

2. Split into characters and pass through Koblitz

encoder

3. Each character in the string is turned into a point on

an elliptic curve , whose

parameters are user defined.

4. Convert point(s) to a single number using the

parametrization or by using

 and apply modulo to turn it into

ternary base number.

Store these ternary numbers into a list. There should

be multiple such lists due to multiple characters in

the original string.

5. Find the maximum size among these lists. For the

smaller lists, padding is applied to maintain

consistency in the lists’ sizes.

6. Using these ternary values from each list, every

character in the string is represented as a

polynomial.

7. Generate public and private keys. (NTRU, n.d.)

8. Public key is used to run NTRUEncrypt() and

generate cipher text.

9. Private key is used to run NTRUDecrypt() and

obtain original lists of ternary numbers.

10. Reapply padding.

11. A method called ternary_to_decimal() is applied to

convert the padded lists into points.

12. These points are passed through Koblitz decoder to

obtain the list of characters. Combining these

characters, finally facilitates the retrieval of the

original plain text.

International Journal of Computer Applications (0975 – 8887)

Volume 176– No.29, June 2020

49

8. ALGORITHM FLOW DIAGRAM

Figure 1: Flow diagram for proposed algorithm

9. AN ATTEMPT ON LOSS LESS

ENCODING
Messages encrypted by the Koblitz method results in a long

list of polynomials. It is safe to assume that the length of this

list increases linearly with the length of message. Hence, a

modification to the algorithm in Figure 1. was attempted by

converting the polynomials into a gray scale map to obtain

some sort of data compression. Let’s say Alice encrypts a

message “Enhancing the NTRU cryptosystem”. This

algorithm will generate a ciphertext which is a collection of

polynomials having the same order. It was observed that a

convenient way to send this collection of polynomials would

be to first map all the coefficients of the polynomials into the

range of . Then these values are used to make a greyscale

mapping image. Alice sends over this image to Bob. On the

other side, Bob takes the image and reads all the pixel values

and can recover back the coefficients of the collection of

polynomials using the secret key. Then he can continue with

the decryption process.

Several attempts were tried to save the [0,1] pixel values into

an image and read back the coefficients.

The first attempt involved PNG image format and produced

results that were correct up to 2 decimal places only. This

International Journal of Computer Applications (0975 – 8887)

Volume 176– No.29, June 2020

50

means that this format produced a large percentage error.

Another thing to notice is that this involved only 8-bit

precision unsigned integers. However, using TIFF image

format with 64-bit precision unsigned integers resulted in a

much better match between the encrypted and the decrypted

matrix. But even then, there were a lot of loss during

compression. So, this procedure may not be a feasible step to

include in a revised algorithm. Following is a sample gray

scale map that was generated for the message, “Enhancing the

NTRU cryptosystem”.

Figure 2: Grayscale map of data compression

Remark: It is to be noted that every character in the input

string is treated differently, i.e. if the message is “banana”,

then each of the characters have a different random

polynomial. The polynomials for all 3 a's and both n's are

distinct. This is what makes this cryptosystem more secure.

Following is a sample test run of the lossless encoding

program.

Enter Message: Awnon

Curve Parameters

Enter A: 9

Enter B: 7

Public Key = (-52x^14) + (38x^13) + (-1x^12) + (-25x^11) +

(10x^10) + (8x^9) + (-20x^8) + (39x^7) + (-32x^6) + (34x^5)

+ (-64x^4) + (-51x^3) + (10x^2) + (52x) + (29)

Encrypted =

[[62, 2, 14, 44, -16, 36, -35, -57, -62, -29, -47, 33, 6, 48, 25],

[-23, 4, -42, 54, -60, 23, -50, 17, 36, -9, 2, 41, 26, 34, -52],

[54, -51, -18, 23, -26, 2, -38, 32, 13, -19, 40, -15, 56, -43, -

36], [39, -57, 29, 22, -41, 43, 29, 8, -17, 5, -61, 20, 53, 60, -

56], [-49, 62, 6, 2, -52, 39, -49, 6, -37, 46, -4, 1, 26, -38, -35]]

Figure 3: Grayscale map of sample test run

And here is the following attempt at decoding the coefficients

of the polynomial from the grayscale image.

Data Type: float64

Min: 0.000, Max: 1.000

[[1. , 0.51612903, 0.61290323, 0.85483871, 0.37096774,

0.79032258, 0.21774194, 0.04032258, 0., 0.26612903,

0.12096774, 0.76612903, 0.5483871, 0.88709677,

0.7016129], [0.31451613, 0.53225806, 0.16129032,

0.93548387, 0.01612903, 0.68548387, 0.09677419,

0.63709677, 0.79032258, 0.42741935, 0.51612903,

0.83064516, 0.70967742, 0.77419355, 0.08064516],

[0.93548387, 0.08870968, 0.35483871, 0.68548387,

0.29032258, 0.51612903, 0.19354839, 0.75806452,

0.60483871, 0.34677419, 0.82258065, 0.37903226,

0.9516129, 0.15322581, 0.20967742], [0.81451613,

0.04032258, 0.73387097, 0.67741935, 0.16935484,

0.84677419, 0.73387097, 0.56451613, 0.36290323,

0.54032258, 0.00806452, 0.66129032, 0.92741935,

0.98387097, 0.0483871], [0.10483871, 1., 0.5483871,

0.51612903, 0.08064516, 0.81451613, 0.10483871,

0.5483871, 0.2016129, 0.87096774, 0.46774194,

0.50806452, 0.70967742, 0.19354839, 0.21774194]]

>>>print(decoded_coefficients)

[[62, 2, 14, 44, -16, 36, -35, -57, -62, -29, -47, 33, 6, 48, 25],

[-23, 4, -42, 54, -60, 23, -50, 17, 36, -9, 2, 41, 26, 34, -52],

[54, -51, -18, 23, -26, 2, -38, 32, 13, -19, 40, -15, 56, -43, -

36], [39, -57, 29, 22, -41, 43, 29, 8, -17, 5, -61, 20, 53, 60, -

56], [-49, 62, 6, 2, -52, 39, -49, 6, -37, 46, -4, 1, 26, -38, -35]]

>>>print(coefficients)

[[62, 2, 14, 44, -16, 36, -35, -57, -62, -29, -47, 33, 6, 48, 25],

[-23, 4, -42, 54, -60, 23, -50, 17, 36, -9, 2, 41, 26, 34, -52],

[54, -51, -18, 23, -26, 2, -38, 32, 13, -19, 40, -15, 56, -43, -

36], [39, -57, 29, 22, -41, 43, 29, 8, -17, 5, -61, 20, 53, 60, -

56], [-49, 62, 6, 2, -52, 39, -49, 6, -37, 46, -4, 1, 26, -38, -35]]

And finally, the following code snippet checks for matching

elements in the two lists, containing encoded and decoded

values.

>>>if coefficients == decoded_coefficients:

 print('Complete Match!')

 else:

 print('Not Equal!')

>>>Complete Match!

International Journal of Computer Applications (0975 – 8887)

Volume 176– No.29, June 2020

51

10. RESULT
The following is a snapshot of the console application program in action.

Figure 4: Sample test run of the entire process

It starts off by choosing the elliptic curve parameters. This

generates a long polynomial as a public key. The orders of the

polynomials are all equal to the order of the polynomial in the

public key. Since every character gets its own order

polynomial, the encrypted version looks messy. But the

decrypted string turns out to be an exact match with the

original string showing that the method indeed works out fine.

11. EXPERIMENTS BY VARYING

PARAMETERS

11.1 Valid elliptic parameters vs string

length
1. A custom string of length is taken such that it

consists of all alphanumeric characters, special

characters and space.
2. A complexity loop is run to check for

in range .
3. Due to lack of recommended processing power, the

program breaks out of the loop as soon as the first

combination is found. The combination turned out

to be
4. The original string is shuffled times to make

 different strings of length .
5. For each of the shuffled strings, only the first

characters are considered due to shortage of

processing power. So basically, then there will be

 strings of length that comprises of any

random character on the English keyboard.
6. The encrypt-decrypt function is executed on these

strings. The job of the encrypt-decrypt function is to

return true only if the decrypted message matches

perfectly with the input plaintext.

It was observed that for each of the test cases, the

encrypt-decrypt function returns true.

11.2 String length vs time to

encrypt/decrypt
A function was written on Jupyter Notebook to test out the

relationship between string length (x-axis) and time of

encryption/decryption (y-axis). Following graph

was obtained.

Figure 5: String length vs time to encrypt

A best fit shape through these points is a straight line through

the origin. It can be safely assumed that for an arbitrary string

length , time to encrypt and time to decrypt , the

following holds true

To test the authenticity of the encryption paradigm the elliptic

curve parameters were fixed at . A

custom string of length was generated that contained

numeric values, alphabets (upper and lower case), special

characters, spaces etc. and generated new strings by

randomly shuffling the elements of this custom string. It was

International Journal of Computer Applications (0975 – 8887)

Volume 176– No.29, June 2020

52

observed that for each of the test cases, the program was

able to successfully retrieve the original message after

completing an encrypt-decrypt cycle.

11.3 String length vs time to

encrypt/decrypt
Here, the curve parameters were kept as
 . A string of length was considered that

contained alphanumeric and special characters from the

keyboard, with repetition. such strings were generated by

randomly shuffling all characters in the 20-character string.

The following is a plot of test runs involving randomly

shuffled strings vs the time of encrypt-decrypt cycle.

Figure 6: Shuffled String vs Encrypt-Decrypt Time

11.4 Comparison between sum of squares

and cantor pairing function
A performance analysis was carried out between the two

different parametrizations of , namely the sum of square

and the cantor pair function. A variable string length of 100-

1000 characters were tested for the encrypt-decrypt cycle

using both the sum of square and the Cantor pairing function,

one at a time. Following results were obtained.

Table 1: Time analysis – sum of squares vs cantor pairing

function

String

Length

Sum square

(seconds)

Cantor pair

(seconds)

Ratio

100 14.768 0.313
47.182

200 33.215 0.460
72.207

300 50.062 0.744
67.288

400 66.053 0.734
89.990

500 83.220 1.118
74.436

600 96.327 1.255
76.755

700 116.220 1.415
82.134

800 126.006 1.770
71.189

900 156.052 1.900
82.133

1000 165.771 2.102
78.863

Here is a plot showing the comparison between the two

methods. Clearly the Cantor function is more efficient and

helps keep the already complex algorithm as simple as

possible. It can be clearly seen that at certain times, the Cantor

pairing function is 90 times faster than the sum of squares

parametrization.

Figure 7: Effect of string length vs time of encrypt-decrypt

cycle

12. CONJECTURE
1. The elliptic curve parameter

works irrespective of the string length of the

message and the type of characters present in the

string.

2. is one of the many

combinations of elliptic curve parameter that works.

Proof of this is dependent on greater computational

power.

13. FUTURE WORK
There are plans to wrap up the entire application into a pip

install package which would be available for general public

use. NTRU algorithm has been around for a while but there is

still no official implementation of this algorithm in libraries

such as pycryptodome. It would be nice if this program

becomes a part of the existing library. It will serve as a great

security layer against post quantum cryptography. Further,

this application will be used as a security layer for a web

socket based client server chat app, built with Tkinter. For the

moment, the work done so far has been compiled into a

GitHub repository (Menon & Bhowmik, 2020). It has been

observed that using the NumPy module instead of the math

module makes quick work of calculations that were coded

from scratch. This would also fix some formatting issues and

make the polynomial more legible.

14. CONCLUSION
This paper inspects a method that makes use of concepts

stemming from the core of elliptic curve cryptography and the

Cantor pairing function, in order to increase the complexity

for decryption, thereby increasing the security level of the

existing lattice based NTRU cryptosystem. An analysis has

been performed on how introducing these concepts and tuning

the appropriate set of parameters can lead to a much more

stable and secure encryption – decryption cycle with a lower

time complexity.

This research is significant because as of 2020, the most

popular public-key algorithms can be broken by a sufficiently

strong quantum computer. NTRU is resistant to attacks based

on quantum computing, to which the standard RSA and ECC

International Journal of Computer Applications (0975 – 8887)

Volume 176– No.29, June 2020

53

public-key cryptosystems are vulnerable to.

Since NTRU algorithm has been around for a while, it would

be easier for hackers to find a way around it and funnel funds,

liquid assets and/or confidential information from online

accounts. The proposed method increases the complexity of

breaching into such accounts by introducing additional layers

of security that is purely based on fundamental mathematics

while ensuring a practically feasible time for execution.

15. REFERENCES
[1] Ajtai, M. (1996). Generating Hard Instances of Lattice

Problems. ACM Symposium on Theory of Computing.

Philadelphia, Pennsylvania: Association for Computing

Machinery.

doi:https://dl.acm.org/doi/10.1145/237814.237838

[2] Brady, R., Davis, N., & Tracy, A. (2010, July).

Encrypting with Elliptic Curve Cryptography. Retrieved

from

https://www.math.purdue.edu/~egoins/notes/Encrypting_

Text_Messages_via_Elliptic_Curve_Cryptography.pdf.

[3] Menon, U., & Bhowmik, A. (2020, March). NTRU

Cryptography. Retrieved from

https://github.com/7enTropy7/NTRU_cryptography.

[4] Micciancio, D. (2005). Closest Vector Problem.

SpringerLink. doi:https://doi.org/10.1007/0-387-23483-

7_66.

[5] Micciancio, D. (2005). Shortest Vector Problem.

SpringerLink. doi:https://doi.org/10.1007/0-387-23483-

7_392.

[6] NTRU. (n.d.). Retrieved from LatticeHacks:

https://latticehacks.cr.yp.to/ntru.html.

[7] Silverman, J. H. (2015, January 12-16). NTRU and

Lattice-Based Crypto: Past, Present, and Future. The

Mathematics of Post-Quantum Cryptography. Retrieved

May 19, 2020, from

http://archive.dimacs.rutgers.edu/Workshops/Post-

Quantum/Slides/Silverman.pdf.

[8] Stallings, W. (2017). Finite Fields. In W. Stallings, The

principles and Practice of Cryptography and Network

Security 7th Edition (Vol. 20, pp. 123-152). Pearson

Education.

[9] Szudzik, M. (2006). An Elegant Pairing Function.

Washington, DC. Retrieved from

http://szudzik.com/ElegantPairing.pdf.

[10] Union of Equivalence Classes is Whole Set. (n.d.).

Retrieved from ProofWiki:

https://proofwiki.org/wiki/Union_of_Equivalence_Classe

s_is_Whole_Set.

[11] Zhang, Z. (2017, July 12). A short review of the NTRU

cryptosystem. Retrieved from

https://www.slideshare.net/OnBoardSecurity/a-short-

review-of-the-ntru-cryptosystem.

IJCATM : www.ijcaonline.org

