
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.31, June 2020

Diffie Hellman Stand the Test of Time (Protocol’s
Limitations, Applications and Functional Divergence)

Avenash Kumar
Department of Computer Science

National University of Computer and Emerging Sciences
Karachi, Pakistan

Sufian Hameed
Department of Computer Science

National University of Computer and Emerging Sciences
Karachi, Pakistan

ABSTRACT
Cryptography plays a vital role in protecting secret information,
as secure communication between two parties over the internet
is the necessity and cannot be overstated. The Diffie-Hellman
Key Exchange (DHKE) protocol is the well-known asymmetric
algorithm formulated by its namesakes Whitfield Diffie and Martin
Hellman in 1976. It allows two parties to securely exchange
shared secret over an insecure communication channel, without
using any pre-shared secret. However, protocol’s theoretical
assumptions and design often associated with some serious
security flaws. This motivates cryptographic community to
propose different variants of DHKE protocol. The major intend
of this research is to examine both empirical and theoretical
vulnerabilities of DHKE protocol. Which leads us to determine
true rationales behind different variations of DHKE protocol.
By reading this manuscript, it is hoped that application security
experts will get good understanding of cryptographic primitives.
These primitives are important and should be considered when
designing or implementing any security protocol such as DHKE.

General Terms
Diffie Hellman, Key Exchange

Keywords
Diffie-Hellman, key exchange, asymmetric cryptography, secure
communication, cryptographic standards

1. INTRODUCTION
In 1976, Whitfield Diffie and Martin Hellman publish their
landmark paper named ”New Directions in cryptography”[1].
In which they have presented secure key exchange protocol.
Where two parties can interchange their secret key over insecure
communication channel.
The protocol works under the notion of trapdoor function [1]
(mathematical function which is easy to compute in one direction
but computationally expensive in opposite direction [2]). This
is suitable where shared secret keys are treated as session keys
which can be further used with symmetric crypto systems (e.g.
AES, 3DES, e.t.c) to make sure message authentication as well
as message integrity [3]. Though the actual mechanism of the
protocol is straightforward and undemanding. However, protocol’s

implementation is vulnerable over several adversarial attacks. This
is due to limited knowledge of programmers regarding basic
cryptographic primitives [4].
The main aim of this paper is to provide complete docket of
adversarial models on which DHKE protocol’s implementation
was/is/will vulnerable. The readers of this manuscript will get good
understanding of cryptographic primitives. These primitives are
important and should be considered when implementing DHKE or
any other security protocol.
To generate shared key K, let two parties be Alice and Bob first
agree upon parameters p and g. Parameter p refers to any large
prime number, where g is the primitive root of modulo p also
known as generator of p. There is also a strong restriction in the
agreement that g must lie in a range 1 < g < p − 1, as the
two parties communicate over insecure communication channel so
there will be a case when protocol doesn’t work and encourage
a passive attacker to expose all the communicating messages.
Example, when g equals to 1 or p − 1 shared secret key K on
both sides is always 1 [5].
In the presence of active and passive attackers, when the
two communicating parties (Alice and Bob) initiate handshake
mechanism, the protocol prosecutes as per follows:

Fig. 1. Public/Private key generation.

(1) Alice and Bob select their private keys, a and b respectively
from a random set {2, ..., p− 2}, as shown in Figure 1.

(2) Alice computes her public key A+ and sends it to Bob. In the
response Bob compute his public keyB+ and sends it to Alice,
as shown in Figure 2.

1

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.31, June 2020

Fig. 2. Key exchange.

Fig. 3. Secret key generation.

(3) Knowing the fact that Alice already knows the public key of
Bob B+, she can compute shared secret key K, similarly, on
the other hand Bob can also compute K with the fact that
he already received the public key of Alice A+, as shown in
Figure 3.

Definition 1. i) The Computational Diffie Hellman (CDH)
problem states that: Given a generator g, modulo p, public keys
A+ and B+ in a group, the goal is to compute K.
(ii) The CDH assumption states that: It is computationally
in-feasible to elucidate CDH problem, given the parameter g, p,
A+ and B+.
(iii) The Discrete Logarithm (DL) problem states that: Given
a generator g and modulo p and public key A+, the goal is to
decompose a from g.
(iv) The DL assumption states that: It is computationally in-
feasible to elucidate DL problem, given the parameters g, p, and
A+.

The security of DHKE protocol is majorly relying on the
fact that, adversary who has access to values which are publicly
known such as g, p, A+, and B+ cannot calculate K from it. It is
also called Computational Diffie Hellman (CDH) assumption. This
assumption is derived from Discrete Logarithm (DL) problem in
the way that, if an attacker knows an effective algorithm to break
DL problem can easily break CDH assumption.

2. VULNERABILITIES
Cryptographic vulnerabilities in network protocols are not unusual.
Therefore, such dilemmas always receive serious attention from
cryptographic community. These vulnerabilities are sometimes
associated with protocol due to the common network attacks, weak
mathematical design model or flaws in protocol’s implementation.
DHKE protocol is widely used method for exchanging keys over
insecure network channels. Due to which similar issues are often

associated with the protocol, thus, it affects computational texture
of the algorithm.

2.1 Network Attacks
2.1.1 Man in the Middle Attack (MiMA). The classical version
of DHKE protocol doesn’t authenticate participants when the key
exchange mechanism takes place, thus, it is difficult to detect man
in the middle attack in standard DHKE protocol [6]. In MiMA
an active attacker (Eve) can be efficient enough to break DHKE
protocol. During the conversation Eve can send, modify or delete
messages, which are exchanged between two parties. In order to
do that, Eve uses his public key E+ and interact with Alice and
Bob. While Alice and Bob are under the assumption, that they have
shared their respective secret key with each other (see Figure 4).
This is possible due to lack of authentication primitives in DHKE
protocol.

Fig. 4. Man in the Middle Attack (MiMA).

In order to understand this attack, let Alice wants to send her secret
messagem to Bob. To do so, she uses any symmetric crypto-system
(AES, or 3DES) and encrypt m using Ka, where Ka is a shared
secret key between Alice and Eve.

(1) Alice encodes her secret message m using ENC(Ka,m)
function and sends it over public network.

(2) Eve intercept her encrypted message, and decrypts it with a
key Ka which he already knows.

(3) Eve swaps m with ENC(Kb,m
′) and sends it to Bob. On the

other side Bob receives the message. Considering Alice as a
recipient and decrypts with key Kb which he shared with Eve,
as shown in Figure 5.

Thus, the protocol is clearly vulnerable against MiMA as the
message integrity and as well as participants’ authentications are
violated.

2.1.2 Logjam Attack. Logjam was a type of an active attack
detected in 2015 export ciphers of TLS. It allows attacker to
downgrade vulnerable TLS connections to 512-bit export-grade
cryptography [7]. It is another variant of FREAK attack but
instead of RSA, Logjam affects Diffie-Hellman Ephemeral (DHE)
key exchange protocol. The actual cause behind this attack was
the major flaw found in TLS. Which allows attacker to read

2

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.31, June 2020

Fig. 5. Alice and Bob shared secret key with Eve.

or inject data into the connection stream. Any server which
supports DHE EXPORT ciphers was influenced with this attack.
It was estimated that out of Top 1 million, 8.4% domains become
vulnerable [7].
Logjam was not an implementation bug. However, it was direct
flaw in the underline architecture of the TLS protocol [8]. In the
preprocessing stage of TLS/SSL connection, client forwards list
of supported cipher suites to the server, in the response server
select one suite for the purpose of handshake mechanism (TLS
maintains the list of cipher suite so that, during the process of
handshake old systems can still be able to connect with new
machines that use new protocols). ”Export Suite” is one type of
the cipher suites which uses 512 bits public key. During the world
war-II US government impose strict export regulations on crypto.
The purpose was supposed to spy on foreigners, since 512 bits are
easy to factor [9]. The vulnerability comes from the fact that most
of the servers were still support ”Export Ciphers”. In fact, most of
the SSL servers use same prime p while exchanging session keys.
Cryptanalysis believed this was safe if new keys are exchanged
for every connection. However, this thinking was enough to
underestimate active adversaries. Because if an attacker invests a
lot in computation power in cracking private key of weak DHKE
instance (decomposing a from gamodp), same computations can
be reuse for other instances as well [10].
TLS allows servers to select their own parameters in order to
execute DHKE protocol. Due to which immense majority of servers
employ common prime numbers. Experts who were involved in
detecting logjam attack estimates that only two different 512 bits
primes were used for 92% of Alexa top 1M domains which support
DHE EXPORT (see Table 2.1.2) [10].
The attack model of Logjam requires Man in the Middle when the
handshake is performed between two communicating parties. By
being in middle, attacker modifies ClientHello packet(s) to force
the server to use an Export Ciphersuite. In the response server
construct weak parameters for public key and forwards following
messages to complete handshake (see Figure 6).

(1) ServerHello: Specifies supported cipher suite with respect to
the list that server receives from client. Attacker modifies this
message for the purpose of maintaining trust of victim client.

Table 1. Top 512-bit DH primes mostly used by Top 1M
servers of Alexa

Source Popularity Prime
Apache 82% 9fdb8b8a004544f0045f173

7d0ba2e0b274cdf1a9f5882
18fb435316a16e374171fd1
9d8d8f37c39bf863fd60e3e
300680a3030c6e4c3757d08
f70e6aa871033

mod ssl 10% d4bcd52406f69b35994b88d
e5db89682c8157f62d8f336
33ee5772f11f05ab22d6b51
45b9f241e5acc31ff090a4b
c71148976f76795094e71e7
903529f5a824b

(Other) 8% (463 distinct primes)

(2) ServerKeyExchange: Consists of server certificate which is
composed of 512 bits modulo p, generator g and public key
of server. When using export version of Ephemeral Diffie
Hellman or normal DHKE the structure and the sending
mechanism of the messages was not secure in a way that server
only signs the certificates instead of communication which is
required during ServerHello messages.

(3) ServerHelloDone: Defines that handshake mechanism from
Server’s is complete.

Fig. 6. Logjam Attack.

Researchers who were involved in detecting Logjam vulnerability
believes that, even 768 and 1024-bit long prime numbers are risky
in use as their processing power, required to crack p is within the
range of academic teams and state-level attackers respectively [7].

2.2 Attacks in the Context of Number Theory
Though adversarial model of man in middle attack completely
burst the underline security of the system but Eve needs to be an
active and commanding adversary in order to cement bridge over
two communicating parties. On the other side, attacks which can
disturb emphasized mathematical model of DHKE offers luxury
of observing network traffic passively. In these types of attacks,
attacker acquires access on shared secret key itself.

3

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.31, June 2020

Table 2. Cases for generating same K on both
sides

g = 1 g = p− 1 g = p+ 1

e ≡ 0 mod 2 1 1 1
e ≡ 0 mod 1 1 p− 1 1

2.2.1 Degenerated Attack. Degenerated attacks are associated
with DHKE protocol due to its mathematical formulation. If an
attacker is efficient enough to launch such attack, protocol would
no longer be effective. To do so, generator g should be equal to
modulo inverse of gmodp. If such a case occurs, shared secret
key on both sides would always be either 1 or p − 1. Fortunately,
from an attacker’s perspective setting up such situation could
be strenuous in a well implemented DHKE protocol, since both
participants select generator g from set {2,, p − 2}. However
as far as an inside attacker is concerned, it is equally likely that an
adversary can successfully decipher the ongoing communication of
two parties by composing a smart input (see Table 2.2.1) value for
ge [4].

2.2.2 Simple Exponents Attack. In DHKE when the values of
exponents (either a or b) are deterministic the protocol becomes
vulnerable against an attack known as Simple Exponents Attack. In
such type of attack if an attacker is efficient enough in intercepting
one of the private keys of the two participants and he can be able
to successfully decipher all the communication of two parties, for
example, when a = 1 in that case g = ga. Attacker who monitors
the network actively will be able to detect and can easily break the
protocol. Another case could be attacker compute gi and compare
entire set with ga or gb. Thus, it is very difficult to find-out where
to draw a boundary line, what set of values should DHKE protocol
allows when selecting exponents, because in that case any set of
values i cloud break the entire protocol. In either way it seems
logical to declare that values of a or b are must not equal to 1.

2.2.3 Simple Substitution Attack. In this type of attack, the main
intend of an attacker is to substitute an intelligent value for public
keys i.e. A+, B+ which leads both parties to compute unity shared
secret key on their respective sides. This type of attack is an
example of careless implementation which normally doesn’t report.

(1) Eve perceive public keys of Alice and Bob i.e. A+, B+ and
respectively substitute with unity (1).

(2) When Alice receives Bob’s public key and vice versa, both end
up with unity shared secret key i.e. K = 1.

If applications are not capable of detecting unity public key, in
that case protocol is vulnerable to simple substitution attack. The
same statement is also applicable for the cases when any of the two
exponents (a or b) holds a value which are multiple of either p− 1.
Based on Euler’s totient theorem [11]:

gϕ(p) ≡ 1mod p, ϕ(p) = p− 1 (1)

gγ.ϕ(p) ≡ 1mod p, γ ≥ 1 (2)

It is habitually good practice to confirm condition mentioned
below:

1 < A+, B+ < p− 1

3. APPLICATIONS
3.1 Diffie-Hellman in SSL
Security is one the most important ingredient of online business
in order to create trusted environment, where consumers must feel
sanguine about the prospects of online transactions. Secure Socket
Layer (SSL) provides the foundation of that trust by creating secure
connection. To proof the assurance for the visitors, web browsers
provide visual indications such as green bar or lock icons.
The term ”Trusted Environment” refers in the context of ensuring
confidentiality, authenticity, and integrity. There are three different
version of Diffie-Hellman are currently used in order to provide the
trusted path between the two communicating parties [12].

(1) Anonymous Diffie-Hellman
(2) Fixed Diffie-Hellman
(3) Ephemeral Diffie-Hellman

3.1.1 Anonymous Diffie Hellman. Anonymous Diffie-
Hellman: Anonymous DHKE doesn’t provide any validation
or authentication mechanism for the communicating parties. Due
to this fact the original version of Diffie-Hellman is also known
Anonymous Hellman. By the means of Networking Attacks
such ’man in the middle’ or Attacks in the context of ’number
theory’, an active attacker can intercept the messages / transactions
of two communicating parties. In order to resist such attacks
authenticated version of DHKE protocol should been used. In
case if an application uses this version of DHKE protocol, a call
to SSL get peer certificate can return NULL. Under the normal
circumstances this is the only case where SSL get peer certificate
return NULL [12].

3.1.2 Fixed Diffie Hellman. Unlike Anonymous Diffie-Hellman,
Fixed Diffie-Hellman key exchange provides authentication
primitives by means of server’s certificates. These certificates carry
public and shared parameters of DHKE protocol which was signed
by certificate authority (CA). On the other hand, as far as client side
is concerned, clients provide its DHKE parameters either by means
of certificate or via key exchange message. In this way under the
notion of authenticity and integrity, fixed key is exchanged between
client and server [12].

3.1.3 Ephemeral Diffie Hellman. In the context of SSL/TLS
Ephemeral Diffie-Hellman (DHE) enables Forward Secrecy
(FS), which cites a reliable communicating protocol in which
compromised long term keys do not affect past communication of
two parties. In other words, DHE defend old sessions against future
attacks, which are related to secret keys. This property also applies
for different variations of Elliptic Curve such as ECDHE (Elliptic
Curve Diffie Hellman Ephemeral) [12].
As far as the authentication is concerned DHE doesn’t provide
implicit authentication at all, because every time system generates
distinct key neither Alice nor Bob are certain about the intended
recipient. In order to enable authentication mechanism DHE is
often used with RSA, PSK or ECDSA etc [12].
Current Version of SSL/TLS supports lots of cipher suites which
assist DHE in order to enable authentication [13], e.g.

(1) Ephemeral Diffie Hellman with RSA (DHE-RSA) key
exchange.

(2) Elliptic Curve Ephemeral Diffie Hellman with RSA (ECDHE-
RSA) key exchange.

(3) Elliptic Curve Ephemeral Diffie Hellman with ECDSA
(ECDHE-ECDSA) key exchange.

4

International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.31, June 2020

(4) Pre Shared Key with Diffie Hellman (DHE-PSK) key
exchange.

(5) Pre Shared Key with Elliptic Curve Diffie Hellman (ECDHE-
PSK) key exchange.

3.2 Diffie-Hellman in SSH
Secure Shell (SSH) is a network level protocol which is responsible
securing remote login and other network services over the un-
protected communication channel. Key exchange is the major
component of SSH, where multiple parties decide to agree upon
shared key in order to communicate over insecure medium.
The protocol executes in three in different steps which are:

(1) ”Hello” Phase: This a phase is also called Handshaking in
which two parties exchange their identity. Various number of
algorithms are involved which are responsible for providing
supported DHKE key groups.

(2) In the 2nd stage steps involved in DHKE protocol are executed
in order to generate shared key on both sides.

(3) In the final stage application key composed via Message digest,
Session ID and Share secret key.

3.3 Diffie-Hellman in IPSec
IPSec (Internet Protocol Security) is initiated by Internet
Engineering Task Force (IETF); it is an extension of the Internet
Protocol (IP) in network layer of OSI model. It is used to provide
secure communication medium by means of authentication and
encrypting IP packets.
Unlike SSL and SSH, which are responsible for securing
traffic, which is originated via application, IPSec is application
independent, it is designated to work with all type of IP traffic. This
approach provides a level of abstraction and transparency in which
neither application nor the user needs to grasp anything regarding
encryption.
Like SSL and SSH, IPSec also uses public key encryption and
DHKE for entity authentication and shared secrets respectively.
However symmetric algorithms are used to generate cipher text
of bulk data. Before IPSec begins the encryption mechanism,
some major details are exchanged between the two parties.
The information is exchanged via IKE (Internet Key Exchange)
protocol (defined in RFC 2409).
IKE accomplishes the task of key exchange in into two phases,
Phase 1: It convince two communicating parties to agree
dynamically on security parameters. In 2nd phase via shared secret
key encryption is performed on exchanged information which
governs the encryption parameters for the actual data.

4. CONCLUSION
This research aims to present hypothetical assumptions and
designing flaws of DHKE protocol. In doing so, we have discussed
the limitations in different variants of DHKE protocol which are
supposed to be secure compare to the classical DHKE protocol.
It is anticipated that this research will help protocol designers of
upcoming generations when designing any cryptographic protocol.
We also hoped that similar type of research will conduct for other
security protocols, which could be a big step to assure reliability in
cryptographic protocol with ingredients of real world.

5. REFERENCES
[1] W. Diffie, and M. Hellman, “New directions in cryptography,”

in IEEE Trans. Information Theory, vol. 22, no. 6, pp. 644–
654, Nov. 1976.

[2] A. May, “New RSA vulnerabilities using lattice reduction
methods,” PhD. dissertation, University of Paderborn, 2003.

[3] V. Boyko, P. MacKenzie, and S. Patel, “Provably secure
password-authenticated key exchange using Diffie-Hellman,”
in Cryptology?Eurocrypt 2000, Springer Berlin/Heidelberg,
2000.

[4] J. F. Raymond, and A. Stiglic, “Security Issues in the
Diffe-Hellman Key Agreement Protocol,” in IEEE Trans.
Information Theory, vol. 22, Jan. 2002.

[5] D. M. Burton, “An Introduction,” in The History of
Mathematics, 7th ed., McGraw-Hill, 2011.

[6] C. M. Chen, L. Xu, W. Fang, and T. Y. Wu, “A
Three-Party Password Authenticated Key Exchange Protocol
Resistant to Stolen Smart Card Attacks,” in Advances
in Intelligent Information Hiding and Multimedia Signal
Processing: Proceeding of the 12th International Conference
on Intelligent Information Hiding and Multimedia Signal
Processing, Kaohsiung, Taiwan, Nov 21-23, 2016, vol. 1, pp.
331–336.

[7] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M.
Green, J. A. Halderman,... and B. VanderSloot, “Imperfect
forward secrecy: How Diffie-Hellman fails in practice,”
in Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Oct. 2015 pp. 5–17.

[8] J. A. Halderman, and V. Teague, “The new south wales
ivote system: Security failures and verification flaws in a live
online election,” in International Conference on E-Voting and
Identity, September 2015, Springer International Publishing
pp. 35–33.

[9] P. Siriwardena, “Designing Security for APIs,” in Advanced
API Security, Apress, Berkeley, CA, 2020, pp. 33–67.

[10] N. Samarasinghe, and M. Mannan, “Another look at TLS
ecosystems in networked devices vs. Web servers,” in
Computers and Security, January 2019 vol 80, pp. 1–3.

[11] L. Euler, “Theoremata arithmetica nova methodo
demonstrata,” in Novi Commentarii academiae scientiarum
Petropolitanae, vol.8, pp.74–104, 1763.

[12] OpenSSLWiki, “Information for D̈iffie Hellman,̈” 2015.
[Online]. Available: https://wiki.openssl.org/index.
php?title=Diffie_Hellman&action=info. Accessed
on: May 12, 2020.

[13] S. Gallenmller, D. Schffmann, D. Scholz, F. Geyer, and G.
Carle, “DTLS Performance-How Expensive is Security?,” in
arXiv preprint arXiv:1904.11423, April 2019.

5

https://wiki.openssl.org/index.php?title=Diffie_Hellman&action=info
https://wiki.openssl.org/index.php?title=Diffie_Hellman&action=info

	Introduction
	Vulnerabilities
	Network Attacks
	Man in the Middle Attack (MiMA)
	Logjam Attack

	Attacks in the Context of Number Theory
	Degenerated Attack
	Simple Exponents Attack
	Simple Substitution Attack

	Applications
	Diffie-Hellman in SSL
	Anonymous Diffie Hellman
	Fixed Diffie Hellman
	Ephemeral Diffie Hellman

	Diffie-Hellman in SSH
	Diffie-Hellman in IPSec

	Conclusion
	References

