
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 29, June 2020

37

Dragon Crypto – An Innovative Cryptosystem

Awnon Bhowmik
Department of Mathematics and Computer Science

CUNY York College
94 – 20 Guy R. Brewer Blvd

Jamaica, NY 11451

Unnikrishnan Menon
Department of Electrical and Electronics Engineering

Vellore Institute of Technology, Vellore
Tamil Nadu 632014

ABSTRACT

In recent years cyber-attacks are continuously developing.

This means that hackers can find their way around the

traditional cryptosystems. This calls for new and more secure

cryptosystems to take their place. This paper outlines a new

cryptosystem based on the dragon curve fractal. The security

level of this scheme is based on multiple private keys, that are

crucial for effective encryption and decryption of data. This

paper discusses, how core concepts emerging from fractal

geometry can be used as a trapdoor function for this

cryptosystem.

General Terms

Data Security, Recreational Cryptography

Keywords

Dragon curve, dragon fractal, dragon curve fractal, heighway

dragon curve, heighway dragon fractal, cryptography,

cryptosystem, crypto system, secure encryption, Iterative

Function System, IFS, iteration, iteration, precision, trapdoor

function.

1. INTRODUCTION
Fractals are just a self-replication of a pattern. There are many

fractals that are found in nature. One such fractal curve is

known as Heighway Dragon, or simply the Dragon Curve.

Because this is a fractal, hence it requires an IFS (Iterated

Function System). In simple words, an initial simple pattern is

made and thrown into a recursive function, before running a

loop and calling the function repeatedly until the required

objective is accomplished. The idea of this cryptosystem came

up due to the blog post (Bhowmik & Menon, 2018) about

coding up a dragon curve fractal and recently while playing

around with twin dragon, tetra dragon and septa dragon

curves, which was generated as a fun part of this project and

named the rainbow dragon (Bhowmik & Menon, Rainbow

Dragon, 2020) since each part was given a color of the

VIBGYOR.

2. THE DRAGON FRACTAL
A fractal is just a repetition of an initial geometric shape. This

is generated by something known as the Iterative Function

System (IFS). The dragon curve is one such fractal. There are

multiple ways to generate this fractal.

2.1 Generating the Dragon Fractal
This dragon curve fractal, or its generation algorithm forms

the basis of this cryptosystem, and hence the proposed name

Dragon Crypto. Here, an arbitrary string of characters is

passed through the Koblitz Encoder to obtain the starting

point for the IFS.

The iterations of the dragon curve can easily be generated by

folding a strip of paper 𝑛 number of times. A strip of paper is

taken and folded in half, to the right. This process is repeated,

folded in half again to the right. The process is continued as

many times as required, which is usually many times. It can

be easily noticed that it will be hard to fold the strip after a

certain point. Suppose the strip is folded twice. When

unfolded and relaxed, it is observed that every bend/corner of

the strip has a 90∘ turn. It is now the second iteration of the

dragon curve. If it is folded again and opened, it would be the

third iteration and so on. Following is a visual of what is

described here…

Figure 1. Paper folding method

Now all that’s left to do is to visualize a turtle walking along

these lines and it should be able to predict how to move. Let F

= forward, L = left, R = right. The following sequences are

associated with the respective iterations…

 1st iteration – F L F L

 2nd iteration – F L F L F R F L

 3rd iteration – F L F L F R F L F L F R F R F L

If the 𝑛𝑡ℎ iteration is known, then the 𝑛 + 1 𝑡ℎ iteration can

be predicted in the following way. Suppose the objective is to

derive the third iteration from the second iteration

 The last element of the sequence if ignored for the

moment (F L F L F R F). In the remaining elements,

the L’s and R’s are switched. The sequence now

becomes (F R F R F L F R)

 Now the elements about the midpoint are flipped.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 29, June 2020

38

The sequence turns into (R F L F R F R F)

 The last element which was ignored in the first step

is appended to the sequence (R F L F R F R F L)

 Appending the result of step 4 to the 1st iteration

will generate the 3rd iteration.

Using the same logic, the next iterations can be predicted. A

fractal curve generated with 15 iterations is as follows…

Figure 2. Dragon Curve Fractal

3. KOBLITZ ENCODING AND

DECODING ALGORITHM
The encoding algorithm (Brady, Davis, & Tracy, 2010) is as

follows

 Given a message 𝑀, convert each character 𝑚𝑘 into

a number 𝑎𝑘 using Unicode, where 𝑏 = 216 and

0 < 𝑎𝑘 < 216

 Convert the message 𝑀 into an integer using

𝑚 = 𝑎𝑘𝑏
𝑘−1

𝑛

𝑘=1

In practice an 𝑛 ≤ 160 is chosen such that 𝑚

satisfies

𝑚 ≤ 216⋅160 < 𝑝

 A number 𝑑 is fixed such that 𝑑 ≤
𝑝

𝑚
. In practice the

prime 𝑝 is chosen large enough so that 𝑑 = 100 can

be allowed.

 For integers 𝑗 = 0,1,2, …𝑑 − 1, the following are

performed

 𝑥 coordinate of a point on the elliptic curve is

computed as

𝑥𝑗 = 𝑑𝑚 + 𝑗 𝑚𝑜𝑑 𝑝 where 𝑚 =
𝑥𝑗

𝑑

 Compute 𝑠𝑗 = 𝑥𝑗
3 + 𝐴𝑥 + 𝐵 𝑚𝑜𝑑 𝑝

 If 𝑠𝑗
𝑝+1

2 ≡ 𝑠𝑗 𝑚𝑜𝑑 𝑝, then 𝑦 coordinate of a point

on the elliptic curve is defined as 𝑦𝑗 =

 𝑠𝑗
𝑝+1

4 𝑚𝑜𝑑 𝑝. Return the point 𝑥𝑗 , 𝑦𝑗 .

Thus, the message 𝑀 is encoded as an element of the Abelian

group 𝐺 = 𝐸 𝔽𝑝 . The following is performed for decryption.

 Considering each point 𝑥, 𝑦 and setting

𝑚 =
𝑥 − 1

𝑘

Which is essentially means 𝑎𝑘 =
𝑚

𝑏𝑘−1
 𝑚𝑜𝑑 𝑏. Thus,

each character is recovered and concatenated to produce

the original message 𝑀.

4. EQUIVALENCE CLASS MODULO 4
Any number divided by 4 can result in remainders 0,1,2,3 .
So, any number divided by 4 is one of 4𝑟, 4𝑟 + 1,4𝑟 + 2,4𝑟 +
3. However, if only odd numbers are considered, they are of

the form 4𝑟 + 1 or 4𝑟 + 3. Numbers of these forms are useful

in figuring out important information regarding the dragon

curve and could be an element of penetration attempt by an

interceptor. This is described in detail at a later section.

Theorem 1. Let 𝑅 ⊆ 𝑆 × 𝑆 be an equivalence class on a set 𝑆.

Then the set of ℛ-classes constitutes the whole of 𝑆.

Proof.

∀𝑥 ∈ 𝑆: 𝑥 ∈ 𝑥 ℛ Definition of equivalence class

¬ ∃𝑥 ∈ 𝑆: 𝑥 ∉ 𝑥 ℛ Assertion of universality

¬ ∃𝑥 ∈ 𝑆: 𝑥 ∉∪ 𝑥 ℛ Definition of set union

∀𝑥 ∈ 𝑆: 𝑥 ∈∪ 𝑆/ℛ Assertion of universality

𝑆 ⊆∪ 𝑆/ℛ Definition of a subset

Also:

∀𝑋 ∈ 𝑆/ℛ: 𝑋 ⊆ 𝑆 Definition of equivalence class

∪ 𝑆/ℛ ⊆ 𝑆 Assertion of universality

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 29, June 2020

39

By definition of set equality

∪ 𝑆/ℛ ⊆ 𝑆

And so, the set of all ℛ-classes constitutes the whole of 𝑆.

(Union of Equivalence Classes is Whole Set, n.d.)

5. TRAPDOOR FUNCTION
A trapdoor function is a highly useful concept in modern

cryptography. These are functions that are easy to compute in

one direction but extremely hard to compute in reverse if

certain parameters or critical information for reversal is

lacked. The main novelty of this cryptosystem is the use of the

Heighway Dragon Fractal as a trapdoor function. The

algorithm starts off with a secret message that needs to be

encrypted (called the plainText).

The Koblitz Encoder accepts the plainText along with the

curve parameters (obtained from the private key). The Koblitz

Encoder spits out an encoded point in 2D Cartesian space for

each character present in the plainText with the help of curve

parameters. These points are now the starting point of the

dragon curve fractals. For each character, a corresponding

starting point and a dragon fractal are generated.

Now the components of the private key (including size,

iterations, angle) are used to generate the fractal for each

character from their corresponding starting points.

5.1 Private key parameters
The following are the private keys involved in the

cryptographic algorithm

1. The size defines the length of each forward step

2. The number of iterations for generating the fractal

3. The starting angle for the fractal

4. Elliptic curve parameters 𝑎 and 𝑏 for the function

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

Once the fractals are generated for each encoded starting

point, the corresponding endpoints are noted and stored.

𝑝𝑠𝑡𝑎𝑟𝑡 = 𝑥𝑖 , 𝑦𝑖 , 𝑖 = 1,2, … , 𝑛

𝑝𝑒𝑛𝑑 = 𝑥𝑗 , 𝑦𝑗 , 𝑗 = 1,2, … , 𝑛

6. PROPOSED ALGORITHM
1. Input an arbitrary string, and split into list of

characters, spaces and special characters

2. Encryption

a. Each character’s ASCII representation is passed

through the Koblitz Encoder (using Koblitz

algorithm in section). Every character is then

represented by a point 𝑥𝑖 , 𝑦𝑖 on the Cartesian

coordinate. The set of these points are initial starting

points.

b. For a fixed length 𝑙, an angle 𝜃 and a fixed number

of iterations 𝑛 for all characters (or points) in the

set, a dragon fractal is generated. The end point

 𝑥𝑗 , 𝑦𝑗 is stored into another list.

c. A special padding is applied on the list of end points

as follows

"𝑋𝑥1𝑋𝑥2 ⋯𝑋𝑥𝑛𝑋𝑌𝑦1𝑌𝑦2 ⋯𝑦𝑛𝑌"

This turns it into a string. This string is the

encrypted cipher text.

3. Decryption

a. Padding is removed and points are regenerated. The

string is parsed through and split into two sequences

about the "𝑋𝑌" mark. So now there are two strings

𝑋𝑥1𝑋𝑥2 ⋯𝑋𝑥𝑛𝑋 and 𝑌𝑦1𝑌𝑦2 ⋯𝑦𝑛𝑌

Next, the ordered set 𝑥𝑗 , 𝑦𝑗 of endpoints are recovered by

parsing through the two strings.

b. The list of end point coordinates is taken and based

on the parameters present in the private key (size,

iterations, angle), a dragon curve fractal is generated

in reverse by initializing the turtle at an endpoint

facing the correct direction based on the angle. If

the private key parameters are all correct, this

reverse tracing means the fractal will end at the

initial starting point. This process is repeated for all

characters. The points obtained are stored in a list.

c. The list of points obtained from previous step is

passed through the Koblitz Decoder. This returns

the list of ASCII values of each character in the

original string. This is then converted to list of

characters and joined to retrieve the original string.

7. PROBABLE IMPLICABLE TACTICS

BY INTERCEPTOR

7.1 Determining the turn in the fractal
The number of iterations 𝑛 in the algorithm described above is

a private key. If somehow an interceptor can obtain this value,

they can very easily determine the left or right turn in any of

those 𝑛 iterations. This gives them an idea about the trajectory

taken by the fractal for a certain character in the original

message during the encryption procedure. The turn

determination is done by doing the following

 𝑛 = 2𝑚𝑘, where 𝑘 is obviously odd

 𝑘 𝑚𝑜𝑑 4 =
1, 𝑘 = 𝐿
3, 𝑘 = 𝑅

which is known as the left right rule (Geometry). But they

would need to generate each turn, feed it to a list and make the

turtle follow that sequence. For example, a sequence of
 0,1,2,3 = 𝐹, 𝐿, 𝐹, 𝑅 . Notice that 0 and 2 corresponds to

forward movement in the already set direction only. But for a

given large number of iterations, it is hard to determine where

the curve originated from since the interceptor lacks the

starting encoding values 𝑥𝑖 , 𝑦𝑖 of the characters to be

encrypted.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 29, June 2020

40

Figure 3. Determining the turn in fractal

7.2 Variation in the fractal parameters
If the list of starting and ending points of the characters, is

available to the interceptor, he cannot generate the exact

fractal connecting the two points since the length, angle and

the number of iterations is unknown. It can also be that

someone can tweak the existing program such that the length

or the angle switches to a different value after a certain

number of iterations, which could be regarded as a form of

“period”, making it quite impossible for the interceptor.

7.3 Euclidean distance as a public key
Consider the scenario consisting of Alice and Bob with Eve

being the eavesdropper, or interceptor according to this

section so far. Eve knows the angle and the Euclidean

distance between the starting points (plain text) and the

ending points (cipher text). Eve still won’t be able to initiate

decryption procedure since she lacks knowledge of number of

iterations and step size (length), since the fractal can be

generated in

1. Keeping the length small, and the iterations

relatively large

2. Keeping the length large, and the iterations

relatively small

If Eve does not have access to the right combination of length

and the number of iterations, decryption would be impossible

Figure 4. Sample Test Run

8. RECURSIVE METHOD OF

FRACTAL GENERATION
Even though section 2 explains a way to generate a fractal,

there are recursive mathematical equations or IFS (Bourke,

Macintosh IFS manual, 1990), that can map each coordinate

of a fractal given an initial set of parameters such as

𝑥𝑛+1 = 𝑎𝑥𝑛 + 𝑏𝑦𝑛 + 𝑐

𝑦𝑛+1 = 𝑑𝑦𝑛 + 𝑒𝑥𝑛 + 𝑓

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 29, June 2020

41

Figure 5. Rainbow Dragon with IFS

9. EXPERIMENTAL ANALYSIS
Following is a table depicting the time taken to complete

encrypt-decrypt cycle for different plaintext sizes. Only a few

values are shown in the table, but the graph shows all the

points.

Table 1. Cycle time for varying plaintext size

Plaintext Length Time for encrypt-decrypt cycle

26 6.41

1066 279.69

2106 626.09

3146 1106.89

4186 1577.13

5226 2019.75

6266 2794.44

The execution time of the application can be shortened if the

rendering of the fractal generation is turned off on the

viewport.

Figure 6. String Length vs. Cycle Time

Experiments were performed by varying the elliptic curve

parameters 𝐴, 𝐵 ∈ −10,10 . The fractal parameters were kept

constant and the plaintext string consisted of randomly

shuffled characters that are found on a standard English

keyboard. It was observed that for all combinations of the

curve parameters, the decrypted message perfectly matched

with the original plaintext without any errors.

10. CONCLUSION
In this paper, a new encryption algorithm was proposed based

on the well-known dragon curve fractal. Cryptography is a 40

year old topic where a lot has been discovered but a lot more

yet remains unknown. The essence of any traditional

cryptosystem relies on three hard mathematical problems: the

integer factorization problem, the discrete logarithm

problem (Silverman, 2006) or the elliptic curve discrete

logarithm problem. Shor's algorithm can be used to easily

compromise the security of these conventional cryptosystems.

So, for a secure future, it is critical to come up with innovative

trapdoor functions that can be incorporated in the heart of the

encryption scheme.

The proposed algorithm is working based on the appropriate

parameters. It has been noticed that the run time complexity

can be drastically reduced by using smaller number of

iterations while increasing the length to compensate for the

precision of the endpoint as well as the Euclidean distance

from the start point. So far, no edge cases have been found,

but the presence of one or more is suspected. This is

dependent on the calculation precision of the machine. The

work described in this paper is available here (Bhowmik &

Menon, Dragon-Crypto, 2020)

11. REFERENCES
[1] Bhowmik, A., & Menon, U. (2018, May 9). Taming the

Dragon. Retrieved from CodeFather - Quora:

https://www.quora.com/q/rrqrrlbcxwyhoqay/The-

Dragon-Curve-Fractal-in-Python

[2] Bhowmik, A., & Menon, U. (2020, 4 27). Dragon-

Crypto. Retrieved from

https://github.com/awnonbhowmik/Dragon-Crypto

[3] Bhowmik, A., & Menon, U. (2020, April 30). Rainbow

Dragon. Retrieved May 24, 2020, from

https://github.com/awnonbhowmik/Dragon-

Crypto/blob/master/RainbowDragon.py

[4] Bourke, P. (1990, May). Macintosh IFS manual.

Retrieved from Paul Bourke:

http://paulbourke.net/fractals/ifs/

[5] Bourke, P. (1991, July). L-System User Notes. Retrieved

from Paul Bourke: http://paulbourke.net/fractals/lsys/

[6] Brady, R., Davis, N., & Tracy, A. (2010, July).

Encrypting with Elliptic Curve Cryptography. Retrieved

from

https://www.math.purdue.edu/~egoins/notes/Encrypting_

Text_Messages_via_Elliptic_Curve_Cryptography.pdf

[7] Geometry. (n.d.). In R. N. Aufmann, J. S. Lockwood, R.

D. Nation, & D. K. Clegg, Mathematical Excursions (3rd

ed., p. 463). CENGAGE Learning.

[8] Silverman, J. H. (2006, June 19). The Discrete

Logarithm Problem. An Introduction to the Theory of

Elliptic Curves. Laramie, Wyoming, USA. Retrieved

from

https://www.math.brown.edu/~jhs/Presentations/Wyomin

gEllipticCurve.pdf

[9] Union of Equivalence Classes is Whole Set. (n.d.).

Retrieved from ProofWiki:

https://proofwiki.org/wiki/Union_of_Equivalence_Classe

s_is_Whole_Set

IJCATM : www.ijcaonline.org

