
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.33, June 2020

Measuring Performance of Generative Adversarial
Networks on Devanagari Script

Amogh G. Warkhandkar
Vidyalankar Institute of Technology

Mumbai,
Maharashtra, India

Baasit Sharief
Birla Institute of Technology and Science, Pilani

Hyderabad Campus, Shameerpet,
Telengana, India

Omkar B. Bhambure
Vidyalankar Institute of Technology

Mumbai,
Maharashtra, India

ABSTRACT
The working of neural networks following the adversarial
philosophy to create a generative model is a fascinating
field. Multiple papers have already explored the architectural
aspect and proposed systems with potentially good results
however, very few papers are available which implement it
on a real-world example. Traditionally, people use the famous
MNIST dataset as a Hello, World! example for implementing
Generative Adversarial Networks (GAN). Instead of going the
standard route of using handwritten digits, this paper uses
the Devanagari script which has a more complex structure.
As there is no conventional way of judging how well the
generative models perform, three additional classifiers were built
to judge the output of the GAN model. The following paper
is an explanation of what this implementation has achieved.

General Terms
Deep Learning, Neural Networks, Generative Models, Computer Vision,
Digital Image Processing

Keywords
Generator, Discriminator, Sequential Models, Denoising,
Morphology, Thresholding

1. INTRODUCTION
The Devanagari script, Fig. 1 is an ancient Indian script, with
references in Indian culture and history back to the Vedic period.
The 47 characters of the script are divided into 14 vowels and 33
consonants. Alike European languages, this script is also written
from left to right. It features rounded shapes within squared outlines
and a horizontal line that runs along the top of all characters.
In supervised learning, one trains the machine with well-labeled
data. This allows for producing output based on previous
experience. This implementation maps the input variables to an
output variable and uses an algorithm to learn the relationship
between them. This involves learning to predict a label associated
with the data. The purpose is for the model to generalize to new
data. However, in the real world, the convenience of labeled data
being available is less likely.
To address this issue, there is a need for networks that can
function without labeled data. GANs [4] are unsupervised learning

Fig. 1. Devanagari script

algorithms that utilize a supervised loss as part of the training. The
data comes in with no labels and there is no attempt to generalize
any kind of prediction to new data. The goal is for the GAN to
understand what the data looks like with density estimation and
generate new examples with what it has understood.
In this implementation 1, Devanagari script characters are fed into
the GAN as input. The network will then try to generate the
characters as accurately as possible. To calculate the performance
metrics of the GAN, the generated characters will be tested on
classifiers trained on the original dataset.

2. IMPLEMENTATION
2.1 Generator
The generator model, Fig. 2 creates new images of characters by
taking a point from the latent space as input and produces a square
grayscale image.
The latent space is an arbitrarily defined vector space of Gaussian-
distributed values. In this implementation, the value of latent dim
is set to 100. Random points from this space will be drawn and
provided to the generator during training. At the end of the training,
it will represent a compressed representation of a character.

1All code and hyperparameters available at: DevGAN.

5

https://github.com/amogh-w/Paper-DevGAN


International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.33, June 2020

sequential 1

input 2: InputLayer
input:

output:

[(?, 100)]

[(?, 100)]

dense 3 input: InputLayer
input:

output:

[(?, 100)]

[(?, 100)]

dense 3: Dense
input:

output:

(?, 100)

(?, 256)

leaky re lu 2: LeakyReLU
input:

output:

(?, 256)

(?, 256)

batch normalization: BatchNormalization
input:

output:

(?, 256)

(?, 256)

dense 4: Dense
input:

output:

(?, 256)

(?, 512)

leaky re lu 3: LeakyReLU
input:

output:

(?, 512)

(?, 512)

batch normalization 1: BatchNormalization
input:

output:

(?, 512)

(?, 512)

dense 5: Dense
input:

output:

(?, 512)

(?, 1024)

leaky re lu 4: LeakyReLU
input:

output:

(?, 1024)

(?, 1024)

batch normalization 2: BatchNormalization
input:

output:

(?, 1024)

(?, 1024)

dense 6: Dense
input:

output:

(?, 1024)

(?, 1024)

reshape: Reshape
input:

output:

(?, 1024)

(?, 32, 32, 1)

Fig. 2. Architecture of the Generator

sequential

input 1: InputLayer
input:

output:

[(?, 32, 32, 1)]

[(?, 32, 32, 1)]

flatten input: InputLayer
input:

output:

[(?, 32, 32, 1)]

[(?, 32, 32, 1)]

flatten: Flatten
input:

output:

(?, 32, 32, 1)

(?, 1024)

dense: Dense
input:

output:

(?, 1024)

(?, 512)

leaky re lu: LeakyReLU
input:

output:

(?, 512)

(?, 512)

dense 1: Dense
input:

output:

(?, 512)

(?, 256)

leaky re lu 1: LeakyReLU
input:

output:

(?, 256)

(?, 256)

dense 2: Dense
input:

output:

(?, 256)

(?, 1)

Fig. 3. Architecture of the Discriminator

The architecture consists of three Dense layers with the LeakyReLU
[13] activation function with alpha as 0.2 and BatchNormalization
with momentum as 0.8 applied to every Dense layer. The final
Dense layer is equipped with a Tanh activation function.
The weights in the generator model are updated based on the
performance of the discriminator model. Depending upon the loss
output of the discriminator, the rate at which the generator is
updated is calculated. Here the adversarial relationship between
these two models is defined. The discriminator only concerns itself
with the function of distinguishing between real and fake examples.
Thus the layers of discriminator are marked as not trainable when
combined with the generator model.

6



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.33, June 2020

The architecture, Fig. 3 consists of a Flatten layer and three
Dense layers with LeakyReLU activation function with alpha as
0.2 applied to every Dense layer. The final Dense layer is equipped
with Sigmoid [8] activation function.

2.2 Classifiers
Classifier 1:
It is a three-layered neural network with two layers consisting
of 128 hidden units each. The layers have ReLU [2] activation
function and the output layer has 10 units with Softmax activation
function. It uses an Adam optimizer with loss function as sparse
categorical crossentropy.

Classifier 2:
The architecture consists of three Convolutions [6][7] and three
Dense layers. All the Convolutions include BatchNormalization,
ReLU activation function, MaxPooling, and Dropout [12].
The first Convolution consists of 64 filters of size (5,5) with same
padding along with MaxPooling size of (2,2) and strides of (2,2).
The Dropout rate is 0.25. The second Convolution consists of 32
filters of size (3,3) with valid padding and ReLU activation function
and continued with the same MaxPooling and same Dropout as
above. The third Convolution consists of 16 filters of size (3,3) with
same padding and ReLU activation function and continued with
the same MaxPooling and same Dropout. The Convolutions are
continued by three Dense layers with the first two of them having
Dropouts and third being the output layer. The first Dense layer
consists of 128 units with ReLU activation function and Dropout
with a rate of 0.25. The second Dense layer consists of 32 units
with ReLU activation function and Dropout with a rate of 0.5.
The last Dense layer has 10 units with Softmax activation as the
output. The model is compiled with Adam [5] optimizer with loss
function as categorical crossentropy.

Classifier 3:
This architecture is similar to Classifier 2, with hyperparameters
like the number of filters and number of neurons being different
and BatchNormalization applied after every Dense layer except the
output. The model is compiled with RMSprop [10] optimizer with
the same loss function.

3. OBSERVATIONS
3.1 Dataset
The dataset [1] is an image database 2 of Handwritten Devanagari
characters. There are 46 classes of characters with 2000 samples
each. The images are in png format with 32x32 resolution. The
actual character is centered within 28x28 pixel and a padding of 2
pixels is added on four sides of the character.

Table 1. Classifier Metrics on Original Dataset
loss accuracy val loss val accuracy

Classifier 1 0.0268 0.9920 0.5579 0.8856
Classifier 2 0.2135 0.9415 0.0388 0.9887
Classifier 3 0.0106 0.9964 0.1006 0.9808

2Dataset available at: Devanagari Handwritten Character Dataset.

3.2 GAN Output

Fig. 4. Generated Characters

The GAN model was trained for 10,000 epochs. At every 500
epoch, the output of the model was stored. Every model started
showing promising results at 5000 epochs. Training for 5000
more iterations resulted in better character generation with distinct
boundaries between the character and the background. The training
time was around 2 hours on an NVIDIA 1050Ti GPU. Despite the
generated characters being readable to the human eye, Fig 4, a
significant amount of noise was observed.

7

https://archive.ics.uci.edu/ml/datasets/Devanagari+Handwritten+Character+Dataset


International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.33, June 2020

3.3 Classifier Output
All three classifiers performed well on the original dataset, Table 1.
However, on the generated characters their performance was very
unsatisfactory, Table 2. This failure was accounted to the previously
encountered noise in the generated data. Although the generated
characters seemed readable to the human eyes, the classifiers were
not able to differentiate the characters correctly.

Table 2. Classifier Metrics on
Generated Characters

loss accuracy
Classifier 1 11.6530 0.0900
Classifier 2 21.9342 0.1230
Classifier 3 8.0340 0.1590

3.4 Generated Data Cleaning
All the images were passed through a Gaussian Blur [3] filter of
size 3x3. Furthermore, Otsu’s Thresholding [14] was applied to
segment the images into two-pixel values i.e. 0 and 255. After this,
two morphological operations [9][11] were done i.e. opening and
closing with ones kernel of size 3x3. Finally, they were all passed
through a bitwise NOT so that the characters resembled the original
data, Fig 5.

3.5 Final Classifier Output
After the data cleaning, the result of the classifiers improved
greatly. Table 3 contains the statistics and comparisons of the
classifier outputs.

Table 3. Classifier Metrics on
Cleaned Generated Characters

loss accuracy
Classifier 1 1.0490 0.8930
Classifier 2 1.7370 0.8692
Classifier 3 1.2778 0.8660

4. CONCLUSIONS AND FUTURE WORK
Lack of data has always been a big problem in solving real-
world challenges involving machine learning and deep learning
applications. GANs will be beneficial to a lot of data practitioners
because of its possibility of generating real-like artificial data.
This paper has demonstrated the viability of Generative Adversarial
Networks on real-life datasets. Even though the generated
characters were very noisy, it is safe to assume that in the future
there will be a GAN architecture that will take this anomaly into
account and create significantly better output. Further experiments
can be done on multiple architectures and a hybrid architecture
can be developed which might result in the cleaner generation
of images. Furthermore, there are high chances of more agile
architectures being developed which will make the training and
testing faster and more efficient.

5. REFERENCES
[1] S. Acharya, A. K. Pant, and P. K. Gyawali. Deep learning

based large scale handwritten devanagari character
recognition. In 2015 9th International Conference on
Software, Knowledge, Information Management and
Applications (SKIMA), pages 1–6, 2015.

Fig. 5. Cleaned Generated Characters

[2] Abien Fred Agarap. Deep learning using rectified linear units
(relu). CoRR, abs/1803.08375, 2018.

[3] Estevao Gedraite and M. Hadad. Investigation on the effect
of a gaussian blur in image filtering and segmentation. pages
393–396, 01 2011.

[4] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks, 2014.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization, 2014.

[6] Jayanth Koushik. Understanding convolutional neural
networks, 2016.

8



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.33, June 2020

[7] Mengchen Liu, Jiaxin Shi, Zhen Li, Chongxuan Li, Jun Zhu,
and Shixia Liu. Towards better analysis of deep convolutional
neural networks, 2016.

[8] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan,
and Stephen Marshall. Activation functions: Comparison of
trends in practice and research for deep learning. CoRR,
abs/1811.03378, 2018.

[9] A.M Raid, Wael Khedr, Mohamed El-dosuky, and Mona
Aoud. Image restoration based on morphological operations.
International Journal of Computer Science, Engineering and
Information Technology, 4:9–21, 07 2014.

[10] Sebastian Ruder. An overview of gradient descent
optimization algorithms, 2016.

[11] Ravi Srisha and Am Khan. Morphological operations for
image processing : Understanding and its applications. 12
2013.

[12] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014.

[13] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical
evaluation of rectified activations in convolutional network.
CoRR, abs/1505.00853, 2015.

[14] Jun Zhang and Jinglu Hu. Image segmentation based on 2d
otsu method with histogram analysis. pages 105–108, 01
2008.

9


	Introduction
	Implementation
	Generator
	Classifiers

	Observations
	Dataset
	GAN Output
	Classifier Output
	Generated Data Cleaning
	Final Classifier Output

	Conclusions and Future Work
	References

