
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 35, July 2020

49

On the Automation of the Token Graphs

M. K. Christophe
Ndjatchi

Department of Physics
and Mathematics,

Instituto Politécnico
Nacional, UPIIZ,

P.C. 098160,
Zacatecas, México

David Betancourt
Montellano

Department of Physics
and Mathematics,

Instituto Politécnico
Nacional, UPIIZ,

P.C. 098160,
Zacatecas, México

Onder Francisco
Campos García

Department of Physics
and Mathematics,

Instituto Politécnico
Nacional, UPIIZ,

 P.C. 098160,
Zacatecas, México

Hugo Pineda
Martínez

Unidad de Ingeniería
eléctrica,

Universidad Autónoma de
Zacatecas,

Zacatecas, México

ABSTRACT
Let 𝐺 be a simple graph of order 𝑛 ≥ 2 and

let 𝑘𝜖 {1,2,… ,𝑛 − 1}. The 𝑘-token graph 𝐹𝑘(𝐺) of 𝐺 is the

graph whose vertices are the k-subsets of 𝑉(𝐺), where two

vertices are adjacent in 𝐹𝑘(𝐺) whenever their symmetric

difference is an edge of 𝐺. The generation and drawing of the

token graphs of a given graph are not easy due to their high

number of vertices and edges, so the study of such graphs turn

out to be a very complex task without using an efficient

software. In this paper, an efficient software with a user-

friendly interface is presented. This software was developed in

the high-level programming languages C++ and Wolfram

Mathematica, and it is able to automatically generate token

graphs of a given graph so that the study and the teaching of

that family of graphs become easier.

General Terms
Combinatory, graph, high-level programming language.

Keywords

Token graphs, symmetric difference, user-friendly interface.

1. INTRODUCTION
Graph theory is often considered as one of the most modern

areas of mathematics, although it was founded in 1736 with

the work of Leonhard Euler by the famous problem of the

seven Königsberg bridges. It is important to mention that

there are currently several applications of graph theory in

various areas of engineering [1]. In addition, these

applications are related to both civil and military problems.

Recently, several investigations have been carried out on a

special class of graphs called token graphs [2-7]. Recall that, a

𝑘-token graph 𝐹𝑘(𝐺) of a graph 𝐺 is the graph whose vertices

are all 𝑘-subsets of 𝑉 (𝐺), and two k-subsets are adjacent

whenever their symmetric difference is a pair of adjacent

vertices in 𝐺. Let 𝐺 be a simple finite graph of order

 𝑉(𝐺)) = 𝑛, 𝑛 ≥ 2 and let 𝑘𝜖 {1,2,… ,𝑛 − 1}, then the

number of vertices in 𝐹𝑘(𝐺) is 𝑉(𝐹𝑘(𝐺)) = 𝑛
𝑘
 and in [2],

it is proved that the number of edges of 𝐹𝑘(𝐺)

is 𝐸(𝐹𝑘(𝐺)) = 𝑛−2
𝑘−1

 𝐸(𝐺) .

Therefore, it is not difficult to see that, the number of vertices

and edges of a 𝑘-token graph is very high for some values of

𝑛 and 𝑘. Thus, the generation, the drawing and, of course the

teaching of such graphs turn out to be a very complex task

without the use of modern computers, which should be

programmed by the teacher and / or researcher. Indeed, the

study and the teaching of token graphs become a task with a

great complexity for those teachers and / or researchers who

do not know how to program, since there is no software with a

user-friendly interface that calculates the vertices, the edges

and adjacency matrices of token graphs. That is, there does

not exist a software that generates them and draws them

automatically. In this paper, an efficient software with a user-

friendly interface is presented. This software was developed in

the high-level programming languages C++ (using QT creator

open source version) and Wolfram Mathematica [8], which is

able to automatically generate token graphs and their digital

images with Igraph/M [9], so that the study and the teaching

of that family of graphs become easier.

2. MATERIALS AND METHODS

2.1 Software

The software of automation of token graphs is based on the

next requirements:

 Wolfram Mathematica v11.0.0 or higher.

 WolframScript v12.0.0 or higher.

 IGraph/M a Mathematica interface for igraph v0.4.

 MinGW – GNU Compiler Collection (with C++),

64 bits, v7.3.0.

 Microsoft Windows 10, 64 bits.

 QT Open source, v5.14.2.

2.2 Pipeline

The pipeline represents, at high level, the sequence of steps in

the process of automation of token graphs of a given graph. In

Figure 1, the input is an undirected graph 𝐺 of order 𝑛; the

immediate action is to save the adjacency matrix of the graph

𝐺 in a plain text file. This adjacency matrix, say 𝐴, is an 𝑛 ∗ 𝑛

matrix, where the element 𝐴[𝑖][𝑗] = 1 if (𝑖, 𝑗) is an edge of

 𝐺; otherwise, 𝐴[𝑖][𝑗] = 0, [10]. Then, the Wolfram script is

executed to generate the visual representation (digital image)

of 𝐺 and thus save it in a folder within results; the matrix 𝐴 is

also saved in the same folder. In order to calculate 𝐹𝑘 𝐺
where 𝑘𝜖 {1, 2,… ,𝑛 − 1}; for each 𝑘, three steps are made. In

the first step 4.1.1, the vertex combination is done to generate

the subsets of size 𝑘 (𝑘-subsets). This 𝑘-subsets are the

vertices of the 𝑘-token. In the second step 4.1.2, the

symmetric difference is applied to all pairwise 𝑘-subsets, if

the symmetric difference of any two 𝑘-subsets is a pair of

vertices of 𝐺 and both vertices are adjacent in 𝐺, then both 𝑘-

subsets are adjacent in 𝐹𝑘 𝐺 ; and generate a value 1 in the

adjacency matrix 𝐴 of 𝐹𝑘 𝐺 . With this process, the upper or

lower triangular matrix 𝐴 is created. Since the graph is

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 35, July 2020

50

undirected. Then to complete with the construction of 𝐴, the

symmetric reflection of the elements of the matrix is done.

Note that 𝐴 is a 𝑚 ∗𝑚 = 𝑛
𝑘
 ∗ 𝑛

𝑘
 matrix. In the last step,

the digital image is generated, using Mathematica as well as

saving 𝐴 and 𝑘-subsets in a plain text file

Fig 1. Pipeline to generate the 𝒌-token graphs.

2.3 Algorithm and its analysis

Input: Positive integer 𝑛 that is the number of vertices, and 𝑘 a positive integer indicating the size of the subsets of 𝑉 𝐺 in 𝐹𝑘 𝐺 .

Output:
𝑛
𝑘
 𝑘-subsets representing the vertices of 𝐹𝑘 𝐺 .

1. Declare 𝑉(𝐹𝑘(𝐺) as a vector of vectors, 𝑣𝑒𝑐𝑡𝑜𝑟𝑠, to store the 𝑘-subsets.

2. Declare collection 𝑐[𝑛], array of integers of size 𝑛.

3. for ∀ 𝑖𝜖 {0,1,… , 𝑘 − 1} do

4. 𝑐[𝑖] = 𝑘 – 𝑖, generate the 𝑖-th element of the base 𝑘-subset, descending order.

5. end

6. while 𝑇𝑟𝑢𝑒 do, generate all 𝑘-subsets.

7. Declare array 𝑘_𝑠𝑢𝑏𝑠𝑒𝑡_𝑖[𝑘]

8. for ∀ 𝑖𝜖 {k − 1, k − 2,… ,0} do

9. 𝑘_𝑠𝑢𝑏𝑠𝑒𝑡_𝑖[𝑘 − 1 − 𝑖] = 𝑐[𝑖], assign elements to 𝑘-subset.

10. end

11. Add 𝑘_𝑠𝑢𝑏𝑠𝑒𝑡_𝑖 to 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

12. if 𝑐 0 + 1 < 𝑛 then, check if all vectors have already been generated for 𝑐[0].

13. 𝑐[0] = 𝑐[0] + 1, update the last (descending order) element.

14. goto 6, when not all vectors have been generated yet.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 35, July 2020

51

15. else, increase the values of 𝑐[]

16. 𝑖 = 0

17. 𝑐[𝑖] = 𝑐[𝑖] + 1, to be able to check if it is already completed.

18. while 𝑐[𝑖] >= (𝑛 – 𝑖) do

19. 𝑖 = 𝑖 + 1, increase index 𝑖.

20. if 𝑖 = 𝑘 then

21. goto 30, when all the vector combinations are done.

22. end

23. end

24. 𝑐[𝑖] = 𝑐[𝑖] + 1, update 𝑐[𝑖] to from it update the other values of 𝑐[].

25. for ∀ 𝑗𝜖 {i, i − 1,… ,1} do

26. 𝑐[𝑖 – 1] = 𝑐[𝑖] + 1, increase (in descending order) 𝑐[𝑖 − 1] element by 1.

27. end

28. end

29. end

30. Output: 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

Fig 2. Algorithm of Alter combination for generating subsets of size 𝒌 (𝒌-subsets), with time complexity : 𝑶(𝒏𝒌).

The algorithmic complexity of Alter combination algorithm

can be upper bounded (considering a worst case) with Big-O

about time [10]. Since 𝐺 is an undirected graph of order 𝑛 ,
then it is easy to see that the number of 𝑘-subsets on 𝑛

elements is
𝑛
𝑘
 . Hence, there are

𝑛
𝑘
 output vectors, which

represent the vertices of 𝐹𝑘 𝐺 . In [11], it is known that

𝑛
𝑘
 =

𝑛 !

𝑘 ! 𝑛−𝑘 !
. In the pseudocode of Figure 2 the for loop of

line 8 must be run
𝑛
𝑘
 times. On the other hand, in [12]

Shagnik Das proposes an upper bound 2𝑛 . However, it is

imprecise. The most precise upper bound is
𝑛
𝑘
 ≤

𝑛𝑒

𝑘

𝑘
then

𝑛
𝑘
 ≤

𝑛𝑘𝑒𝑘

𝑘𝑘
 . Hence the increasing factor for a

large enough 𝑛 is 𝑛𝑘 therefore it is denoted as 𝑂(𝑛𝑘).

Input: 𝑉(𝐹𝑘(𝐺)) set of all vector[i], i=0,…, m-1, that are vertices of 𝐹𝑘 𝐺 ; and adjacency matrix 𝐴 of 𝐺

Output: Adjacency matrix of 𝐹𝑘 𝐺 , 𝑎𝑚_𝑓𝑘_𝑔.

1. Declare an integer 𝑚 and initialize with 𝑉(𝐹𝑘(𝐺)) .

2. Initialize 𝑎𝑚_𝑓𝑘_𝑔, with zeros, of size 𝑚 ∗𝑚.

3. for ∀ 𝑖𝜖 {0,1,… ,𝑚 − 1} do

4. for ∀ 𝑗𝜖 {i, i + 1,… ,𝑚− 1} do

5. 𝑠𝑢𝑏𝑠𝑒𝑡 = 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝑣𝑒𝑐𝑡𝑜𝑟[𝑖],𝑣𝑒𝑐𝑡𝑜𝑟[𝑗])

6. if |𝑠𝑢𝑏𝑠𝑒𝑡| = 2 then

7. if 𝐴 𝑠𝑢𝑏𝑠𝑒𝑡 0 𝑠𝑢𝑏𝑠𝑒𝑡 1 == 1 then, 𝑠𝑢𝑏𝑠𝑒𝑡[0] and 𝑠𝑢𝑏𝑠𝑒𝑡[1] are adjacent in 𝐺.

8. 𝑎𝑚_𝑓𝑘_𝑔[𝑖][𝑗] = 1, set an edge in 𝐹𝑘 𝐺 .

9. 𝑎𝑚_𝑓𝑘_𝑔[𝑗][𝑖] = 1, do symmetric reflex.

10. end

11. end

12. end

13. end

14. Output: 𝑎𝑚_𝑓𝑘_𝑔

Fig 3. Algorithm of Symmetric difference, with time complexity: 𝑶(𝒎𝟐).

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 35, July 2020

52

Time complexity 𝑂(𝑚2) in symmetric difference is due to

nested iterations, lines 3 and 4, wherein the upper iteration is

performed 𝑚 times ∀ 𝑖𝜖 0, 1,… ,𝑚− 1 . While nested

iteration runs 𝑚 − 𝑖 times, inside the previous various

operations are executed in constant time 𝑝, in this way the

number of operations to be performed are

𝑚 ∗ ((𝑚 − 𝑖) ∗ 𝑝) = 𝑚 (𝑚𝑝 – 𝑖𝑝) = 𝑚2𝑝 – 𝑚𝑖𝑝, where

𝑚2 is the increasing rate factor for sufficiently large values of

𝑚, therefore, the upper bound denoted by Big-O is 𝑂(𝑚2).

3. RESULTS AND DISCUSSION
The system was evaluated on a personal computer with

Windows 10, 64 bits, RAM 8 GB, processor Intel(R) Core

(TM) i3-5005U CPU @ 2.00 GHz.

Next, there are some screenshots of the program's execution:

Fig 4. Main menu.

In the main menu, the user constructs the input adjacency

matrix of an undirected graph 𝐺 of order 𝑛 (see Figure 4).

This matrix can be generated in two ways. It can be generated

automatically (see, Figure 5) or from an input file, which must

contain the adjacency matrix of the graph 𝐺.

Fig 5. Automatic generation of input adjacency matrix of

an undirected graph 𝑮.

As a test, an undirected graph 𝐺 of order 8 is generated (see

Figure 6).

Fig 6. The adjacency matrix of 𝑮 is shown on the left and a

drawing of 𝑮 on the right.

It is possible to calculate the k-token graphs 𝐹𝑘 𝐺 of a graph

𝐺 for all 𝑘𝜖 {1, 2,… ,𝑛 − 1} (see Figure 6). The result is

displayed when clicking on “Test for all K” (see Figure 7).

Note that the adjacency matrix of each k-token graph and its

drawing are generated and saved in the directory. In Figure

12, for a graph 𝐺 of order 𝑛 = 8, the files that contain the

adjacency matrix of each k-token graph and its drawing are

generated. However, it is also possible to only generate the k-

token graph of 𝐺 for a certain value of 𝑘, clicking on “Test a

K” (see Figure 6).

Fig 7. A dialog window of the result, which is displayed

when clicking on “Test for all K”.

The following figures show some of the generated 𝑘-token

graphs of a graph 𝐺. Inside the results folder in Figure 12,

there are images in .png format that contain the drawings of

the k-token graphs. For example, the file “k_1” is a drawing

of the 1-token graph of 𝐺 (see Figure 12). In addition, the files

in .txt format contain the adjacency matrix of the k-token

graphs of 𝐺. Furthermore, they show the list of the vertices of

k-token graphs of 𝐺. Finally, they exhibit the adjacency

matrix of graph 𝐺. On the other hand, the user can observe a

drawing of 𝐺 (see Figure 8), when clicking on the file called

as original (see Figure 12). In Figure 13, the file “n8 k3.txt”

represents the adjacency matrix of the 3-token graph of 𝐺 of

order n=8. In “n8 k3.txt”, there is also the adjacency matrix

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 35, July 2020

53

of 𝐺. Note that, the adjacency matrix of the 3-token graph of

this graph is too large. In fact, the 3-token graph of 𝐺 has 56

vertices. Then, in Figure 13, it is exhibited part of the 56

vertices of 3-token graph that are in the file “n8 k3.txt”.

Fig 8. The graph 𝑮 of order n=8.

Note that, the k-token graph for 𝑘 = 1 is isomorphic to 𝐺

and 𝐹𝑛−1 𝐺 [2]. In Figure 11, it is easy to see that 𝐹7 𝐺 is

isomorphic to the graph 𝐺. The 2-token graph of an undirected

graph G of order n=8 has 28 vertices (see Figure 9). However,

the 5-token graph of this graph G has 56 vertices (see Figure

10).

Fig 9. The 2-token graph of 𝑮 of order n=8.

Fig 10. The 5-token graph of 𝑮 of order n=8.

Fig 11. The 7-token graph of 𝑮 of order n=8.

Fig 12. Generated files.

Fig 13. Inside file “n8 k3.txt”.

On the other hand, in order to measure the time efficiency,

some tests are done. Here, it is generated all the 𝑘-tokens of a

complete graph 𝐾𝑛 , which are known as Johnson

graphs 𝐽(𝑛, 𝑘) [2]. Moreover, the time it takes the program to

generate 𝐽 𝑛,𝑘 is measured. The results are shown in Table

1.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 35, July 2020

54

Table 1. Time efficiency for the generation of the 𝒌-tokens

of a complete graph of order 𝒏 .

Order (n) of G Time (seconds)

2 6.01342

3 12.36

4 18.3497

5 25.0156

6 31.1685

7 37.995

8 51.7211

9 54.2779

10 68.0613

11 90.0575

12 145.017

13 274.383

Fig 14. Growth rate for some values of 𝒏.

As shown in Figure 14, for the complete graphs of order

𝑛 ≥ 11, the computation time, for the generation of the 𝑘-

tokens of 𝐾𝑛 , has an accelerated growth rate. However, this

time efficiency for the generation of 𝑘-tokens of a complete

graph is still good compared to the very high number of

vertices and edges of Johnson graphs. That is, 𝑉(𝐹𝑘(𝐺)) =

 𝑛
𝑘
 ; 𝐸(𝐹𝑘(𝐺)) = 𝑛−2

𝑘−1
 𝑛

2
 =

k(n−k)

2
 𝑛
𝑘
 .

4. CONCLUSION
The generation and drawing of token graphs of a given graph

are a very complex task due to their high number of vertices

and edges. For the graphs of order 𝑛 ≥ 11, a combinatorial

explosion is obtained [13]. However, time efficiency for the

generation of the 𝑘-tokens for a given graph is still good.

Moreover, the software has been developed in C++. Indeed, a

programming language that is efficient and flexible [14], such

as C++, minimizes the execution time is minimized as much

as possible. Concerning the tool for the generation of the

graph image in Mathematica, note that it takes a constant time,

but for values of 𝑛 (𝑛 ≥ 11, see Table 1) the process takes the

longest. However, this tool saves a lot of time for the

researchers or teachers who are interested in exploring,

teaching or learning about 𝑘-token graphs of a given graph.

5. ACKNOWLEDGEMENTS
This work was supported by Instituto Politécnico Nacional,

UPIIZ. The authors gratefully acknowledge the reviewers.

6. REFERENCES
[1] D. Kornhauser, G. Miller, and P. Spirakis, Coordinating

pebble motion on graphs, the diameter of permutations

groups, and applications, Proc. 25th IEEE Symposium on

Foundations of Computer Science 1 (1984), 241-250.

[2] Ruy Fabila-Monroy, David Flores-Peñaloza, Clemens

Huemer, Ferran Hurtado, Jorge Urrutia, and David R.

Wood, Token graphs, Graphs Combin. 28 (2012), no. 3,

365-380.

[3] J. M. Gomez Soto, J. Leaños, L. M. Ríos-Castro, and L.

M. Rivera, The packing number of the double vertex

graph of the path graph, Discrete Appl. Math. 247

(2018), 327-340, DOI 10.1016/j.dam.2018.03.085.

MR3843346

[4] Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey,

Christos H. Papadimitriou, Martha Sideri, Ryuhei

Uehara, and Yushi Uno, On the complexity of

reconfiguration problems, Theoret. Comput. Sci. 412

(2011), no. 12-14, 1054-1065.

[5] Koenraad Audenaert, Chris Godsil, Gordon Royle, and

Terry Rudolph, Symmetric squares of graphs, J. Combin.

Theory Ser. B 97 (2007), no. 1, 74-90.

[6] J. Leaños and A. L. Trujillo-Negrete, The connectivity

of token graphs, Graphs and combinatorics 34 (2018),

132-138.

[7] J. Leaños and M. K. Ndjatchi, The Edge-connectivity of

Token Graphs, arXiv preprint arXiv: 1909.06698,

(2019).

[8] Wolfram Research, Inc., Mathematica, Version 12.0,

Champaign, IL (2019)

[9] Szabolcs Horvát. (2020, April 3). IGraph/M (Version

v0.4).

[10] Skiena, S. The algorithm design manual. Springer, 2nd

ed. (2008), 34-35, 151.

[11] Kay, S. Intuitive Probability and Random Processes

Using MATLAB. Boston, MA: Springer US, (2012), 60.

[12] Shagnik Das, A brief note on estimates of binomial

coefficients, (2016), 2-3.

[13] Domingos, P. The master algorithm. Basics Books,

(2015). 7.

[14] Fco. Javier Ceballos Sierra, Curso de programación

C/C++,(1995), 6.

IJCATM : www.ijcaonline.org

