
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.32, June 2020

An Empirical Examination of the Relationship between
Code Smells and Vulnerabilities

Aakanshi Gupta
ASET, GGSIPU, Delhi

Bharti Suri
USICT, GGSIPU, Delhi

Vijin Vincent
ASET, GGSIPU, Delhi

ABSTRACT
The quality of software is a crucial issue as a software system
evolves. Managing source code smells and vulnerabilities con-
tributes to software quality. In general, metrics have been used to
classify code smells in source code, and an empirical examina-
tion is being considered in this paper on the correlation of code
smells and vulnerabilities. For continuous inspection of code qual-
ity, Sonar Cloud has been used to conduct automated assessments
with static code analysis to detect code smells and vulnerabilities
with web scrapping technique. Web scraping, web harvesting, or
web data extraction is data scraping used for extracting data from
websites. In web scrapping technique, Selenium library provides
sufficient tool to scrap data from Sonar Cloud. A statistical corre-
lation approach is used to create a relationship between code smell
and vulnerability that takes both dependent and independent values
to measure coefficient of correlation. The conclusion of the study
is, there exist vulnerabilities and code smells pair whose correla-
tion coefficient is up to 0.93, which is quite sufficient to justify the
results.

Keywords
Software Quality, Code Smell, Vulnerability

1. INTRODUCTION AND MOTIVATION

Vulnerability in the software system is the instructions in source
code that can lead to major issues like security breaches and system
crashes. Krsul [15] defined software vulnerability as an instance of
an error in the specification, development, or configuration of soft-
ware such that its execution can violate the security policy. Busi-
ness systems managing confidential data and systems accessing the
public networks (e-bank, e-commerce) are mostly affected by this
problem. Controlling vulnerability and taking adequate precautions
can help mitigate the effect. It has various types of problem related,
which can intercept the development process as well as the main-
tenance phase of the software life cycle. Marija Kati [13] stated
this fact in his paper. Moreover, the redesign is supposed to reduce
software vulnerabilities. Research concerning this topic is still in
infancy, and redesigning is done in two steps, code smell detection
and refactoring. Code smells are another factor, that can adversely
affect the maintenance phase. To remove a vulnerability inside a
project, the first step is to detect the same, so here, finding a valid
relation between code smell and the vulnerability, also the analy-

sis of its behavioral change throughout different projects taken. For
finding a valid relation between vulnerability and code smell using
a correlation approach, a series of count values of both code smells
and vulnerabilities of different projects are required. To obtain this,
required a tool capable enough to find both code smells and vul-
nerabilities together of some software systems that is considered
in this paper. Several automated tools already exist to detect vul-
nerable source code statements like Splint and Pixy etc. which can
detect vulnerabilities by analyzing the static source code for this re-
search work SonarCloud. This online platform, which suffices the
analysis requirement.
Sonar Cloud is an open-source platform developed by Sonar source
to analyze project source code saved in GitHub or BitBucket. Its
analysis includes detection of the number of bugs, amount of code
smells, amount of vulnerabilities, and calculations of technical
debts of a project, etc. In this case, code smell and vulnerability
attributes are considered for the study and analysis. SonarCloud
uses its own set of rules for detecting code smell and vulnerability.
SonarCloud is an online platform for analysis where SonarQube is
the PC plugin used with Eclipse. Both use the same rules that are
found in SonarSource. SonarSource has categorized the analysis
metrics like code smell and vulnerability language wise i.e. each
language has its own sets of rules defining code smells and vulner-
abilities, which is present in SonarSource rule definition. There are
332 code smells and 49 vulnerabilities defined under Java language
on SonarSource.
To perform correlation; there is required many instances that are
having code smells and vulnerabilities so that can give a better re-
sult. Hence, 300+ projects are considered in this study. Analyzing
each project individually and storing it manually might be a time
consuming task. So, SonarCloud has an explore tab [6] in their site,
which lists down all the projects analyzed through their online plat-
form and the analyzed results are open for all visitor to be viewed.
So, instead of manually analyzing all of the projects, scraping those
data for this empirical study that is publicly available. Web scrap-
ing is a technique to extract huge amount of data from websites. It
is mostly used when the respective sites from which; want to ex-
tract data do not provide specic API to acquire those data or when
coping data manually is a bit cumbersome. Here, Selenium library
is used for this purpose. Selenium is a python library, that is used
to automate functional tests on the website but also can be used to
extract web data. Selenium library provides functionality to select

1



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.32, June 2020

Table 1. : Vulnerabilities and their Description

ID Vulnerability Description

V1 The ”public static” fields should be constant This rule states that a variable or functions defined as
public and as well static should also be defined as fi-
nal.

V2 Basic authentication should not be used This rule suggest not to use basic authentication like
Base64, whose encoding is simple and only offer
thinnest veil of protection to user.

V3 Cross-document messaging domains should be
carefully restricted

Html provides a functionality to send messages to
document which is served from other domains. This
rule raises issue whenever a ”Window.postMessage”
is used.

V4 Defined filters should be used Filters may not invoke if filters defined under web.xml
are not used in a < filter −mapping > element.

V5 Function constructors should not be used Function constructors can also be dangerous i.e. con-
structor’s string arguments work similar to the way
eval works, which can be both slow and a security risk.

Table 2. : Code Smells and their Description

ID Code smell Description

C1 Static non-final field names
should comply with a naming
convention

Static non-final fields should follow a naming convention; hence
allow team to collaborate efficiently. This rule checks if the
static non- final field match the provided regular expression. By
default the regular expression is [a-z][a-zA-Z0-9]*$

C2 Exceptions should be either
logged or rethrown but not both

In multi-threaded applications, it is a bad practise to log an ex-
ception and then rethrow it. This will end up in huge amount
log statements that may contain multiple instance of the same
exception. Hence, debugging of the same will be cumbersome.

C3 Extra semicolons should be re-
moved

Places in the source code, containing extra semicolons causing
error

C4 Variables and functions should
not be redeclared

Redeclaration of variables and function should be avoided. Re-
declaration can confuse maintainer and might also overwrite the
previously used variables.

C5 Control structures should use
curly braces

Use of curly brace is a good convention of coding even if it is
not technically incorrect.

C6 Comma operator should not be
used

In C language use of comma operator is normal but It could be
detrimental to the readability and reliability of the code

HTML content and to get the same, the study aims at investigating
the following research questions:

—RQ1:How the presence of vulnerability as well as code smell
changes over various projects?

—RQ2:If there exist any pairs of code smell and vulnerability
which has high correlation coefficient?

Motivation for work

—Code smells and vulnerabilities both degrade the software qual-
ity and make the software less maintainable.

—There is no study and analysis exist on the relationship of code
smells and vulnerabilities as per our knowledge.

The paper is organized as follow: Section 2 presents the Back-
ground Theory follow by Section 3 describes the Experimental
setup including Data Extraction and preparation. Section 4 de-
scribes the implementation steps with result analysis. Section 5,
presents the conclusion and future work.

2



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.32, June 2020

2. BACKGROUND THEORY

Code smells are the design defects that degenerate the software
quality and maybe the reason for the software failure also. Refactor-
ing is the technique for removing the code smells from the software
as such that no impact on the external behavior of the software. On
the other hand, Vulnerabilities are considered security issues in the
software system.
Code smells are the symptoms of the presence of poor coding style
in the source code. Code smells are a threat to software mainte-
nance. Code smell detection is a very important step for the soft-
ware in this new era. There are detection techniques like machine
learning [7], association rule mining [3], change history informa-
tion [18], cooperative parallel SBSE approach [14], weight-based
distance metrics [5] and many more [10] available in the litera-
ture. Code smell prediction model also available in the published
documents [9]. Vulnerabilities are the loophole in the source code
that empowers an attacker to circumvent the security. Vulnerabil-
ities are xed by the testing team for the reliability and security of
the software. Camilo et al. [1] showed that both vulnerability, and
bugs are empirically different and more research is needed for de-
tecting vulnerability. Gopalakrishna et al. [8] measured vulnerabil-
ity as four artifacts of programming. Those are programming style,
programming mistakes, error-prone constructs, and privileged lines
of code. Chowdhury et al. [2] compared the performance of C4.5
Decision Tree, Logistic Regression, Random Forests and Naive-
Bayes for predicting vulnerability. Zimmermann et al. [23] pre-
sented an empirical study to evaluate that complexity, churn, cov-
erage, dependency measure, and organizational structure to predict
vulnerability. To the extent of our knowledge, no research or study
on the relationship between code smell and vulnerability has been
conducted earlier. However, it is necessary to point out that rela-
tionship between code smells and faults, code smells and bugs has
been proposed. Sonar cloud considered as violations of both the
code smells and vulnerabilities [19]. Code smells affected the soft-
ware maintainability negatively [12,21] and increased the number
of faults. The studies investigated the correlation between faults and
code smells in the software. They have also identied the names of
specic code smells that were changed more frequently. W.Li and R.
Shatnawi [16] have found a relationship between class error proba-
bility and code smells with the proof that the code smells will be in-
creased if there is a high probability of class errors in the software.
Yamashita [22] identied the relationship between problems in the
software and code smells using binary logistic regression. He also
identied the harmful code smells in respect to maintenance. Rah-
man et al. [20] established a correlation between duplicate code
smell and bugs. Juergensetal [11] dened and analyzed a correla-
tion between inconsistent clone code smell and faults. They have
also developed an algorithm for the detection of inconsistent clone
bad smells. DAmbros et al. [4] found a relationship between code
smells and faults. They justied the results that smells and faults are
proportionally related to each other. Monden et al. [17] claried the
correlation between clone code smells and software quality with
the result that classes with clones are less maintainable. Falessi and
Voegel [6] studied for nding a relationship between Sonar cloud vi-
olations and faults and showed that classes with higher violations
would have higher faults. Code smells are design aws in object-

oriented systems [24], which can lead to maintainability issues in
the evolution of software system. Also, in the paper [25], it is stated
that negligence and inconsiderateness in the design of a software
system can also lead to defects in software logical workow. These
defects can also cause the software to crash as well as can be the
reason for attackers to exploit the defects for their benet [2]. Hence,
design aws or defects can also be the cause of maintainability issues
and future security vulnerability. Hence, in this paper, a systematic
approach is taken to nd the relationship between code smell and
vulnerability those are particularly related to some design aw.

3. EXPERIMENTAL SETUP

Web scraping is a task especially when if the website has dynamic
content. BeautifulSoup is another python library for web scraping
but only for static websites. Here, in our case SonarCloud load
data dynamically. Hence, BeautifulSoup is unable to extract data
from it; for overcoming this dynamic loading problem, Selenium
is used, which has the functionality to wait until the component it
is searching for, has completely loaded into the browser.

Fig. 1: Flow diagram of the methodology

As the study required a huge number of project data to be extracted
from SonarCloud with specification of each and every code smell
and vulnerability defined under SonarSource, a python script with
Selenium library is created , which can get the appropriate projects
for the study and then extract each projects code smell and vulner-
ability count data. The following fig. 1 shows the flow diagram of
the methodology is being used in the experiment.

3



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.32, June 2020

Data Extraction and Preparation

This section will describe the process taken to extract data for eval-
uating the correlation between code smell and vulnerability. Sonar-
Cloud support many languages including Java, PhP etc. Hence un-
der explore option a mixture of project can be found of different
languages. As our study only focuses on java projects, the filter op-
tion available on the site [7] is used to request all the projects under
java language. Some of the projects analysis result revealed that
huge projects with larger lines of code, analysis results could not
be loaded completely into the site.

Fig. 2: Screen shot of the scripting for Webscrapping

Hence, a limit is introduced to the project size i.e. projects with
total No. of code smell found should be less than 1000, and our
second constraint was to select only those projects, which have
at least one vulnerability issue. This constraint is achieved with
SonarCloud helpful filter options, i.e. sorting out the project with
their security issues. Since the data, which loads into the site are
dynamically loaded, hence inspect the functionality of the browser
is used to know its source. Under Network tab, the RequestURL
can be found, which requests the data from the server and further
loads it dynamically.

Fig. 3: The bar graph of both code smell and vulnerability across
projects

This RequestURL is responsible for loading the project details into
the site. This URL requests data in batches of 50, which further
can be changed according to the need. Here in our case, it is set
to 100, hence 100 project data can be loaded in an instance. It is
achieved by changing the attribute ps=50 in the URL to ps=100.
To extract this JSON data from this URL, Selenium is used. It is
a library in python for web automation and its testing. Before de-
veloping the script with Selenium, the Chromedriver is installed, as
needed by Selenium to execute the script. Selenium has its function
to run the URL in Chrome driver. Driver.get(URL) Here Driver is a
variable that represents the chrome driver and using its get function
any URL can be executed in chrome browser. This function also
returns the server response that it receives, which in our case are
the JSON data. Here project ID is required for further extraction of
code smell and vulnerability data specifically for each project re-
spectively. Project detail could also be extracted using the same
URL specified above. Hence using that URL useful details like
project ID, project name, project size can be extracted in JSON for-
mat and stored in .csv file. After executing the get function 5 times,
500 projects are obtained and out of which. some of the projects are
left as they do not follow the constraint previously defined. Finally,
312 projects ID is successfully obtained that fulfill the need. Now,
the second most important step is to extract individual details about
code smell and vulnerability for each project taken. In the Fig. 2 a
snapshot of the screen has been shown for web scrapping scripting.

Fig. 4: Considered data set of Vulnerabilities over the projects

The code smell and vulnerability are two page sections in the
site, which can be opened for inspection. SonarCloud provides
an insight of the code smell and vulnerability present in the code
and highlights its location with rule that it follows. There can be
many similar code smell and vulnerability present in a project. To
get those details with its frequency count, there is a rules section
available under both the pages of code smell and vulnerability,
which contains all the metric details and its respective frequency
count. Those data can be extracted with its frequency in the same
way as it has been done with the project detail extraction i.e. the
data , which is loaded into the site also has a RequestURL as a

4



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.32, June 2020

Fig. 5: Considered data set of Code Smells over the projects

source. Under the inspect option, the RequestURL for both code
smell and vulnerability can be found inside the network section.
Figure 3, shows the bar graph between vulnerability V1 and code
smell C1 across the considered projects.

Hence, those data can also be request in JSON format and the
values can be extracted in the same manner. In order to automate
this process for all the projects, first a similarity is identified
between varies RequestURLs of many different projects taken
and found that the URL body differ only at the project ID part
and everything else are similar. Their RequestURL follows the
sequence as follow:
A + ProjectID + B1
RequestUrl for Vulnerability Values:
A + ProjectID + B2
where
A : (https://sonarcloud.io/api/issues/search?componentKeys=)

B1 : (&resolved=false&types=CODE_SMELL&facets=types%

2Crules&additionalFields=_all)

B2 : (&resolved=false&types=VULNERABILITY&facets=types%

2Crules&additionalFields=_all)

Hence, the already extracted project ID is iterated one by one to cre-
ate a custom URL for each project and that can be used to extract
the JSON data for both code smell and vulnerability respectively.
After getting the data in JSON format, extraction of its name and its
frequency count is done and saved those extracted data into python
dictionary data variable, each for both code smell and vulnerability
for every project. The key value of the dictionary variable repre-
sents the attribute name and the value part represents its frequency
count. At the end of the iteration, a list of dictionary variable is
obtained where each element represents code smell as well as vul-
nerability details for a specific project. Those list values are further
converted into a Pandas Data frame variable. Pandas is a library
in python , which provide many useful data processing functional-
ity for data analysis. Hence, the converted list value to pandas data
frame can further be used for correlation calculation. Figure 4 and

Figure 5 are the box and plot graphs of code smell and vulnerability
taken in this research. Box and plot graph usually tells the distribu-
tion of data, so here it tells the distribution of the amount of values
of code smell and vulnerability over the projects.

4. IMPLEMENTATION AND RESULT ANALYSIS

Since, all the data has been extracted and stored, next step is to
find the correlation coefficient between two distinct code smell
and vulnerability. Here, Pearson Correlation Coefficient is evalu-
ated between both the variables. Pearson Correlation Coefficient,
also known as Pearson product-moment correlation coefficient
(PPMCC), is measure of correlation between two variables.

Table 3. : Vulnerabilities and Code Smells Correlation Values

Vulnerability Code Smell Correlation
Values

1 public static fields
should be constant

Static non-final
field names should
comply with a
naming convention

0.92181146

2 Basic authentication
should not be used

Exceptions should
be either logged or
rethrown but not
both

0.92107494

3 Cross-document
messaging domains
should be carefully
restricted

Comma operator
should not be used

0.96249069

4 Cross-document
messaging domains
should be carefully
restricted

Extra semicolons
should be removed

0.98421813

5 Cross-document
messaging domains
should be carefully
restricted

Variables and func-
tions should not be
redeclared

0.91758443

6 Defined filters
should be used

Control structures
should use curly
braces

0.91634193

7 Function construc-
tors should not be
used

Comma operator
should not be used

0.92167049

8 Function construc-
tors should not be
used

Extra semicolons
should be removed

0.96510528

9 Function construc-
tors should not be
used

Variables and func-
tions should not be
re-declared

0.92946156

It has value between +1 and -1, where 1 represents positive
correlation, 0 is no linear correlation and -1 represents negative

5

(https://sonarcloud.io/api/issues/search?componentKeys=)
(&resolved=false&types=CODE_SMELL&facets=types%2Crules&additionalFields=_all)
(&resolved=false&types=CODE_SMELL&facets=types%2Crules&additionalFields=_all)
(&resolved=false&types=VULNERABILITY&facets=types%2Crules&additionalFields=_all)
(&resolved=false&types=VULNERABILITY&facets=types%2Crules&additionalFields=_all)


International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.32, June 2020

Fig. 6: Result analysis through graphs between Code smells and Vulnerabilities

linear correlation. Pandas is one of the great libraries available in
python. It is an open source, data structure and data analysis tool
for python language. Since the values has been already stored in
python data frame, the correlation between two different attribute
can easily be evaluated using data frames corr() function. There
exist two data frames, as one for code smell and the other for
vulnerability. Each row in both the data frames represents different
code smell and vulnerability values representing a project and
each column represents a code smell and vulnerability and its
count values respectively. Hence, using data frames correlation
functions, the correlation values are calculated between every
attribute from vulnerability data frame to every attributes of code
smell data frame.

There are many intermittent code smells and vulnerabilities defined
under SonarSource, which occur occasionally. While taking the
attribute values from data frame, there might be a case when each
attribute contains zero values. This will affect the result as the
long stream of zeros in between attribute value might astray the
correlation coexistent with higher values. In order to reduce its
affect, those rows are deleted where both the attribute values are
null or zero. Hence, at the end of operation correlation values are
obtained for each combination of code smell and vulnerability and
the coefficient values higher than 0.8 are stored locally.
The result obtained from this study is the analysis taken place with

multiple number of java projects extracted from SonarCloud and
its analysis result respectively. 300+ projects are taken for this
analysis where the project size is not the same. Using the python
script, the results of projects available in SonarCloud website are
extracted and stored in CSV format for further analysis. Further,
Pearson correlation method has been applied between each vulner-
ability with every code smell and some graphs have been plotted
shown in the Figure 6 and Figure 7 over those values. Here, public
static fields should be constant(vulnerability) and Static non-final
field names should comply with a naming convention (code smell).
Finally, a table is created storing vulnerability and respective code
smell name with its correlation coefficient values as shown in the
table 3. This table only contains values higher than 0.8, all the
other are left ignored as they does not represent a good relation.

RQ1: How the presence of vulnerability as well as code smell
changes over various projects?
As visible from the graphs, that there are some vulnerability and
code smell pairs whose frequency count changes in amount, in
the same manner throughout the projects that have taken in this
research. In Fig.6, V1, a vulnerability defined under Sonarsource
rules[5] and C1, a code smell defined under Sonarsource rules[5]
are changing in the same manner.
RQ2: If there exist any pairs of code smell and vulnerability
which has high correlation coefficient?

6



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.32, June 2020

Fig. 7: Result analysis through graphs between Code smells and Vulnerabilities

After the calculation of correlation coefficient value between each
vulnerabilities with every code smells, a significant number of code
smell and vulnerability pairs has been found values higher than 0.8.

5. CONCLUSION

This research represents data collection and its analysis to calcu-
late a relationship between code smells and vulnerabilities. Code
smell can also be a cause of some rising vulnerability in software
system. This study is carried out with an online tool called Sonar-
Cloud, which is used to analysis software source code of any bugs,
code smells and vulnerabilities. Since, the study focuses on vul-

nerability and code smell, hence both the attributes have been con-
sidered in this paper. In order to find a valid relation among both
the attributes, Pearson correlation coefficient methodology and var-
ious graphs are analyzed. To find correlation coefficient a sufficient
amount of data set is essentially required. Here, instead of manually
gathering the project data for code smell and vulnerability values,
web scraping technique is employed for the same. Web scraping
technique is used to extract 300+ project details that had already
been submitted and analyzed by other users. Further, extracting the
individual code smell and vulnerability values, they were stored
in CSV file format locally for further correlation calculation. The

7



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.32, June 2020

extracted data has been cleaned for better correlation calculation.
After successful extraction of data from SonarCloud, correlation
between each vulnerability with every code smell is calculate. For
every relation with correlation value greater than 0.8, a graph has
been plotted. The graphs, in the figure 5 and figure 6, shows a vis-
ible pattern reflecting the behavior of various pairs of vulnerability
and code smell among various projects taken. As, throughout the
300+ project; there exist some pairs of vulnerability and code smell
together whose correlation values is greater than 0.8 as in the table
3, a value supposed to be a good indication of better relation. The
method used in the study can further be carried out with a greater
number of projects taken for finding out new pairs of code smell
and vulnerability.
Correlation coefficient can have higher positive or negative value
if the instances of data values are less. Hence, greater number of
instance values are required for better results. Since taking more
projects can increase their occurrence, thus 300+ projects were
taken to overcome that issue. Second issue can be the continues
stream of zero values throughout the data values; this issue can also
cause the correlation values to go higher. In order to overcome the
same, the pair of rows having zero values is deleted while calcu-
lating the correlation coefficient. In this way, the research is been
carried out for getting the satisfactory outcome.

6. FUTURE WORK

Ahmed et al. [26] analyzed 220 open source projects and their re-
sult tells that ignoring code smells leads to software decay. Here
in this paper, code smell is taken as the decaying factor but with
relationship with the. The combination of both code smell and vul-
nerability can help developers to find vulnerabilities before it is
maliciously used by intruders. As both code smell and vulnerabil-
ity are not good for a software life cycle. Code smell are meant to
be detected and refactored earlier before it causes serious problem.
Hence, finding any code smell causing vulnerability could be of
great use. In this study a sequential process is taken to find these
relations. The obtained result is small with some good correla-
tion coefficient value. Still, the method used in this study can be
used to find more valuable relation between code smell and vul-
nerability. May be different tools can be used, which gives code
smell output in terms of Fowlers named code smell with the re-
spective vulnerability, employed with the calculation of coefficient
value between them. Different languages might have different vul-
nerabilities; hence the relation can be recalculated for those dif-
ferent language platforms of development. Using the same method
more pairs of code smell and vulnerability relation can be found
by taking more project into account. As in this study only java
projects are considered, other languages can also be chosen for
further study. The extracted data using web scraping can also be
used for other statistical methods for find relations like Spearman
correlation, MIC (Mutual Information Coefficient), Hoeffding D
method, marginal and conditional distributions etc.

7. REFERENCES

[1] Felivel Camilo, Andrew Meneely, and Meiyappan Nagappan.
Do bugs foreshadow vulnerabilities?: a study of the chromium
project. In Proceedings of the 12th Working Conference on

Mining Software Repositories, pages 269–279. IEEE Press,
2015.

[2] Istehad Chowdhury and Mohammad Zulkernine. Using com-
plexity, coupling, and cohesion metrics as early indicators of
vulnerabilities. Journal of Systems Architecture, 57(3):294–
313, 2011.

[3] Gabriela Czibula, Zsuzsanna Marian, and Istvan Gergely Cz-
ibula. Detecting software design defects using relational as-
sociation rule mining. Knowledge and information systems,
42(3):545–577, 2015.

[4] Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. On
the impact of design flaws on software defects, 2010.

[5] Jiang Dexun, Ma Peijun, Su Xiaohong, and Wang Tiantian.
Detecting bad smells with weight based distance metrics the-
ory. In 2012 Second International Conference on Instrumen-
tation, Measurement, Computer, Communication and Con-
trol, pages 299–304. IEEE, 2012.

[6] Davide Falessi and Alexander Voegele. Validating and priori-
tizing quality rules for managing technical debt: An industrial
case study, 2015.

[7] Francesca Arcelli Fontana, Mika V Mäntylä, Marco Zanoni,
and Alessandro Marino. Comparing and experimenting ma-
chine learning techniques for code smell detection. Empirical
Software Engineering, 21(3):1143–1191, 2016.

[8] Rajeev Gopalakrishna, E Spafford, and Jan Vitek. Vulnerabil-
ity likelihood: A probabilistic approach to software assurance.
CERIAS, Purdue Univeristy Tech. Rep, 6:2005, 2005.

[9] Aakanshi Gupta, Bharti Suri, Vijay Kumar, Sanjay Misra,
Tomas Blažauskas, and Robertas Damaševičius. Software
code smell prediction model using shannon, rényi and tsallis
entropies. Entropy, 20(5):372, 2018.

[10] Aakanshi Gupta, Bharti Suri, and Sanjay Misra. A systematic
literature review: Code bad smells in java source code. In
International Conference on Computational Science and Its
Applications, pages 665–682. Springer, 2017.

[11] Elmar Juergens, Florian Deissenboeck, Benjamin Hummel,
and Stefan Wagner. Do code clones matter?, 2009.

[12] Marija Katić and Krešimir Fertalj. Challenges and discussion
of software redesign, 2009.

[13] Marija Katić and Krešimir Fertalj. Challenges and discussion
of software redesign. In Proceedings of the 4th International
Conference on Information Technology, 2009.

[14] Wael Kessentini, Marouane Kessentini, Houari Sahraoui,
Slim Bechikh, and Ali Ouni. A cooperative parallel search-
based software engineering approach for code-smells detec-
tion. IEEE Transactions on Software Engineering, 40(9):841–
861, 2014.

[15] Ivan Victor Krsul. Software vulnerability analysis. Purdue
University West Lafayette, IN, 1998.

[16] Wei Li and Raed Shatnawi. An empirical study of the bad
smells and class error probability in the post-release object-
oriented system evolution, 2007.

[17] Akito Monden, Daikai Nakae, Toshihiro Kamiya, Shin-ichi
Sato, and Ken-ichi Matsumoto. Software quality analysis by
code clones in industrial legacy software, 2002.

8



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.32, June 2020

[18] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta,
Rocco Oliveto, Andrea De Lucia, and Denys Poshyvanyk.
Detecting bad smells in source code using change history in-
formation. In Proceedings of the 28th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages
268–278. IEEE Press, 2013.

[19] Luca Pellegrini, Andrea Alexander Janes, and Davide Taibi.
On the fault proneness of sonarqube technical debt violations.
an empirical study, 2018.

[20] Foyzur Rahman, Christian Bird, and Premkumar Devanbu.
Clones: What is that smell?, 2012.

[21] Dag IK Sjøberg, Aiko Yamashita, Bente CD Anda, Audris
Mockus, and Tore Dybå. Quantifying the effect of code smells
on maintenance effort, 2013.

[22] Aiko Yamashita. Assessing the capability of code smells to
explain maintenance problems: an empirical study combining
quantitative and qualitative data, 2014.

[23] Thomas Zimmermann, Nachiappan Nagappan, and Laurie
Williams. Searching for a needle in a haystack: Predicting
security vulnerabilities for windows vista. In 2010 Third In-
ternational Conference on Software Testing, Verification and
Validation, pages 421–428. IEEE, 2010.

[24] Olbrich, Steffen and Cruzes, Daniela S and Basili, Victor and
Zazworka, Nico. The evolution and impact of code smells:
A case study of two open source systems. In 2009 3rd inter-
national symposium on empirical software engineering and
measurement, pages 390–400. IEEE, 2009.

[25] Ping, Liu and Jin, Su and Xinfeng, Yang. Research on soft-
ware security vulnerability detection technology. In Proceed-
ings of 2011 International Conference on Computer Science
and Network Technology, pages 1873–1876. IEEE, 2011.

[26] Mannan, Umme Ayda and Ahmed, Iftekhar and Almurshed,
Rana Abdullah M and Dig, Danny and Jensen, Carlos. Un-
derstanding code smells in Android applications. In 2016
IEEE/ACM International Conference on Mobile Software En-
gineering and Systems (MOBILESoft), pages 225–236. IEEE,
2016.

9


	Introduction and Motivation
	Background Theory 
	Experimental Setup 
	Implementation and Result Analysis
	Conclusion
	Future Work
	References

