
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

Deterministic Cluster-based Skip List Protocol for
Dynamic Distributed Systems

Ahmed A. A. Gad-ElRab
Department of Mathematics

Faculty of Science
Al-Azhar University

Cairo, Egypt

T. A. A. Alzohairy
Department of Mathematics

Faculty of Science
Al-Azhar University

Cairo, Egypt

Khaled A. A. Khalf-Allah
Department of Mathematics

Faculty of Science
Al-Azhar University

Cairo, Egypt

ABSTRACT
Dynamic distributed system (DDS) is a continually running

system with a large number of entities as processes or nodes that
are connected with each other and each of them has only a partial
view of the system as Peer-to-peer (P2P) system which can be
decentralized, centralized or hybrid of both to make the system
operations faster as possible. In P2P, any number of entities can
join and leave the system at any moment which makes the topology
of the system continuously changed. So, the system must deal
with these changes to be stable as possible. So, data management
algorithms are needed to build an overlay network which is a
logical layer that used to store the information about these entities.
Skip list structure is the most common and efcient overlay structure
for data management in P2P systems. However, using this structure
cannot minimize the time delay for query processes as searching,
inserting, and deleting in case of there is a huge number of entities
in the skip list. In addition, most of existing algorithms that use
this structure have been developed based on a special structure of
skip list and they did not be applicable for another structure of the
skip list. In this paper, to overcome these drawbacks, a new skip
List structure and query processing methods are proposed. The
conducted simulation results show that the proposed structure and
algorithm are much better than the existing algorithms in the time
delay and the required number of steps to nish any query process.

Keywords
P2P, Distributed Systems, Dynamic Systems, Deterministic, Skip
List

1. INTRODUCTION
The random nature of the dynamic distributed system is a continu-
ally running system with a huge number of entities connected with
each other and each entity has a partial view of the system, and any
moment any number of entities can be joining and leaving the sys-
tem at any moment [2]. So, the topology of the system continuously
changed, and the system must deal with these changes to be stable
as possible. One of the most popular dynamic systems is peer-to-
peer (P2P) system which can be unstructured/decentralized, struc-
tured /centralized networks. Of course, each model has an advan-

tage and disadvantage. To make the system operations faster as pos-
sible hybrid model can be used. So, data management algorithms
are needed to build an overlay network which is a logical or virtual
layer that is built on the top of an existing physical network which
is used to store the information about these entities [1].
Many data management algorithms are proposed and implemented
to be used in such systems, and to reduce the time complexity of
searching, updating and deleting processes. One of the most used
data management algorithms is distributed hash table (DHT) for
peer-to-peer systems. DHTs are used to lookup data in an unstruc-
tured environment based on (key, value) pair, similar to hash ta-
bles. The big advantage of DHT is its scalability and fault tolerant
architecture that makes it useful for several distributed search ap-
plications. The disadvantage of DHT its hash based look up which
destroys the semantic locality of the keys, and because of the non-
linear nature of the hash function that used to hash the keys and
maps each one to its hash value. So, DHT can only provide service
for a single query and cannot be used for systems which require
range of query.
Distributed Segment Tree (DST) introduced to support of range
query and cover query over DHT. DST is built on top of generic
DHT based on the concept of a segment tree in maintaining the
structure of ranges; DST is shown to be very efficient for support-
ing both range query and cover query in a uniform way. But it per-
forms poorly for a large number of nodes because of the limitation
on the number of keys at each node [17].
Skip List (SL) is a probabilistic alternative to balanced trees pro-
posed by William Pugh. SL can be used instead of balanced trees
[15]. In [15], the implementation of insertion, deletion and search
algorithms are much simpler and faster than balanced trees based
algorithms. SL is much faster compared to linked list. To search
any element in a sorted linked list, we might have to traverse all the
nodes of the list. Here the search complexity is O(n). In a skip list
can operate in the order of logn in average cases where n is the to-
tal number of elements [12]. As shown in Fig 1 and Fig 2 the SL is
structure is constructed as levels. Each level is a sorted linked list.
The lowest level contains n nodes, the next higher level is another
linked list with subset number of nodes from previous level, and so
on tell the top higher level reached with minimum number of nodes
see Fig 2.
However, using this structure cannot minimize the time delay for
query processes as searching, inserting, and deleting in case of
there is a huge number of entities in the skip list. In addition, most

1

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

Fig. 1. Sorted Linked List

Fig. 2. Skip List

of existing algorithms that use the skip list structure have been de-
veloped based on a special structure of skip list and they did not
be applicable for another structure of the skip list. In this paper, to
overcome these drawbacks, a new cluster-based skip list structure
and query processing methods are proposed. The rest of this pa-
per is organized as follows: Section 2 gives an overview of the re-
lated works on distributed skip-list. Section 3 introduces ENTITY
MANAGEMENT PROBLEM IN P2P and its formulation. Sections
4 introduces the proposed cluster-based skip list algorithm. Section
5 describes of the experimental and simulation results. Section 6
concludes this paper.

2. RELATED WORK
Skip lists are balanced by consulting a random number generator.
Searching a linked list for a specific element may require that ev-
ery element of the list be examined as shown in Fig. 3. If the list is
stored in sorted order and every other element of the list also has a
pointer to the element two ahead of it in the list, searching for an
element requires that no more than dN

2
+1e elements be examined

(where N is the length of the list). By giving every (2i)th th ele-
ment a pointer 2i elements ahead as shown in Fig. 4, the number of
elements that must be examined can be reduced to dlog2ne, while
only doubling the number of pointers. Such that the levels of ele-
ments as shown in Fig. 4 are distributed in a simple pattern: 50%
are level 1, 25% are level 2, 12.5% are level 3, and so on [15].

Fig. 3. Search inside Sorted Linked List to find entity number 14

There is a lot of algorithms which worked on skip lists [8], [9] and
[10]. In [8], Interval skip list or IS-List was proposed to support in-
terval indexing in a centralized environment. The IS-list is the first
P2P system that achieves both content and routing path locality that
allows stabbing queries and dynamic insertion and deletion of inter-
vals. A stabbing query using an IS-list containing N intervals takes
an expected time of O(logn). Inserting or deleting an interval in
an IS-list takes an expected time of O(log 2n), if the interval end-
points are chosen from a continuous distribution [8]. In [3], and [6],
[7] skip list was used to present an efficient and practical technique
for dynamically maintaining an authenticated dictionary.
Harvey et al. have proposed a scalable overlay network called Skip-
Net [9]. SkipNet uses the randomized version of the skip list. So,
it is difficult in the presence of an insertion and a deletion. In ad-
dition, due to the random nature of the data structure, it is difficult

Fig. 4. Search inside Sorted Skip List to find entity number 14

to determine the shape of the skip list which might create problem
with the large number of nodes [11].
In [16] the skip list is intoduced to overcome the challenge of on-
demand streaming with asynchronous requests, demonstrate a prac-
tical skip list based streaming overlay with typical asynchronous
streaming multicast VCR operations in the application-layer over-
lay networks [5], and show that the skip list based overlay is highly
scalable, with smooth playback for diverse interactivities, and low
overheads. So, the skip list can be applied to the management of
a massive set of replying comments in web bulletins by exploiting
the power-law distribution [10].
Many other algorithms introduced deterministic skip list to give an
upper bound of worst case insert and delete complexity. In [13] sev-
eral versions of deterministic skip lists have been introduced, sim-
ple data structures with guaranteed logarithmic search and update
costs. In these algorithms, a skip list can be viewed as a multiway
search tree in which the path length from the root to any leaf is
the same; this path length corresponds to the height of the skip list,
or to the number of vertical steps in the path for the search of any
element in the skip list.
Corona [14] is a deterministic self-stabilizing algorithm for skip list
construction in structured overlay networks. Corona operates in the
low-atomicity message-passing asynchronous system model. A self
stabilizing sparse 0–1 skip list on top of a self stabilizing sorted list
call Tiara presented in [4].Here, 0-1 skip list means that any step
between any two entities ni and ni+1 at levelj can only skip 0
(skip no entities) or 1 (only one entity skipped) in level levelj−1
of skip list. They have proposed a self-stabilizing algorithm for a
sorted list first, and then have extended it to the sparse 0-1 skip
lists which allows logarithmic searches and topology updates. They
proved that the algorithm is correct in the shared register model.
In [12] a set of algorithms has been proposed to overcome the
shortcomings of existing architectures, as proposed in Tiara [4] and
Corona [14]. Beacuse the Tiara architecture cannot be extended for
1–2 skip lists. Deterministic 1–2 skip list works better for search-
ing in peer-to-peer and overlay networks, as it resembles a balanced
2–3 tree, and thus supports range queries effectively.

3. ENTITY MANAGEMENT PROBLEM IN P2P
Entity management problem (EMP) is one of the key issues in the
P2P systems. This problem deals with how to minimize the time
cost for entity management in dynamic environments. In this sec-
tion, the assumptions and models will be described then the formu-
lation of EMP problem will be introduced.

3.1 Assumptions, and Models
We assume that there is a dynamic environment which contains
a set of devices as nodes N , which share information and re-

2

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

courses. Each node can join or leave the system at any mo-
ment, and the topology of the system changes over the time
and these changes may make the system fails. We assume that
the P2P system model constructed from set of nodes N =
{node1, node2, node3, ..., nodei : i > 0}. Each nodei contains
(keyi, valuei), these nodes are connected together and communi-
cating with each other by sending messages to share information
and resources like CPU and Memory.

3.2 Problem Formulation
The total average delay insert operation time is denoted as TItotal

.
The total average delay delete operation time is denoted as TDtotal

.
The total average delay search operation time is denoted as TStotal

.
The big challenge is to deal with the changes in the topology of
the system by applying these changes on the entity management
of data structure such insertion and deletion, to make an efficient
search operation.
So, based on the proposed system model, the total average delay
time TItotal

and TDtotal
are calculated as following:

TItotal
= TS + TI (1)

TDtotal
= TS + TD (2)

where TI is the delay time of insert operation, TD is the delay time
of delete operation and TS is the delay time of search operation.
Objective function: the objective function is to minimize the total
avrage delay time cost for TItotal

, TDtotal
and TStotal

operations
by reducing TI , TD and TS . This objecctive function is defined as
follows.

Minmize TItotal
+ TDtotal

+ TStotal
(3)

such that

∃ path(nodei, nodei+1);

∀ nodei, nodei+1 ∈ N

and nodei 6= nodei+1

(4)

if value(nodei) = value(nodei+1)

⇒ key(nodei) = key(nodei+1)

⇒ nodei = nodei+1

∀ nodei, nodei+1 ∈ N

(5)

steps(search) 6=∞ (6)

Tstop(nodei) ≤ Tstop(nodej); ∀ nodei, nodej ∈ N, j ≤ i (7)

where constraint (4) means that there is no circle or path between
any node and itself to avoid infinite loops i.e. if there is a path
from nodei to nodei+1 then nodei and nodei+1 are not equal.
constraint (5) means that the value of any nodes is not the same
i.e. if the values of two nodes nodei and nodej are equal then the
nodes are the same node to avoid the duplication of nodes. con-
straint (6) means that the total number of required steps to reach
any node must be finite to avoid infinite loop constraint (7) means
that the required time to stop search operation of nodei less than or
equal the required time to stop search operation of nodej .

4. CLUSTER-BASED SKIP LIST ALGORITHM
To solve the EMP problem, a new skip list algorithm called Cluster-
Based Skip List Algorithm (CBSL) is proposed. This proposed al-
gorithm is an improvement for the Standard Skip List (SL) algo-
rithm by convert the standard Skip List to Clustered-Based Skip
List.

4.1 Basic Idea
The proposed CBSL is based on (1) dividing each level in the skip
list into a group of clusters which is considerd as new structure.
(2) proposing two different methods for join, delete, and search op-
erations. The first method called Sequential method (SM) which
searches for any entity in a sequential order cluster by cluster.
While the second method called Prediction method (PM) which
searches for any entity by predicting its nearest cluster rst, then
jumps to this predicted cluster and searches for the required entity.
In the rest of this section, formation of clusters is described, the
proposed methods are introduced and finally the insert, delete, and
search operations are described.

4.2 Clustering Formation Process
All nodes in SL are distributed on levels
{level1, level2, level3, ..., levelj : j > 0}. Each nodei
conatins (keyi, valuei), and has foure links. Two for the con-
nections righti and lefti with its neighbors, and the other two
links upi and downi to connect the node with itself at different
levels. In CBSL, these nodes will be distributed on clusters
Mclusters = {C1, C2, C3, ..., Ck : k > 0}. Each cluster has a
number of entities Cmax with the same levels in the SL as shown
in Fig. 6. These clusters are another logical layer on SL to search
about any entity by using two search methods to nd which cluster
contains on the target entity, which makes the search inside the
cluster faster than the search in the whole skip list as shown in
Fig. 5. Each cluster has maximum number of nodes Cmax. Cmax

is xed for all clusters and is unchanged through running time. Each
cluster has three main elements starti, endi and topi elements,
and has two connections to previous and next clusters nexti,
perevi. starti, endi and topi elements specied while building the
skip list and changed after adding or deleting elements as shwon in
Fig 6.

4.3 The proposed methods
Based on clustering design, CBSL uses two different searching
methods: Sequential method (SM) and Prediction method (PM)
These two methods are described as follows.
(1) Sequential method (SM): which checks each cluster of the list
in a sequential order cluster by cluster until it nds a cluster that has
the target entity. If the algorithm reaches the end of the list, the
search terminates with failure as shown in Fig (9) and and Algo (3)
.
(2) Prediction method (PM): in this method, the proposed algo-
rithm pridicates the posiotion of the cluster or the closest cluster
position for the required entity as shown in Fig (10) and Algo (4)
by using the following equation:

Cex = d X

Cmax

e (8)

Such that Cex the expected position of the cluster, X is NodeID
and Cmax maximum number of elements can be added for each
cluster.

3

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

By using one of these two methods, CBSL checks if the target clus-
ter was reached or not. If not, go to the next cluster or the previous
one depending on the value of nodeID and the starti and endi of
the current cluster. If the cluster does not exsit then a new one will
created on the right postion and the connections added.

Fig. 6. Cluster Structure and it is Componets

Fig. 7. Search inside CBSL

4.4 Search, Insert, and Delete Operations
4.4.1 Search operation. As shown in Fig 7 and Algo (1) , CBSL
starts to find the position of cluster first by using SM or PM meth-
ods. Then starts to search inside the cluster to find the node po-
sition. The search inside the cluster from the top elemnet of this
cluster. Then the search move to left or right or down based on the
key of the node.

Algorithm 1: CBSL Seacrh Algorithm
Input : NodeID
Output: Node position and data

1 cluster ←− findClusterByPM(NodeID)
2 . or findClusterBySM(NodeID)
3 Node←− findNode(NodeID, cluster)

Algorithm 2: CBSL insert cluster algorithm insertCluster function

1 function insertCluster (cluster, newCluster)
Input : cluster, newCluster
Output: New cluster position

2 newClusternext ←− clusternext

3 newClusterprev ←− cluster
4 clusternextprev ←− newCluster
5 clusternext ←− newCluster
6 return newCluster

4

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

Fig. 8. Flow chart of the proposed CBSL

4.4.2 Insert Operation. To insert or join a new node in the list,
CBSL follows the following steps as shown in Algo (9):

(1) Determine the level of the new node by using SM or PM meth-
ods as shown in Algo (1),(3), (4) .

(2) Insert a new node (NodeId) in its level.
(3) Add new edge between the left and a new node (NodeId).
(4) Add new edge between the right and a new node (NodeId).
(5) Delete the old edge between the left and the right nodes. (When

describing a link we always state the smaller identifier first).

4.4.3 Delete Operation. To delete an existing node from the list,
CBSL follows the following steps as shown in Algo (10):

(1) Search to find cluster which contains the node that will be
deleted by using SM or PM methods.

(2) If the cluster exists then search inside it to find the node posi-
tion, else do nothing.

(3) If the node exists go to next step, else do nothing.
(4) Add a new edge between the left and right nodes at all levels.
(5) Delete the old edge between the left and the right nodes. (When

describing a link we always state the smaller identifier first).

(6) Update the other clusters if it is required.

Algorithm 3: Find Cluster using SM findClusterBySM function

1 function findClusterBySM (NodeID) ;
Input : NodeID
Output: Cluster position

2 cluster ←− cluster0
3 while cluster 6= NULL do
4 start←− clusterstart
5 end←− clusterend

6 if NodeID ≥ start and NodeID ≤ end then
7 return cluster

8 if clusternext 6= NULL and NodeID ≥ clusternextstart

then
9 cluster ←− clusternext

10 else
11 return failure . or call insertCluster function for adding

a new Node

Algorithm 4: Find Cluster using PM findClusterByPM function

1 function findClusterByPM (NodeID) ;
Input : NodeID
Output: Cluster

2 i←−
⌈

NodeID
Cmax

⌉
3 cluster ←− clusteri
4 start←− clusterstart
5 end←− clusterend

6 if NodeID ≥ start and NodeID ≤ end then
7 return cluster
8
9 else if NodeID ≤ start and clusterprev 6= NULL and
NodeID ≤ clusterprevend

then
10 return searchPrevClusters(NodeID, clusterprev)
11
12 else if NodeID ≥ end and clusternext 6= NULL and

NodeID ≥ clusternextstart then
13 return searchNextClusters(NodeID, clusternext)
14 else
15 return failure . or call insertCluster function for adding a

new Node

5

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

Fig. 9. SM Algorithm Flow Chart

Algorithm 5: Search next clusters searchNextClusters function

1 function searchNextClusters (NodeID, cluster) ;
Input : NodeID, cluster
Output: Cluster position

2 start←− clusterstart
3 end←− clusterend

4 if NodeID ≥ start and NodeID ≤ end then
5 return cluster

6 while NodeID ≥ end and clusternext 6= NULL and
NodeID ≥ clusternextstart do

7 cluster ←− clusternext

8 start←− clusterstart
9 end←− clusterend

10 if NodeID ≥ start and NodeID ≤ end then
11 return cluster
12

Fig. 10. PM Algorithm Flow Chart

Algorithm 6: Search previous clusters searchPrevClusters func-
tion

1 function searchPrevClusters (NodeID, cluster) ;
Input : NodeID, cluster
Output: Cluster position

2 start←− clusterstart
3 end←− clusterend

4 if NodeID ≥ start and NodeID ≤ end then
5 return cluster

6 while NodeID ≤ start and clusterprev 6= NULL and
NodeID ≤ clusterprevend

do
7 cluster ←− clusterprev
8 start←− clusterstart
9 end←− clusterend

10 if NodeID ≥ start and NodeID ≤ end then
11 return cluster

12 return failure

6

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

Fig. 11. The search inside the cluster Flow Chart

Algorithm 7: Find Node findNode function

1 function findNode (NodeID, cluster) ;
Input : NodeID, cluster
Output: Node Data

2 start←− clusterstart
3 end←− clusterend

4 top←− clustertop
5 if NodeID = start|end|top then
6 return start|end|top
7 else
8 return findNodeInCluster(NodeID, top, start, end)
9 return failure . or call insertCluster function for adding a new

Node

Algorithm 8: Find Node inside cluster findNodeInCluster func-
tion

1 function findNodeInCluster (NodeID, top, start, end) ;
Input : NodeID, top, start, end
Output: Node and Node Data

2 node = top
3 while TRUE do
4 if NodeID < nodekey then
5 while nodedown 6= NULL and nodeleftkey

¿ nodekey
or nodeleftkey

¡ startkey do
6 node = nodedown;
7 while nodeleft 6= NULL and nodeleftkey

≥ startkey
and nodeleftkey

≤ endkey do
8 if nodekey ≤ NodeID then
9 break

10 node = nodeleft

11 if nodedown 6= NULL then
12 node = nodedown

13 else
14 break

15 else
16 while noderight 6= NULL and noderightkey

≤ endkey
and noderightkey

< NodeID do
17 node = noderight

18 if nodedown 6= NULL then
19 node = nodedown

20 else
21 break

22 return node;

Algorithm 9: CBSL insert algorithm InsertNewNode function

1 function InsertNewNode (node)
Input : node
Output: Insert success or failure

2 NodeID ←− nodeid
3 cluster ←− insertNode(NodeID)
4 . or findClusterBySM(NodeID)
5 if cluster not found then
6 cluster ←− insertCluster(node, cluster)
7 The node will be added at start of the cluster
8 else
9 node←− findNode(NodeID, cluster) . Find the Node or

smallest node before it if not found
10 The node will be added to the first level of the cluster
11 The links left and right will be created between the node and

itś neighbrs
12 up and down links will created between the node and itself at

each level
13 return node

7

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

Algorithm 10: CBSL Delete Algorithm deleteNode function

1 function deleteNode (NodeID)
Input : NodeID
Output: Delete success or failure

2 cluster ←− findClusterByPM(NodeID)
3 . or findClusterBySM(NodeID)
4 if cluster not found then
5 return failure
6 else
7 node←− findNode(NodeID, cluster) . Find the Node or the

smallest node before it if not found
8 The links between the left and right neighbors will be created

at each level first before the nodeś links are removed
9 up and down links will created between the node and itself at

each level
10 The node will be deleted to the first level of the cluster

11 return success

4.5 Complexity
The number of steps to find cluster by PM and SM can be repre-
sented as following:

—SMcost : O(Mclusters).
—PMcost : 1.

Such that SMcost is the complexity of SM to find the cluster, and
PMcost is the complexity of SM to find the cluster.
The number of elements that must be examined can be reduced to:

—Search Operation Complexity by using SM is
O(log NodeMAX) + O(Mclusters).

—Search Operation Complexity by using PM is
O(log NodeMAX) + 1.

Clusters layer can be extended as skip list of clusters, so the com-
plexity of finding the cluster can be computed as following:
SLMcost : O(log Mclusters)
Then the the number of elements that must be examined can
be reduced to: Search Operation Complexity by using SLM is
O(log NodeMAX) + O(log Mclusters).

5. SIMULATION RESULTS AND ANALYSIS
In this section, to evaluate the proposed CBSL algorithm, CBSL is
compared with the standard skip list protocol for query delay time.
The simulation parameters are shown in Table 1.

Table 1. SIMULATION PARAMETERS
Parameter Value
Total Number of Nodes 5000, 10000
maximum Number of Nodes Per Cluster 5, 10, ..., 500

Fig 12 shows the average delay time against the the target NodeID
for searching, inserting, and deleting when the number of nodes
was 5000 and the maximum number of nodes per cluster was 5
nodes. As shown in Fig 6, the average delay time increases as
the target NodeID increases, this is because, the existence of more
nodes in the list needs more time to manage the list for inserting,
searching, and deleting operations. Also, the average delay time
of CBSL-SM and CBSL-PM is much better than the standard SL

Fig. 12. Average delay time in search operation for 5000 node and 5 max-
imum number of nodes per cluster

method. This is beacuse, CBSL uses clustering design for manag-
ment the skiplist while SL does not. In addition, PM achieves lower
delay time than SM method, this is because, PM can reach to the
required cluster in less number of steps by skipping some clusters.

Fig. 13. Average delay time in search operation for 10000 node and 5
maximum number of nodes per cluster

Fig 13 and Fig 14 show the average delay time against the target
NodeID for searching, inserting, and deleting when the number of
nodes was 10000 and the maximum number of nodes per cluster
was 5 and 10 nodes.
Of course the algorithms are tested with different maximum num-
ber of nodes for the clusters as shown in Fig 15 and Fig 16. as
shown in Fig 15 and Fig 16, when the number of nodes for each
cluster increased to be Cmax = 100. The search inside the cluster
by using the expected method becomes similar to the slandered SL
search. Thus the expected method gives us a good result with clus-
ter of small number of nodes. And the sequential method average

8

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

Fig. 14. Average delay time in search operation for 10000 node and 10
maximum number of nodes per cluster

Fig. 15. Average delay time in search operation for 5000 node and 100
maximum number of nodes per cluster

delay time results become faster than the expected method average
delay time, because the number of clusters was reduced.
Fig 17 show the relation between the maximum number of nodes
of cluster and the total average delay time. As shown in Fig 17
the CBSL methods give us a good result for clusters of maximum
length from 5 to 250. Thus when the maximum length of cluster
increased after 250 the standard SL becomes better, because the
search inside cluster of bigger length take more time than the clus-
ters of small length. And this is make sense, because we loss the
advantage of clustering.

6. CONCLUSION
In this paper, the most relevant data structure proto- cols types in
dynamic distributed environments were introduced . In addition,
a new cluster based skip list (CBSL) algorithm in dynamic dis-
tributed environment was proposed. CBSL algorithm divides the
standard skip list into a group of clusters and uses two methods to

Fig. 16. Average delay time in search operation for 5000 node and 220
maximum number of nodes per cluster

Fig. 17. Total average delay time report of diffrent cluster sizes

nd cluster position called sequential and predection methods. The
performance of the new protocol has been simulated with differ-
ent sizes of nodes for CBSL and a maximum number of nodes for
each cluster. The simulation results show CBSL achieves average
delay time for different number of nodes is better than standard SL
protocol. In the future work the using of CBSL protocol is consid-
ered to develop a new adaptive stabilization protocol in dynamic
distributed environments, based on m-n cluster based skip list, for
data management in the P2P system and to make these environ-
ments more stable and share the information between other devices
with the minimum of losing data and resources.

7. REFERENCES
[1] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A

survey of peer-to-peer content distribution technologies. ACM
Comput. Surv., 36(4):335–371, December 2004.

[2] Roberto ”Baldoni, Marin Bertier, Michel Raynal, and Sara”
Tucci-Piergiovanni. ”looking for a definition of dynamic dis-

9

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

tributed systems”. ”Springer Berlin Heidelberg”, pages ”1–
14”, ”2007”.

[3] Paolo Boldi and Sebastiano Vigna. Compressed perfect em-
bedded skip lists for quick inverted-index lookups. Springer,
pages 25–28, 2005.

[4] Thomas Clouser, Mikhail Nesterenko, and Christian Schei-
deler. Tiara: A self-stabilizing deterministic skip list.
Springer, pages 124–140, 2008.

[5] Yi Cui, Baochun Li, and K. Nahrstedt. ostream: asyn-
chronous streaming multicast in application-layer overlay
networks. IEEE Journal on Selected Areas in Communica-
tions, 22(1):91–106, Jan 2004.

[6] Tingjian Ge and Stan Zdonik. A skip-list approach for effi-
ciently processing forecasting queries. Proc. VLDB Endow.,
1(1):984–995, August 2008.

[7] Michael T Goodrich and Roberto Tamassia. Efficient authen-
ticated dictionaries with skip lists and commutative hashing.
Google Patents, 2000. US Patent 7,257,711.

[8] Eric N. Hanson and Theodore Johnson. The interval skip list:
A data structure for finding all intervals that overlap a point.
Springer, pages 153–164, 1992.

[9] Nicholas J.A. Harvey, John Dunagan, Mike Jones, Stefan
Saroiu, Marvin Theimer, and Alec Wolman. Skipnet: A scal-
able overlay network with practical locality properties. mi-
crosoft, page 38, December 2002.

[10] Y. J. Lee, S. M. Yoon, J. H. Ji, H. G. Cho, and G. Woo. How
to apply the skip list to the management of a massive set of
replying comments in web bulletins by exploiting the power-
law distribution. 2010 10th IEEE International Conference on
Computer and Information Technology, pages 674–681, June
2010.

[11] Subhrangsu Mandal, Sandip Chakraborty, and Sushanta Kar-
makar. Deterministic 1–2 skip list in distributed system.
IEEE, pages 296–301, 2012.

[12] Subhrangsu Mandal, Sandip Chakraborty, and Sushanta Kar-
makar. Distributed deterministic 1–2 skip list for peer-to-peer
system. Peer-to-Peer Networking and Applications, 8(1):63–
86, 2015.

[13] J. Ian Munro, Thomas Papadakis, and Robert Sedgewick. De-
terministic skip lists. Society for Industrial and Applied Math-
ematics, pages 367–375, 1992.

[14] Rizal Mohd Nor, Mikhail Nesterenko, and Christian Schei-
deler. Corona: A stabilizing deterministic message-passing
skip list. Theoretical Computer Science, 512:119 – 129, 2013.

[15] William Pugh. Skip lists: A probabilistic alternative to bal-
anced trees. Commun. ACM, 33(6):668–676, June 1990.

[16] D. Wang and J. Liu. Peer-to-peer asynchronous video stream-
ing using skip list. 2006 IEEE International Conference on
Multimedia and Expo, pages 1397–1400, July 2006.

[17] Changxi Zheng, Guobin Shen, Shipeng Li, and Scott Shenker.
Distributed segment tree: Support of range query and cover
query over dht. The 5th International Workshop on Peer-to-
Peer Systems, 2006.

10

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.3, October 2017

Fig. 5. CBSL Structure

11

	Introduction
	Related Work
	ENTITY MANAGEMENT PROBLEM in P2P
	Assumptions, and Models
	Problem Formulation

	Cluster-Based Skip List Algorithm
	Basic Idea
	Clustering Formation Process
	The proposed methods
	Search, Insert, and Delete Operations
	Search operation
	Insert Operation
	Delete Operation

	Complexity

	Simulation Results and Analysis
	Conclusion
	References

