Co-regular Edge Domination in Graphs

M. H. Muddebihal Professor Department of Mathematics Gulbarga University Kalaburagi-585106 Karnataka, India

ABSTRACT

An edge dominating set *D* is a coregular edge dominating set of *G*. If the induced subgraph $\langle E(G) - D \rangle$ is regular. The coregular edge domination number $\gamma'_{cr}(G)$ is the minimum cardinality of a coregular edge dominating set. We establish upper and lower bounds on $\gamma'_{cr}(G)$ and compare with other dominating parameters *G* and elements of *G* were obtained.

Keywords

Graph, Edge domination number, Coregular edge domination number.

Subject classified number: AMS-05C69, 05C70.

1. INTRODUCTION

By a graph G = (V, E) be mean of finite undirected graphs without loops or multiple edges. Terms not here are used in the sence of Harary [7].

As usual the maximum degree of a vertex in V(G) is denoted by $\Delta(G)$ and maximum edge degree of edge in E(G) is denoted by $\Delta'(G)$. The notation $\alpha_0(G)(\alpha_1(G))$ is the minimum number of vertices(edges) in vertex(edge) cover of *G*. The notation $\beta_0(G)(\beta_1(G))$ is the maximum cardinality of a vertex(edge) independent set in G. A subset D of V is a dominating set of G, if every vertex not in D is adjacent to some vertex in D. The domination number $\gamma(G)$ of G is the minimum cardinality taken over all dominating sets of G. The study of domination in graphs was begun by Ore[15] and Berge[4].

We begin by recalling some standard definitions from domination theory.

A dominating set S of G is said to be a connected dominating set if the subgraph $\langle S \rangle$ is connected in G. The minimum cardinality of vertices in such a set is called the connected domination number, of G and is denoted by $\gamma_c(G)$.

A dominating set S of G is said to be a total dominating set if the subgraph $\langle S \rangle$ has no isolated vertices in G. The minimum cardinality of vertices in such a set is called the total domination number, denoted by $\gamma_t(G)$ see [5].

The concept of restrained domination in graphs was introduced by Domke et.al (1999) see [6]. A dominating set $S \subseteq V(G)$ is restrained dominating set of *G*, if every vertex not in *S* is adjacent to a vertex in *S* and to a vertex in V(G) - S. The restrained domination number of a graph *G* is denoted by $\gamma_r(G)$ is the minimum cardinality of a restrained dominating set in *G*.

A dominating set D of a graph G = (V, E) is a split dominating set if the induced subgraph $\langle V - D \rangle$ has more than one Priyanka H. Mandarvadkar Research Scholar Department of Mathematics Gulbarga University Kalaburagi-585106 Karnataka, India

component. The split domination number $\gamma_s(G)$ of G is the least cardinality of a split dominating set. The concept of domination was introduced in [10].

A restrained dominating set $D \subseteq V(G)$ is a coregular restrained dominating set if the induced subgraph $\langle V - D \rangle$ is regular. The coregular restrained domination number of G is denoted by $\gamma_{crr}(G)$ is the minimum cardinality of a coregular restrained dominating set. For detail see [13].

A dominating set D of a graph G is a global dominating set if D is also a dominating set of \overline{G} . The global domination number $\gamma_g(G)$ is the minimum cardinality of a global dominating set of G.

The concept of Roman domination function (RDF) in a graph G = (V, E) is a function f: $V \rightarrow \{0,1,2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex of v for which f(v) = 2 in G. The weight of a Roman dominating function is the value $f(V) = \sum_{u \in v} f(u)$. The minimum weight of a Roman domination function of a graph G is called Roman domination number and is denoted by $\gamma_R(G)$.

A dominating set $D \subseteq V(G)$ is a double dominating set of G, if each vertex in V is dominated by at least two vertices in D. The double domination number $\gamma_{dd}(G)$ of G is the minimum cardinality of a double dominating set of G see [9].

Analogously, a split dominating set D of a graph G is a coregular split dominating set if the induced subgraph < V(G) - D > is disconnected and regular. The coregular split dominating number $\gamma_{crs}(G)$ is the minimum cardinality of a coregular split dominating set of G. For details see [12].

A total dominating set D of a graph G is a coregular total dominating set if the induced subgraph $\langle V - D \rangle$ is regular. The coregular total domination number γ_{crt} (G) of G is the minimum cardinality of a coregular total dominating set see [14].

The concept of edge domination was introduced and studied in [2, 11].

In this paper, we obtain many bounds on $\gamma'_{cr}(G)$ in terms of elements of G. Also its relation with other domination parameters were established.

We need the following theorem for our further results.

Theorem A [1]: Let G be a connected graph of order n, then $\gamma'(G) \leq \left[\frac{n}{2}\right]$.

2. MAIN RESULTS

Theorem 2.1 a]. For any path P_p with $p \ge 3$ vertices,

b]. For any cycle C_p with $p \ge 3$ vertices,

$$\gamma'_{cr}(C_p) = \left[\frac{p}{2}\right].$$

c]. For any star $K_{(1,p)}$ with $p \ge 3$ vertices,

$$\gamma'_{cr}(K_{1,p}) = q - 1.$$

d]. For any wheel W_p with $p \ge 4$ vertices,

$$\gamma'_{cr}(W_p) = p - 1.$$

Theorem 2.2: For any connected (p,q) graph G with $p \ge 3$ vertices,

 $\gamma^{'}_{\ cr}(G)+m\geq\beta_{0}(G)\quad \mbox{where }m\ \mbox{be the number of end} \label{eq:gamma}$ vertices in G.

Proof: Let $E = \{e_1, e_2, \dots, e_k\}$ be the edge set in G. Now consider $E_1 = \{e_1, e_2, \dots, e_m\} \subseteq E(G)$ be the set of edges with maximum edge degree and $E_2 = \{e_1, e_2, \dots, e_n\} \subseteq$ E(G) be the set of edges with minimum edge degree. Suppose $E_1 \subseteq E_1$ and $E_2 \subseteq E_2$ then $\{E_1 \cup E_2'\}$ forms a minimal edge dominating set of G. Further if induced subgraph $\langle E(G) - \{E_1 \cup E_2'\} \rangle$ is regular then $\{E_1 \cup E_2'\}$ itself is a coregular edge dominating set of G. On the other hand let $A = \{v_1, v_2, \dots, v_n\}$ be the set of all endvertices in G. Let $K = \{v_1, v_2, \dots, v_n\} \in V(G)$ be the maximum set of vertices such that $deg(v_i, v_j) \geq 2$, and $N(v_i) \cap N(v_j) =$ $x, \forall v_i, v_j \in K$ so that $x \in V(G) - K$. Clearly $|K| = \beta_{\circ}(G)$. It follows that $|\{E_1 \cup E_2'\}| + |A| \geq |K|$ which gives, $\gamma'_{cr}(G) + m \geq \beta_0(G)$.

Theorem 2.3: For any connected (p,q) graph *G* with $p \ge 4$ vertices,

$$\gamma'_{cr}(G) \ge \gamma_{crt}(G) + \gamma_s(G) - \gamma_c(G) \quad \text{with, } G \neq K_{p,G} \neq P_4.$$

Proof: Let $E_1 = \{e_1, e_2, \dots, e_k\} \subseteq E(G)$ be the minimal set of edges which covers all the edges in G such that $N[E_1] =$ E(G). Then E_1 is the edge dominating set of G. If the induced subgraph $\langle E(G) - E_1 \rangle$ is regular then E_1 is a coregular edge dominating set of G. Suppose $A = \{v_1, v_2, \dots, v_m\} \subseteq$ V(G) such that $deg(v_j) \ge 2$, $1 \le j \le m$. Then there exists at least one vertex v of maximum degree of G in A. Let D be a minimal dominating set of G such that $D \subseteq A$ if the subgraph < D > has exactly one component then D itself is a connected dominating set of G. On the other hand if the induced subgraph $\langle V(G) - D \rangle = F$ is disconnected then $\{F\}$ is a split dominating set of G. Further $V(G) - D = B, \forall v_i \in B$ if $\langle D \cup \{v_i\} \rangle$ has no isolates. Then $\langle D \cup \{v_i\} \rangle$ forms a minimal total dominating set of G. Also if $B_1 = [V(G) - D \cup$ $\{v_i\}$ and $\forall v_i \in B_1 >$ has same degree then $\{B_1\}$ is a γ_{crt} – set of G. It follows that $|E_1| \ge |B| + |F| - D$, which gives $\gamma'_{cr}(G) \ge \gamma_{crt}(G) + \gamma_s(G) - \gamma_c(G)$.

Theorem 2.4: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\gamma'_{cr}(G) \ge \gamma_{crr}(G) - \gamma(G) + 2 \text{ and } G \neq K_{1,p},$$

$$G \neq P_{p}(p \le 6).$$

Proof: For the graph $G = P_p$ with $p \le 6$ For p = 4, $\gamma'_{cr}(G) = 1 < \gamma_{crr}(G) - \gamma(G) + 2 = 2$. For p = 5,6,

 $\gamma'_{cr}(G) = 2 < (G) - \gamma(G) + 2 = 3,4$ and hence the result not holds for path $p \le 6$. Let $A = \{v_1, v_2, \dots, v_p\} \subseteq V(G)$ be set of vertices with $deg(v_i) \ge 1$, such that N[A] = V(G). Clearly A forms a dominating set of G. Suppose B = $\{v_1, v_2, \dots, v_k\} \subseteq V(G)$ be the set of endvertices in G and A' = V(G) - B. Then there exists a vertex set $H \subseteq A'$ such that $\forall v_i \in \{V(G) - H \cup B\}$ is adjacent to at least one vertex of $\{H \cup B\}$ and in $V(G) - H \cup B$. Then $\{H \cup B\}$ is a γ_r set of G. If $< V(G) - \{H \cup B\} >$ is regular then $\{H \cup B\}$ itself is a γ_{crr} set of G. Let $\{e_1, e_2, \dots, e_p\} = E(G)$ be the edge set in G. Suppose S be the minimal edge dominating set of G. If < E(G) - S > has same degree then S itself is a γ'_{cr} set of G. Hence $|S| \ge |\{H \cup B\}| + |A| + 2$ which gives, $\gamma'_{cr}(G) \ge$ $\gamma_{crr}(G) - \gamma(G) + 2$.

Theorem 2.5: For any connected (p,q) graph *G* with $p \ge 4$ vertices,

$$\gamma'_{cr}(G) \ge \alpha_0(G) - \gamma_{crs}(G) + 2 \text{ with } G \neq K_p, G \neq P_4$$

Proof: Suppose $G = K_p$. Then by the definition γ_s set does not exists, hence γ_{crs} also does not exists. Let $D = \{v_1, v_2, \dots, v_p\}$ be the minimal set of vertices in G, such that $\langle V(G) - D \rangle$ is regular and which gives more than one component. Then D forms a minimal coregular split dominating set of G. Suppose $B = \{v_1, v_2, \dots, v_n\} \subseteq V(G)$ $\forall e_i \in E(G)$ is incident to at least one vertex B. Then $|B| = \alpha_0(G)$. Further $E(G) = \{e_1, e_2, \dots, e_n\}$ be the edge set of G. Let $A = \{e_1, e_2, \dots, e_k\} \subseteq E(G)$ which covers all the edges in G. Such that N[A] = E(G), then A is a minimal edge dominating set of G. If the induced subgraph $\langle E(G) - A \rangle$ has same degree then A is a γ'_{cr} set of G. It follows that $|A| \ge |B| - |D| + 2$. Which gives, $\gamma'_{cr}(G) \ge \alpha_0(G) - \gamma_{crs}(G) + 2$.

Corollary 2.1: For any connected (p,q) graph $G \gamma'_{cr}(G) \ge \gamma'(G)$.

Theorem 2.6: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$2\gamma'_{cr}(G) \ge \gamma'(G) + \gamma_s(G)$$
 and $G \ne K_p$, $G \ne P_4$.

Proof: Suppose $G = K_p$ by the definition, γ_s -set does not exists. Also if $G = p_4$, then $2\gamma'_{cr}(G) < \gamma'(G) + \gamma_s(G)$, a contradiction to P_4 . Let $A = \{v_1, v_2, \dots, v_p\} \subseteq V(G)$ be the set of all endvertices in G and A' = V(G) - A. Suppose there exists a vertex set $B \subset A'$, such that D = [V(G) - B] is a dominating set of G. Hence < D > has more than one component then D forms a γ_s - set of G. Further let $E = \{e_1, e_2, \dots, e_p\}$ be the edge set in G. Now consider $E_1 = \{e_1, e_2, \dots, e_m\} \subseteq E(G)$ be the set of edges with maximum edge degree and $E_2 = \{e_1, e_2, \dots, e_n\} \subseteq E(G)$ be the set of edges with with minimum edge degree. Suppose $E'_1 \subseteq E_1$ and $E'_2 \subseteq E_2$ if every edge in $\{E'_1 \cup E'_2\}$ is adjacent to an edge in $\{V(G) - E'_1 \cup E'_2\}$ then $\{E'_1 \cup E'_2\}$ for a γ' – set of G. Suppose $\{V(G) - E'_1 \cup E'_2\} = S$ is regular. Clearly $\{S\}$ is a γ'_{cr} – set of G. Thus $2|S| \ge |E'_1 \cup E'_2| + |D|$ which gives, $2\gamma'_{cr}(G) \ge \gamma'(G) + \gamma_s(G)$.

Theorem 2.7: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$2\gamma'_{cr}(G) \ge \alpha_1(G) - \Delta'(G) + \gamma_g + 1 \quad \text{with} \qquad G \neq P_p \ (P \le 4)$$

Proof: Let $E = \{e_1, e_2, \dots, \dots, e_k\}$ be the edge set of G. Suppose $E' \subseteq E$ then N[E'] = E(G) then E' is an edge dominating set of G. If $\langle E(G) - \{E'\} \rangle$ is a regular, then $\{E'\}$ itself is a γ'_{cr} set of G. Let e be an edge with degree Δ' and let $D = \{v_1, v_2, \dots, v_n\} \subseteq V(G)$ and $D \subseteq V(\overline{G})$. If N[D] = V(G) and $N[D] = V(\overline{G})$. Then D is a dominating set of G and \overline{G} . Let $A = \{e_1, e_2, \dots, e_m\}$ be the set of all endedges in G. Then $A \cup F$ where $F \subseteq E(G) - A$ be the minimal set of edges which covers all the vertices of G such that $|A \cup F| = \alpha_1(G)$. Thus $2|\{E'\}| \ge |A \cup F| - |e| + |D| + 1$ which gives, $2\gamma'_{cr}(G) \le \alpha_1(G) - \Delta'(G) + \gamma_g + 1$.

Theorem 2.8: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\gamma_{cr}(G) + diam(G) + \gamma(G) \ge \gamma_R(G) + \gamma_t(G).$$

Proof: Let $B \subseteq V(G)$ be the minimal set of vertices. Further, there exists an edge set $I \subseteq I'$ where I' is the set of edges which are incident with the vertices of B constituting the longest path in G such that |J| = diam(G). Let D = $\{v_1, v_2, \dots, v_n\} \subseteq B$ be the minimal set of vertices which covers all the vertices in G. Clearly D forms a dominating set of G. Suppose the subgraph $\langle D \rangle$ has no isolates. Then D itself is a $\gamma_t(G)$ set. Otherwise if deg $(v_k) < 1$ then attach the vertices $w_i \in N(v_k)$ to make $deg(v_k) \ge 1$ such that $< D \cup$ $\{w_i\}$ > does not contain any isolated vertex. Clearly $D \cup \{w_i\}$ forms a total dominating set of G. Further let function $f: V(G) \rightarrow \{0,1,2\}$ and partition the vertex set V(G) into (V_0, V_1, V_2) induced by f with $|V_i| = n_i$ for i = 0, 1, 2. Suppose the set V_2 dominates V_0 . Then $S = V_1 \cup V_2$ forms a minimal Roman dominating set of G. Further let A = $\{e_1, e_2, \dots, e_p\} \subseteq E(G)$ be the minimal set of edges which covers all the edges in G. Clearly A forms a minimal edge dominating set of G. If $\langle E(G) - A \rangle$ is regular then A is a coregular edge dominating set of G. Then $|A| + |J| + |D| \ge$ $|S| + |D \cup \{w_i\}|$ which gives, $\gamma'_{cr}(G) + diam(G) + \gamma(G) \ge$ $\gamma_R(G) + \gamma_t(G).$

In the following theorem we establish the relationship between $\gamma_{dd}(G), \gamma_r(G)$ with coregular edge domination of a graph G.

Theorem 2.9: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\gamma_{cr}^{'}(G) + \gamma_{dd}(G) \ge \left|\frac{p}{2}\right| + \gamma_{r}(G) - 1.$$

Proof: Let $S = \{e_1, e_2, \dots, e_m\}$ be an edge dominating set of *G*. Let $D_1 = \{v_1, v_2, \dots, v_k\}$ which is dominating set of *G*. Suppose $V_1 \subseteq V(G) - D_1$ be the set of vertices which are neighbours of the elements of D_1 . Further $D_2 \subseteq V_2$ and $D_2 \in N(D_1)$. Then $D^d = D_1 \cup D_2$ forms double dominating set of *G* such that any vertex $v \in V(G) - D^d$ has at least two neighbours in $D_1 \cup D_2$. Further let $A = \{e_1, e_2, \dots, e_p\} \subseteq E(G)$ be the minimal set of edges which covers all the edges in *G*. Such that $N[E_1] = E(G)$. Then E_1 is an edge dominating set of *G*. Let $B = \{v_1, v_2, \dots, v_p\} \subseteq V(G)$ be the set of endvertices in *G* and B' = V(G) - B. Then there exists vertex set $H \subseteq B'$ such that $\forall v_i \in \{V(G) - \{H \cup B\}$ is adjacent to at least one vertex of $\{H \cup B\}$ and in $V(G) - \{H \cup B\}$. Then $\{H \cup B\}$ is a γ_r set of *G*. Also by theorem $A, \gamma'(G) \leq \left\lfloor \frac{p}{2} \right\rfloor$. Thus $|E_1| + |D^d| \geq \left\lfloor \frac{V(G)}{2} \right\rfloor + |H \cup B| - 1$ which gives, $\gamma'_{cr}(G) + \gamma_{dd}(G) \geq \left\lfloor \frac{p}{2} \right\rfloor + \gamma_r - 1$.

Theorem 2.10: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\gamma_{cr}^{'}(G) + \gamma_{e}^{'}(G) + 1 \le 2(p-1)$$

Proof: Suppose *D* be a minimal edge dominating set of *G* and E(G) - D be the set of all edges which are adjacent to the edges in *D*. Then D' = [E(G) - D] has same degree then $\{D'\}$ is a coregular edge dominating set of *G*. Now let $E_1 = \{e_1, e_2, \dots, e_j\}$ denote the set of all endedges in *G* and $E_2 = E(G) - E_1$. Further if $F \subseteq E_2$ is edge dominating set of subgraph $\langle E_2 \rangle$ then $E_1 \cup F$ forms an endedge dominating set of *G*. Clearly it follows that $|D'| + |E_1 \cup F| + 1 \leq 2(p - 1)$ and hence $\gamma'_{cr}(G) + \gamma'_e(G) + 1 \leq 2(p - 1)$.

An edge dominating set X is called a connected edge dominating set if the edge induced subgraph $\langle X \rangle$ is connected. The minimum cardinality of a connected edge dominating set of G is called the connected edge domination number of G and is denoted by $\gamma'_{c}(G)$. For detail see [3].

Theorem 2.11: For any connected graph *G* with $p \ge 4$ vertices,

 $\gamma'_{cr}(G) + \gamma'_{c}(G) \ge \alpha_1(G) + \gamma_s(G)$ and $G \ne K_{p,G} \ne P_p \ (p \le 5)$

Proof: For the graph $G = P_p$ with $p \le 5$ if p = 3,4,5 then $\gamma'_{cr}(G) + \gamma'_{c}(G) = 2,2,4 \ge \alpha_{1}(G) + \gamma_{s}(G) = 3,4,5$. Hence $G \neq P_p$ with $p \leq 5$. Suppose $D = \{e_1, e_2, \dots, e_n\}$ be the set of all endedges in G. Then $D \cup J$ where $J \subseteq E(G) - D$ be the minimal set of edges which covers all the vertices of G such that $|D \cup J| = \alpha_1(G)$. Let $D_1 = \{e_1, e_2, \dots, e_i\}$ be the set of nonendedges which covers all the edges in G. If the induced subgraph $\langle E(G) - D_1 \rangle$ is regular then $\{D_1\}$ is a coregular edge dominating set of G. Now consider $S = \{e_1, e_2, \dots, e_i\}$ be the minimal edge dominating set then $\langle S \rangle$ does not contain more than one component. Then S itself is a connected edge dominating set of G. Otherwise if the subgraph $\langle S \rangle$ has more than one component then attach the minimum number of edges $\{e_k\} \in E(G) - S$ with $deg(e_k) \ge$ 2 such that $S_1 = S \cup \{e_k\}$ forms exactly one component clearly S_1 forms a $\gamma_c^{'}$ set of G. On the other hand let F = $\{v_1, v_2, \dots, v_n\}$ be a minimal dominating set G if the $\langle V(G) - F \rangle$ is disconnected then clearly F forms a split dominating set of G. $|D_1| + |S_1| \ge |D \cup J| + |F|$ which gives, $\gamma_{cr}^{'}(G) + \gamma_{c}^{'}(G) \ge \alpha_{1}(G) + \gamma_{s}(G).$

Theorem 2.12: For any connected (p,q) graph *G* with $p \ge 3$ vertices,

$$\gamma_{cr}^{'}(G) + \gamma(G) + 1 \le p + \gamma_{c}^{'}(G).$$

Proof: Let *D* be a dominating set of *G* and let $E = \{e_1, e_2, \dots, e_n\} \subseteq E(G)$ be the set of all nonendedges in *G*. Suppose there exist a minimal set of edges such that $N[e_i] = E(G), \forall e_i \in E_1, 1 \le i \le n$ then E_1 forms a minimal edge dominating set of *G*. Further if subgraph $\langle E_1 \rangle$ has exactly one component then E_1 itself is a connected edge dominating set of *G*. Further $E_2 \subseteq E_1$ such that the induced subgraph $\langle E(G) - E_2 \rangle$ is regular clearly E_2 is a coregular edge dominating set of *G*. Hence $|E_2| + |D| + 1 \le |V(G)| + |E_1|$ which gives, $\gamma'_{cr}(G) + \gamma(G) + 1 \le p + \gamma'_c(G)$.

Theorem 2.13: For any graph (p, q) with $p \ge 3$ vertices,

$$\gamma_{cr}^{'}(G) \geq \left\lceil \frac{diam(G)+1}{2} \right\rceil - 1.$$

Proof: Let $E = \{e_1, e_2, \dots, e_n\} \subseteq E(G)$ be the set of edges which constitute the longest path between two distinct vertices $u, v \in V(G)$ such that d(u, v) = diam(G). Now $E_1 \subseteq E(G), \forall e_i \in E_1$ since E_1 be the minimal set of edges which covers all the edges in *G* then E_1 is a minimal edge dominating set of *G*. Further if $deg(e_j) \ge 1, e_j \in E(G) - E_1$ then $\langle E(G) - E_1 \rangle$ is regular then $\{E_1\}$ is a coregular edge dominating set. It follows that $|E_1| \ge \left|\frac{diam(G)+1}{2}\right| - 1$. Hence $\gamma'_{cr}(G) \ge \left[\frac{diam(G)+1}{2}\right] - 1$.

3. REFERENCES

- Araya chaemchan, The edge domination number of connected graphs, Australasian Journal of Combinatorics, Vol 48, 185-189.
- [2] S. Arumugam and S. Velammal, 1998. Edge domination in graphs, Taiwanese J. of Mathematics,2(2), 173 179.
- [3] S. Arumugam and S. Velammal, 2009. Connected edge domination in graphs, Allahabad Mathematical Society, Vol 24,part, 43-49.
- [4] C. Berge, 1962. Theory of graphs and its applications, Methuen, London,.
- [5] E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, 1980. Total domination in graphs, Networks, 10, 211 – 219.
- [6] G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus, 1997. Restrained domination

in graphs, Discrete Math., 203, 61-69.

- [7] F. Harary, 1969. Graph theory, Adison Wesley, Reading Mass.
- [8] T.W. Haynes, S. T. Hedetniemi and P. J. Slater, 1997. Domination in graphs: Advanced topics, Marcel Dekker, Inc., New York.
- [9] F. Harary and T. W. Haynes, 2000. Double domination in graphs Ars Combin Vol 55, 201-213.
- [10] V. R. Kulli, 2010. Theory of domination in graph, Vishwa international publications, India.
- [11] S. Mitchell and S. T. Hedetniemi, 1977. Edge domination in trees, Congr. Numer, 19, 489 – 509.
- [12] M. H. Muddebihal and Priyanka .H. Mandarvadkar, 2019. Co-regular split domination in graphs. JES, Vol-10, 259-264.
- [13] M. H. Muddebihal and Priyanka. H. Mandarvadkar, 2020. Co-regular restrained domination in graphs. CEJ,Vol -11, 236-241.
- [14] M. H. Muddebihal and Priyanka. H. Mandarvadkar, 2020. Co-regular total domination in graphs. International Journal of Applied Information Systems (IJAIS) Vol-12 16-19.
- [15] O.Ore,1962. Theory of graphs, Amer. Math.Soc.Colloq.Publ. 38. Providence, RI.