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ABSTRACT 
Let 𝐺 be a simple graph of order 𝑛 ≥ 2 and 

let  𝑘𝜖 {1,2,… ,𝑛 − 1}. The 𝑘-token graph 𝐹𝑘(𝐺) of 𝐺 is the 

graph whose vertices are the k-subsets of 𝑉(𝐺), where two 

vertices are adjacent in 𝐹𝑘(𝐺) whenever their symmetric 

difference is an edge of 𝐺. The generation and drawing of the 

token graphs of a given graph are not easy due to their high 

number of vertices and edges, so the study of such graphs turn 

out to be a very complex task without using an efficient 

software. In this paper, an efficient software with a user-

friendly interface is presented. This software was developed in 

the high-level programming languages C++ and Wolfram 

Mathematica, and it is able to automatically generate token 

graphs of a given graph so that the study and the teaching of 

that family of graphs become easier. 

General Terms 
Combinatory, graph, high-level programming language. 

Keywords 

Token graphs, symmetric difference, user-friendly interface. 

1. INTRODUCTION 
Graph theory is often considered as one of the most modern 

areas of mathematics, although it was founded in 1736 with 

the work of Leonhard Euler by the famous problem of the 

seven Königsberg bridges. It is important to mention that 

there are currently several applications of graph theory in 

various areas of engineering [1]. In addition, these 

applications are related to both civil and military problems. 

Recently, several investigations have been carried out on a 

special class of graphs called token graphs [2-7]. Recall that, a 

𝑘-token graph 𝐹𝑘(𝐺) of a graph 𝐺 is the graph whose vertices 

are all 𝑘-subsets of 𝑉 (𝐺), and two k-subsets are adjacent 

whenever their symmetric difference is a pair of adjacent 

vertices in 𝐺. Let 𝐺 be a simple finite graph of order 

 𝑉(𝐺)) = 𝑛, 𝑛 ≥ 2  and let  𝑘𝜖 {1,2,… ,𝑛 − 1}, then the 

number of vertices in 𝐹𝑘(𝐺) is   𝑉(𝐹𝑘(𝐺)) =  𝑛
𝑘
  and in [2], 

it is proved that the number of edges of  𝐹𝑘(𝐺) 

is  𝐸(𝐹𝑘(𝐺)) =  𝑛−2
𝑘−1

  𝐸(𝐺) . 

Therefore, it is not difficult to see that, the number of vertices 

and edges of a 𝑘-token graph is very high for some values of 

𝑛 and  𝑘. Thus, the generation, the drawing and, of course the 

teaching of such graphs turn out to be a very complex task 

without the use of modern computers, which should be 

programmed by the teacher and / or researcher. Indeed, the 

study and the teaching of token graphs become a task with a 

great complexity for those teachers and / or researchers who 

do not know how to program, since there is no software with a 

user-friendly interface that calculates the vertices, the edges 

and adjacency matrices of token graphs. That is, there does 

not exist a software that generates them and draws them 

automatically. In this paper, an efficient software with a user-

friendly interface is presented. This software was developed in 

the high-level programming languages C++ (using QT creator 

open source version) and Wolfram Mathematica [8], which is 

able to automatically generate token graphs and their digital 

images with Igraph/M  [9], so that the study and the teaching 

of that family of graphs become easier.  

2. MATERIALS AND METHODS 

2.1 Software 

The software of automation of token graphs is based on the 

next requirements: 

 Wolfram Mathematica v11.0.0 or higher. 

 WolframScript v12.0.0 or higher. 

 IGraph/M a Mathematica interface for igraph v0.4. 

 MinGW – GNU Compiler Collection (with C++), 

64 bits, v7.3.0. 

 Microsoft Windows 10, 64 bits. 

 QT Open source, v5.14.2. 

2.2 Pipeline 

The pipeline represents, at high level, the sequence of steps in 

the process of automation of token graphs of a given graph. In 

Figure 1, the input is an undirected graph 𝐺 of order 𝑛; the 

immediate action is to save the adjacency matrix of the graph 

𝐺 in a plain text file. This adjacency matrix, say 𝐴, is an 𝑛 ∗ 𝑛 

matrix, where the element 𝐴[𝑖][𝑗] = 1 if (𝑖, 𝑗) is an edge of 

 𝐺; otherwise, 𝐴[𝑖][𝑗] = 0, [10]. Then, the Wolfram script is 

executed to generate the visual representation (digital image) 

of 𝐺 and thus save it in a folder within results; the matrix 𝐴 is 

also saved in the same folder. In order to calculate 𝐹𝑘 𝐺  
where  𝑘𝜖 {1, 2,… ,𝑛 − 1}; for each 𝑘, three steps are made. In 

the first step 4.1.1, the vertex combination is done to generate 

the subsets of size 𝑘 (𝑘-subsets). This 𝑘-subsets are the 

vertices of the 𝑘-token. In the second step 4.1.2, the 

symmetric difference is applied to all pairwise 𝑘-subsets, if 

the symmetric difference of any two 𝑘-subsets is a pair of 

vertices of 𝐺 and both vertices are adjacent in 𝐺, then both 𝑘-

subsets are adjacent in 𝐹𝑘 𝐺  ; and generate a value 1 in the 

adjacency matrix 𝐴 of 𝐹𝑘 𝐺  . With this process, the upper or 

lower triangular matrix  𝐴 is created. Since the graph is 
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undirected. Then to complete with the construction of 𝐴, the 

symmetric reflection of the elements of the matrix is done. 

Note that 𝐴 is a   𝑚 ∗𝑚 =  𝑛
𝑘
 ∗   𝑛

𝑘
  matrix. In the last step, 

the digital image is generated, using Mathematica as well as 

saving 𝐴 and 𝑘-subsets in a plain text file 

 

Fig 1. Pipeline to generate the 𝒌-token graphs. 

2.3 Algorithm and its analysis 
 

Input: Positive integer 𝑛 that is the number of vertices, and 𝑘 a positive integer indicating the size of the subsets of 𝑉 𝐺  in 𝐹𝑘 𝐺 . 

Output:  
𝑛
𝑘
  𝑘-subsets representing the vertices of 𝐹𝑘 𝐺 . 

1. Declare 𝑉(𝐹𝑘(𝐺) as a vector of vectors, 𝑣𝑒𝑐𝑡𝑜𝑟𝑠, to store the 𝑘-subsets. 

2. Declare collection 𝑐[𝑛], array of integers of size 𝑛.  

3. for ∀ 𝑖𝜖 {0,1,… , 𝑘 − 1} do 

4.     𝑐[𝑖]  =  𝑘 –  𝑖, generate the 𝑖-th element of the base 𝑘-subset, descending order. 

5. end 

6. while 𝑇𝑟𝑢𝑒 do, generate all 𝑘-subsets. 

7.     Declare array 𝑘_𝑠𝑢𝑏𝑠𝑒𝑡_𝑖[𝑘] 

8.     for ∀ 𝑖𝜖 {k − 1, k − 2,… ,0} do 

9.         𝑘_𝑠𝑢𝑏𝑠𝑒𝑡_𝑖[𝑘 − 1 − 𝑖]  =  𝑐[𝑖], assign elements to 𝑘-subset. 

10.     end 

11.     Add 𝑘_𝑠𝑢𝑏𝑠𝑒𝑡_𝑖 to 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

12.     if 𝑐 0 + 1 <  𝑛 then, check if all vectors have already been generated for 𝑐[0]. 

13.         𝑐[0]  =  𝑐[0]  +  1, update the last (descending order) element. 

14.         goto 6, when not all vectors have been generated yet. 
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15.     else, increase the values of 𝑐[] 

16.         𝑖 =  0 

17.         𝑐[𝑖]  =  𝑐[𝑖]  +  1, to be able to check if it is already completed. 

18.         while 𝑐[𝑖]  >=  (𝑛 –  𝑖) do 

19.             𝑖 =  𝑖 +  1, increase index 𝑖. 

20.             if 𝑖 =  𝑘 then  

21.                 goto 30, when all the vector combinations are done. 

22.             end 

23.         end 

24.         𝑐[𝑖]  =  𝑐[𝑖]  +  1, update 𝑐[𝑖] to from it update the other values of 𝑐[]. 

25.         for ∀ 𝑗𝜖 {i, i − 1,… ,1} do 

26.             𝑐[𝑖 –  1]  =  𝑐[𝑖]  +  1, increase (in descending order) 𝑐[𝑖 − 1] element by 1. 

27.         end  

28.      end    

29. end 

30. Output: 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

 

Fig 2. Algorithm of Alter combination for generating subsets of size 𝒌 (𝒌-subsets), with time complexity : 𝑶(𝒏𝒌). 

The algorithmic complexity of Alter combination algorithm 

can be upper bounded (considering a worst case) with Big-O 

about time [10]. Since 𝐺 is an undirected graph of order 𝑛 , 
then it is easy to see that the number of 𝑘-subsets on 𝑛 

elements is  
𝑛
𝑘
 . Hence, there are  

𝑛
𝑘
  output vectors, which 

represent the vertices of 𝐹𝑘 𝐺 . In [11], it is known that 

 
𝑛
𝑘
 =

𝑛 !

𝑘 ! 𝑛−𝑘 !
. In the pseudocode of Figure 2 the for loop of 

line 8 must be run  
𝑛
𝑘
  times. On the other hand, in [12] 

Shagnik Das proposes an upper bound  2𝑛 . However, it is 

imprecise. The most precise upper bound is  
𝑛
𝑘
  ≤

  
𝑛𝑒

𝑘
 
𝑘
then 

𝑛
𝑘
  ≤   

𝑛𝑘𝑒𝑘

𝑘𝑘
 . Hence the increasing factor for a 

large enough 𝑛 is 𝑛𝑘  therefore it is denoted as 𝑂(𝑛𝑘). 

 

Input: 𝑉(𝐹𝑘(𝐺)) set of all vector[i], i=0,…, m-1, that are  vertices of 𝐹𝑘 𝐺  ; and adjacency matrix 𝐴 of 𝐺 

Output: Adjacency matrix of 𝐹𝑘 𝐺 , 𝑎𝑚_𝑓𝑘_𝑔. 

1. Declare an integer 𝑚 and initialize with  𝑉(𝐹𝑘(𝐺)) . 

2. Initialize 𝑎𝑚_𝑓𝑘_𝑔, with zeros, of size 𝑚 ∗𝑚. 

3. for ∀ 𝑖𝜖 {0,1,… ,𝑚 − 1} do 

4.     for ∀ 𝑗𝜖 {i, i + 1,… ,𝑚− 1} do 

5.         𝑠𝑢𝑏𝑠𝑒𝑡 =  𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑣𝑒𝑐𝑡𝑜𝑟[𝑖],𝑣𝑒𝑐𝑡𝑜𝑟[𝑗]) 

6.         if |𝑠𝑢𝑏𝑠𝑒𝑡|  =  2 then 

7.             if  𝐴 𝑠𝑢𝑏𝑠𝑒𝑡 0   𝑠𝑢𝑏𝑠𝑒𝑡 1  == 1 then, 𝑠𝑢𝑏𝑠𝑒𝑡[0] and 𝑠𝑢𝑏𝑠𝑒𝑡[1] are adjacent in 𝐺. 

8.                 𝑎𝑚_𝑓𝑘_𝑔[𝑖][𝑗]  =  1, set an edge in 𝐹𝑘 𝐺 . 

9.                 𝑎𝑚_𝑓𝑘_𝑔[𝑗][𝑖]  =  1, do symmetric reflex. 

10.             end 

11.         end 

12.     end  

13. end  

14. Output: 𝑎𝑚_𝑓𝑘_𝑔 

 

Fig 3. Algorithm of Symmetric difference, with time complexity: 𝑶(𝒎𝟐). 
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Time complexity 𝑂(𝑚2) in symmetric difference is due to 

nested iterations, lines 3 and 4, wherein the upper iteration is 

performed 𝑚 times ∀ 𝑖𝜖  0, 1,… ,𝑚− 1 . While nested 

iteration runs 𝑚 − 𝑖 times, inside the previous various 

operations are executed in constant time 𝑝, in this way the 

number of operations to be performed are                                        

𝑚 ∗ ( (𝑚 − 𝑖)  ∗  𝑝)  =  𝑚 (𝑚𝑝 –  𝑖𝑝)  =  𝑚2𝑝 –  𝑚𝑖𝑝, where 

𝑚2 is the increasing rate factor for sufficiently large values of 

𝑚, therefore, the upper bound denoted by Big-O is 𝑂(𝑚2). 

3. RESULTS AND DISCUSSION 
The system was evaluated on a personal computer with 

Windows 10, 64 bits, RAM 8 GB, processor Intel(R) Core 

(TM) i3-5005U CPU @ 2.00 GHz. 

Next, there are some screenshots of the program's execution: 

 

Fig 4. Main menu. 

In the main menu, the user constructs the input adjacency 

matrix of an undirected graph 𝐺 of order 𝑛 (see Figure 4). 

This matrix can be generated in two ways. It can be generated 

automatically (see, Figure 5) or from an input file, which must 

contain the adjacency matrix of the graph 𝐺. 

 

Fig 5. Automatic generation of input adjacency matrix of 

an undirected graph 𝑮. 

As a test, an undirected graph 𝐺 of order 8 is generated (see 

Figure 6). 

 

Fig 6. The adjacency matrix of 𝑮 is shown on the left and a 

drawing of 𝑮 on the right. 

It is possible to calculate the k-token graphs 𝐹𝑘 𝐺   of a graph 

𝐺 for all  𝑘𝜖 {1, 2,… ,𝑛 − 1} (see Figure 6). The result is 

displayed when clicking on “Test for all K” (see Figure 7). 

Note that the adjacency matrix of each k-token graph and its 

drawing are generated and saved in the directory. In Figure 

12, for a graph 𝐺 of order 𝑛 = 8, the files that contain the 

adjacency matrix of each k-token graph and its drawing are 

generated. However, it is also possible to only generate the k-

token graph of 𝐺 for a certain value of 𝑘, clicking on “Test a 

K” (see Figure 6). 

 

Fig 7. A dialog window of the result, which is displayed 

when clicking on “Test for all K”. 

The following figures show some of the generated 𝑘-token 

graphs of  a graph 𝐺. Inside the results folder in Figure 12, 

there are images in .png format that contain the drawings of 

the k-token graphs. For example, the file “k_1” is a drawing 

of the 1-token graph of 𝐺 (see Figure 12). In addition, the files 

in .txt format contain the adjacency matrix of the k-token 

graphs of 𝐺. Furthermore, they show the list of the vertices of 

k-token graphs of 𝐺. Finally, they exhibit the adjacency 

matrix of graph 𝐺. On the other hand, the user can observe a 

drawing of 𝐺 (see Figure 8), when clicking on the file called 

as original (see Figure 12). In Figure 13, the file “n8 k3.txt” 

represents the adjacency matrix of the 3-token graph of 𝐺 of 

order n=8. In “n8 k3.txt”, there is also the adjacency matrix 
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of 𝐺. Note that, the adjacency matrix of the 3-token graph of 

this graph is too large. In fact, the 3-token graph of  𝐺 has 56 

vertices. Then, in Figure 13, it is exhibited part of the 56 

vertices of 3-token graph that are in the file “n8 k3.txt”. 

 

Fig 8. The graph 𝑮 of order n=8. 

Note that, the k-token graph for 𝑘 =  1 is isomorphic to 𝐺  

and 𝐹𝑛−1 𝐺  [2]. In Figure 11, it is easy to see that 𝐹7 𝐺  is 

isomorphic to the graph 𝐺. The 2-token graph of an undirected 

graph G of order n=8 has 28 vertices (see Figure 9). However, 

the 5-token graph of this graph G has 56 vertices (see Figure 

10).  

 

Fig 9. The 2-token graph of 𝑮 of order n=8. 

 

Fig 10. The 5-token graph of 𝑮 of order n=8. 

 

Fig 11. The 7-token graph of 𝑮 of order n=8. 

 

Fig 12. Generated files. 

 

Fig 13. Inside file “n8 k3.txt”. 

On the other hand, in order to measure the time efficiency, 

some tests are done. Here, it is generated all the 𝑘-tokens of a 

complete graph 𝐾𝑛 , which are known as Johnson 

graphs  𝐽(𝑛, 𝑘) [2]. Moreover, the time it takes the program to 

generate 𝐽 𝑛,𝑘  is measured. The results are shown in Table 

1. 
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Table 1. Time efficiency for the generation of the 𝒌-tokens 

of a complete graph of order  𝒏 . 

Order (n) of G  Time (seconds) 

2 6.01342 

3 12.36 

4 18.3497 

5 25.0156 

6 31.1685 

7 37.995 

8 51.7211 

9 54.2779 

10 68.0613 

11 90.0575 

12 145.017 

13 274.383 

 

 

Fig 14. Growth rate for some values of  𝒏. 

As shown in Figure 14, for the complete graphs of order         

𝑛 ≥ 11, the computation time, for the generation of the 𝑘-

tokens of  𝐾𝑛 , has an accelerated growth rate. However, this 

time efficiency for the generation of 𝑘-tokens of a complete 

graph is still good compared to the very high number of 

vertices and edges of Johnson graphs. That is,  𝑉(𝐹𝑘(𝐺)) =

 𝑛
𝑘
 ;  𝐸(𝐹𝑘(𝐺)) =  𝑛−2

𝑘−1
  𝑛

2
 =

k(n−k)

2
 𝑛
𝑘
 . 

4. CONCLUSION 
The generation and drawing of token graphs of a given graph 

are a very complex task due to their high number of vertices 

and edges. For the graphs of order  𝑛 ≥ 11, a combinatorial 

explosion is obtained [13]. However, time efficiency for the 

generation of the 𝑘-tokens for a given graph is still good. 

Moreover, the software has been developed in C++. Indeed, a 

programming language that is efficient and flexible [14], such 

as C++, minimizes the execution time is minimized as much 

as possible. Concerning the tool for the generation of the 

graph image in Mathematica, note that it takes a constant time, 

but for values of 𝑛 (𝑛 ≥ 11, see Table 1) the process takes the 

longest. However, this tool saves a lot of time for the 

researchers or teachers who are interested in exploring, 

teaching or learning about 𝑘-token graphs of a given graph.  
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