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ABSTRACT 
NTRU is an open-source public key cryptosystem that uses 

lattice-based cryptography to encrypt and decrypt data. Unlike 

other popular public-key cryptosystems, it is resistant to 

attacks using Shor's Algorithm and its performance has been 

shown to be significantly greater. This paper talks about how 

Koblitz encoding from Elliptic Curve Cryptography (ECC) 

can be used to convert each character in a dataset to a point on 

an elliptic curve. A sum of squares analogy is pitted against 

the cantor pairing function to turn the point to a single 

number, which is converted to a sequence of coefficients in  . 

A polynomial is then generated for each of these characters. 

Then the polynomial is reduced, and then shown that choosing 

appropriate parameters for the cryptosystem can make it 

highly secure and that the decryption algorithm turns out 

taking linear time. Since each character is represented by its 

own polynomial, it increases obscurity thereby increasing the 

complexity for decryption and thus the security level. A form 

of data compression has also been implemented and it has 

been tested whether data compression and expansion during 

the encryption-decryption process results in original data with 

no or minimal loss. 

General Terms 

Data Security 

Keywords 

Post quantum cryptography, lattice-based encryption, 

quantum cryptography, Koblitz encoding, post quantum 

cryptosystem, ntru cryptography, ntru cryptosystem. 

1. INTRODUCTION 

1.1 Why Lattice Cryptography 
The real reason (Zhang, 2017) 

 In 1994, Shor’s Algorithm broke RSA and ECC 

with quantum computers 

 2015, NSA announcement: prepare for the quantum 

apocalypse 

 2017, NIST call for competition/standardization 

Further usefulness (Zhang, 2017) 

 Good understanding of underlying hard problem 

 Fast, parallelable, hardware friendly 

 Numerous applications, FHE, ABE, MMap, 

Obfuscation 

Data vaulting attack (Zhang, 2017) 

 Also known as harvest-then-decrypt attack 

 Data needs to be secret for, let’s say, 30 years 

 Quantum computer arrives in, let’s say, 15 years 

 Perhaps the most practical attack in cryptography 

Encrypt Schemes (Zhang, 2017) 

 NTRUEncrypt – standardized by IEEE and ASC X9 

Signature Schemes (Zhang, 2017) 

 BLISS (NTRU) 

 pqNTRUSign (NTRU) 

This paper focuses on the NTRUEncrypt and NTRUDecrypt 

algorithm 

2. KOBLITZ ENCODING AND 

DECODING ALGORITHM 
The encoding algorithm (Brady, Davis, & Tracy, 2010) is as 

follows 

 Given a message  , convert each character    into 

a number    using Unicode, where       and 

         

 Convert the message   into an integer using  

      
   

 

   

 

In practice an       is chosen such that   

satisfies  

            

 A number   is fixed such that   
 

 
. In practice the 

prime   is chosen large enough so that       can 

be allowed. 

 For integers             , the following are 

performed 

   coordinate of a point on the elliptic curve is 

computed as  

                where    
  

 
  

 Compute       
              

 If     
   

          , then   coordinate of a point 

on the elliptic curve is defined as    

    
   

       . Return the point        . 

Thus, the message   is encoded as an element of the Abelian 

group        . The following is performed for decryption. 

 Considering each point       and setting  
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Which is essentially means     
 

    
       . Thus, 

each character is recovered and concatenated to produce 

the original message  . 

3. EQUIVALENCE CLASS MODULO 3 
Any number divided by   can result in remainders        . So, 

any number divided by   is one of             . This is 

useful in constructing the trinary basis             . The 

elements in the basis forms the coefficients of the polynomial 

in (1). 

Theorem 1. Let       be an equivalence class on a set  . 

Then the set of  -classes constitutes the whole of  . 

Proof. 

              Definition of equivalence class 

                           Assertion of universality 

                          Definition of set union 

                            Assertion of universality

        Definition of a subset 

Also: 

                     Definition of equivalence class 

                      Assertion of universality 

By definition of set equality  

       

And so, the set of all  -classes constitutes the whole of   

(Union of Equivalence Classes is Whole Set, n.d.) 

4. CANTOR PAIRING FUNCTION 
This is an elegant function proposed by the Russian 

mathematician George Cantor that takes in two natural 

numbers and turns it into a single number. This function is a 

primitive recursive pairing function. (Szudzik, 2006) 

        

And is defined by 

       
 

 
                                   

Due to the way its defined, this is a one-to-one and onto 

function, which means it is invertible. This consequently 

means that given a single number, it can be readily mapped 

back to a unique       ordered pair. 

In order to retrieve an ordered pair       from a given  , the 

following transformations are used 

      

  
 

 
       

      

From the second equation, cross multiplying gives a quadratic 

in   

          

Solving it gives us 

  
       

 
 

which is a strictly increasing and continuous function 

when   is non-negative real. Since 

                
            

 
 

This implies that 

  
       

 
     

And thus 

   
       

 
  

Finally calculate   and   from   as follows 

   
       

 
  

  
    

 
 

      
      

5. LATTICE CRYPTOGRAPHY 
What is a lattice? (Zhang, 2017) 

A lattice is a (maximal) discrete subgroup of    for some  -

basis, or equivalently it consists of all the integral 

combinations of     linearly independent vectors over  .  

                                       

Where   is the dimension and                is the   

basis. Here is an example.  

   
 

 

 
  

 

 
   

  

Here         and hence    . 

The discriminant of   is the volume of a fundamental 

domain  

        Vol                          

Lattices have been extensively studied since (at least) the 19th 

century and have applications throughout mathematics, 

physics and computer science. For many applications, both 

theoretical and practical, one is interested in finding short 

non-zero vectors in  . (Silverman, 2015) 

Short Vectors – Theory (Silverman, 2015) 

A famous theorem of Hermite (1870s) says that a lattice   

contains a non-zero vector     satisfying  

                   

The optimal value for   , called Hermite’s constant, is 

known only for    , but for large   the following holds true 

                

The shortest vector problem (SVP) (Micciancio, 2005) is 

that of determining the shortest non-zero vector in  . 

Hermite’s theorem suggests that in a “random” lattice, 

                               

The closest vector problem (CVP) (Micciancio, Closest 

Vector Problem, 2005) is that of determining the vector in   

that is closest to a given non-lattice vector  . 
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In low dimension it is not too hard to find short(est) vectors. 

But as the dimension increases, it becomes very hard. A 

computational breakthrough is the 

LLL Algorithm 1982. Let          and let      denote 

the length of the shortest non-zero vector in  . Then there is a 

polynomial time algorithm to find a non-zero vector     

satisfying  

       
 
       

Many improvements have been made, but there is currently no 

algorithm that finds a vector satisfying 

                     

faster than      . This suggests using SVP and CVP as the 

basis for cryptographic algorithms. 

 All crypto talks begin with an image of a dim-2 

lattice 

 There is an infinitude of bases which is formed due 

to matrix multiplication of   and some other matrix 

 It involves solving the shortest vector problem 

(SVP). The exact version of the problem is only 

known to be NP-hard for randomized reductions 

(Ajtai, 1996). In this paper, something similar has 

been discussed in the proposed algorithm. Here a 

parameter   is calculated with the sum of squares 

and cantor pairing function separately, rather than 

the    norm. 

6. NTRUEncrypt 
NTRU operations are based on objects in a truncated 

polynomial ring                with convolution 

multiplication and all polynomials in the ring have integer 

coefficients and degree at most     (Stallings, 2017): 

               
         

        (1) 

 

where                 . The product is denoted by  . In 

terms of convolutions, (Silverman, 2015) 

                       
             

 

7. PROPOSED ALGORITHM 
1. Input an arbitrary string containing alphanumeric 

and/or special characters. 

2. Split into characters and pass through Koblitz 

encoder 

3. Each character in the string is turned into a point on 

an elliptic curve           , whose 

parameters     are user defined. 

4. Convert point(s)       to a single number using the 

parametrization         or by using  

         and apply modulo   to turn it into 

ternary base number. 

                 

Store these ternary numbers into a list. There should 

be multiple such lists due to multiple characters in 

the original string. 

5. Find the maximum size among these lists. For the 

smaller lists, padding is applied to maintain 

consistency in the lists’ sizes. 

6. Using these ternary values from each list, every 

character in the string is represented as a 

polynomial. 

7. Generate public and private keys. (NTRU, n.d.) 

8. Public key is used to run NTRUEncrypt() and 

generate cipher text. 

9. Private key is used to run NTRUDecrypt() and 

obtain original lists of ternary numbers. 

10. Reapply padding. 

11. A method called ternary_to_decimal() is applied to 

convert the padded lists into       points. 

12. These points are passed through Koblitz decoder to 

obtain the list of characters. Combining these 

characters, finally facilitates the retrieval of the 

original plain text.
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8. ALGORITHM FLOW DIAGRAM 

  

Figure 1: Flow diagram for proposed algorithm 

9. AN ATTEMPT ON LOSS LESS 

ENCODING 
Messages encrypted by the Koblitz method results in a long 

list of polynomials. It is safe to assume that the length of this 

list increases linearly with the length of message. Hence, a 

modification to the algorithm in Figure 1. was attempted by 

converting the polynomials into a gray scale map to obtain 

some sort of data compression. Let’s say Alice encrypts a 

message “Enhancing the NTRU cryptosystem”. This 

algorithm will generate a ciphertext which is a collection of 

polynomials having the same order. It was observed that a 

convenient way to send this collection of polynomials would 

be to first map all the coefficients of the polynomials into the 

range of      . Then these values are used to make a greyscale 

mapping image. Alice sends over this image to Bob. On the 

other side, Bob takes the image and reads all the pixel values 

and can recover back the coefficients of the collection of 

polynomials using the secret key. Then he can continue with 

the decryption process.     

Several attempts were tried to save the [0,1] pixel values into 

an image and read back the coefficients. 

The first attempt involved PNG image format and produced 

results that were correct up to 2 decimal places only. This 
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means that this format produced a large percentage error. 

Another thing to notice is that this involved only 8-bit 

precision unsigned integers. However, using TIFF image 

format with 64-bit precision unsigned integers resulted in a 

much better match between the encrypted and the decrypted 

matrix. But even then, there were a lot of loss during 

compression. So, this procedure may not be a feasible step to 

include in a revised algorithm. Following is a sample gray 

scale map that was generated for the message, “Enhancing the 

NTRU cryptosystem”. 

 

Figure 2: Grayscale map of data compression 

Remark: It is to be noted that every character in the input 

string is treated differently, i.e. if the message is “banana”, 

then each of the characters have a different random 

polynomial. The polynomials for all 3 a's and both n's are 

distinct. This is what makes this cryptosystem more secure. 

Following is a sample test run of the lossless encoding 

program. 

Enter Message: Awnon 

Curve Parameters 

Enter A: 9 

Enter B: 7 

Public Key = (-52x^14) + (38x^13) + (-1x^12) + (-25x^11) + 

(10x^10) + (8x^9) + (-20x^8) + (39x^7) + (-32x^6) + (34x^5) 

+ (-64x^4) + (-51x^3) + (10x^2) + (52x) + (29) 

Encrypted =  

[[62, 2, 14, 44, -16, 36, -35, -57, -62, -29, -47, 33, 6, 48, 25], 

[-23, 4, -42, 54, -60, 23, -50, 17, 36, -9, 2, 41, 26, 34, -52], 

[54, -51, -18, 23, -26, 2, -38, 32, 13, -19, 40, -15, 56, -43, -

36], [39, -57, 29, 22, -41, 43, 29, 8, -17, 5, -61, 20, 53, 60, -

56], [-49, 62, 6, 2, -52, 39, -49, 6, -37, 46, -4, 1, 26, -38, -35]] 

 
Figure 3: Grayscale map of sample test run  

 

 

 

 

 

And here is the following attempt at decoding the coefficients 

of the polynomial from the grayscale image. 

Data Type: float64 

Min: 0.000, Max: 1.000 

[[1. , 0.51612903, 0.61290323, 0.85483871, 0.37096774, 

0.79032258,  0.21774194, 0.04032258, 0., 0.26612903, 

0.12096774, 0.76612903, 0.5483871,  0.88709677, 

0.7016129], [0.31451613, 0.53225806, 0.16129032, 

0.93548387, 0.01612903, 0.68548387, 0.09677419, 

0.63709677, 0.79032258, 0.42741935, 0.51612903, 

0.83064516, 0.70967742, 0.77419355, 0.08064516], 

[0.93548387, 0.08870968, 0.35483871, 0.68548387, 

0.29032258, 0.51612903, 0.19354839, 0.75806452, 

0.60483871, 0.34677419, 0.82258065, 0.37903226, 

0.9516129, 0.15322581, 0.20967742], [0.81451613, 

0.04032258, 0.73387097, 0.67741935, 0.16935484, 

0.84677419, 0.73387097, 0.56451613, 0.36290323, 

0.54032258, 0.00806452, 0.66129032, 0.92741935, 

0.98387097, 0.0483871 ], [0.10483871, 1., 0.5483871,  

0.51612903, 0.08064516, 0.81451613, 0.10483871, 

0.5483871, 0.2016129,  0.87096774, 0.46774194, 

0.50806452, 0.70967742, 0.19354839, 0.21774194]] 

>>>print(decoded_coefficients) 

[[62, 2, 14, 44, -16, 36, -35, -57, -62, -29, -47, 33, 6, 48, 25], 

[-23, 4, -42, 54, -60, 23, -50, 17, 36, -9, 2, 41, 26, 34, -52], 

[54, -51, -18, 23, -26, 2, -38, 32, 13, -19, 40, -15, 56, -43, -

36], [39, -57, 29, 22, -41, 43, 29, 8, -17, 5, -61, 20, 53, 60, -

56], [-49, 62, 6, 2, -52, 39, -49, 6, -37, 46, -4, 1, 26, -38, -35]] 

 

>>>print(coefficients) 

[[62, 2, 14, 44, -16, 36, -35, -57, -62, -29, -47, 33, 6, 48, 25], 

[-23, 4, -42, 54, -60, 23, -50, 17, 36, -9, 2, 41, 26, 34, -52], 

[54, -51, -18, 23, -26, 2, -38, 32, 13, -19, 40, -15, 56, -43, -

36], [39, -57, 29, 22, -41, 43, 29, 8, -17, 5, -61, 20, 53, 60, -

56], [-49, 62, 6, 2, -52, 39, -49, 6, -37, 46, -4, 1, 26, -38, -35]] 

 

And finally, the following code snippet checks for matching 

elements in the two lists, containing encoded and decoded 

values. 

>>>if coefficients == decoded_coefficients: 

           print('Complete Match!') 

       else: 

            print('Not Equal!') 

>>>Complete Match! 
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10. RESULT 
The following is a snapshot of the console application program in action.

 

Figure 4: Sample test run of the entire process 

It starts off by choosing the elliptic curve parameters. This 

generates a long polynomial as a public key. The orders of the 

polynomials are all equal to the order of the polynomial in the 

public key. Since every character gets its own     order 

polynomial, the encrypted version looks messy. But the 

decrypted string turns out to be an exact match with the 

original string showing that the method indeed works out fine. 

11. EXPERIMENTS BY VARYING 

PARAMETERS 

11.1 Valid elliptic parameters vs string 

length 
1. A custom string of length    is taken such that it 

consists of all alphanumeric characters, special 

characters and space. 
2. A       complexity loop is run to check for       

in range           . 
3. Due to lack of recommended processing power, the 

program breaks out of the loop as soon as the first 

combination is found. The combination turned out 

to be                 
4. The original string is shuffled     times to make 

    different strings of length   . 
5. For each of the shuffled strings, only the first    

characters are considered due to shortage of 

processing power. So basically, then there will be 

    strings of length    that comprises of any 

random character on the English keyboard. 
6. The encrypt-decrypt function is executed on these 

strings. The job of the encrypt-decrypt function is to 

return true only if the decrypted message matches 

perfectly with the input plaintext. 

It was observed that for each of the     test cases, the 

encrypt-decrypt function returns true. 

 

11.2 String length vs time to 

encrypt/decrypt 
A function was written on Jupyter Notebook to test out the 

relationship between string length   (x-axis) and time of 

encryption/decryption           (y-axis). Following graph 

was obtained. 

 

Figure 5: String length vs time to encrypt 

A best fit shape through these points is a straight line through 

the origin. It can be safely assumed that for an arbitrary string 

length  , time to encrypt      and time to decrypt     , the 

following holds true 

        

        

To test the authenticity of the encryption paradigm the elliptic 

curve parameters were fixed at                . A 

custom string of length    was generated that contained 

numeric values, alphabets (upper and lower case), special 

characters, spaces etc. and generated     new strings by 

randomly shuffling the elements of this custom string. It was 
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observed that for each of the     test cases, the program was 

able to successfully retrieve the original message after 

completing an encrypt-decrypt cycle. 

11.3 String length vs time to 

encrypt/decrypt 
Here, the curve parameters were kept as       
         . A string of length    was considered that 

contained alphanumeric and special characters from the 

keyboard, with repetition.     such strings were generated by 

randomly shuffling all characters in the 20-character string. 

The following is a plot of test runs involving randomly 

shuffled strings vs the time of encrypt-decrypt cycle. 

 

Figure 6: Shuffled String vs Encrypt-Decrypt Time 

11.4 Comparison between sum of squares 

and cantor pairing function 
A performance analysis was carried out between the two 

different parametrizations of      , namely the sum of square 

and the cantor pair function. A variable string length of 100-

1000 characters were tested for the encrypt-decrypt cycle 

using both the sum of square and the Cantor pairing function, 

one at a time. Following results were obtained. 

Table 1: Time analysis – sum of squares vs cantor pairing 

function 

String 

Length 

Sum square 

(seconds) 

Cantor pair 

(seconds) 

Ratio 

100 14.768 0.313 
47.182 

200 33.215 0.460 
72.207 

300 50.062 0.744 
67.288 

400 66.053 0.734 
89.990 

500 83.220 1.118 
74.436 

600 96.327 1.255 
76.755 

700 116.220 1.415 
82.134 

800 126.006 1.770 
71.189 

900 156.052 1.900 
82.133 

1000 165.771 2.102 
78.863 

Here is a plot showing the comparison between the two 

methods. Clearly the Cantor function is more efficient and 

helps keep the already complex algorithm as simple as 

possible. It can be clearly seen that at certain times, the Cantor 

pairing function is 90 times faster than the sum of squares 

parametrization. 

 

Figure 7: Effect of string length vs time of encrypt-decrypt 

cycle 

12. CONJECTURE 
1. The elliptic curve parameter                 

works irrespective of the string length of the 

message and the type of characters present in the 

string. 

2.                 is one of the many 

combinations of elliptic curve parameter that works. 

Proof of this is dependent on greater computational 

power. 

13. FUTURE WORK 
There are plans to wrap up the entire application into a pip 

install package which would be available for general public 

use. NTRU algorithm has been around for a while but there is 

still no official implementation of this algorithm in libraries 

such as pycryptodome. It would be nice if this program 

becomes a part of the existing library. It will serve as a great 

security layer against post quantum cryptography. Further, 

this application will be used as a security layer for a web 

socket based client server chat app, built with Tkinter. For the 

moment, the work done so far has been compiled into a 

GitHub repository (Menon & Bhowmik, 2020). It has been 

observed that using the NumPy module instead of the math 

module makes quick work of calculations that were coded 

from scratch. This would also fix some formatting issues and 

make the polynomial more legible. 

14. CONCLUSION 
This paper inspects a method that makes use of concepts 

stemming from the core of elliptic curve cryptography and the 

Cantor pairing function, in order to increase the complexity 

for decryption, thereby increasing the security level of the 

existing lattice based NTRU cryptosystem. An analysis has 

been performed on how introducing these concepts and tuning 

the appropriate set of parameters can lead to a much more 

stable and secure encryption – decryption cycle with a lower 

time complexity.  

This research is significant because as of 2020, the most 

popular public-key algorithms can be broken by a sufficiently 

strong quantum computer. NTRU is resistant to attacks based 

on quantum computing, to which the standard RSA and ECC 



International Journal of Computer Applications (0975 – 8887)  

Volume 176– No.29, June 2020 

53 

public-key cryptosystems are vulnerable to.  

Since NTRU algorithm has been around for a while, it would 

be easier for hackers to find a way around it and funnel funds, 

liquid assets and/or confidential information from online 

accounts. The proposed method increases the complexity of 

breaching into such accounts by introducing additional layers 

of security that is purely based on fundamental mathematics 

while ensuring a practically feasible time for execution. 
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