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ABSTRACT 
In this study, we present another modification of a scaled 

three-term conjugate gradient (CG) algorithm. The proposed 

method incorporates the BFGS updating scheme of the 

inverse Hessian approximation within the frame of a 

memoryless quasi-Newton approach.  In this case, the inverse 

Hessian approximation is restarted as a multiple of identity 

matrix with a spectral scaling parameter at every iteration. 

Under standard Wolfe line search, numerical results from an 

implementation of the proposed method indicate that the 

method is promising and competitive when subjected to 

comparison with other state-of-the art similar algorithms 

available in literature utilizing performance profiles of Dolan 

and More. 

Keywords 
Unconstrained optimization, conjugate gradient method, 

spectral-scaled memoryless BFGS, numerical comparisons 

1. INTRODUCTION 
Conjugate gradient algorithm is a class of many tools 

popularly used for solving large-scale optimization problems 

due to its relatively single programs and low memory 

requirements. The quest to construct efficient CG algorithms 

has prompted researchers to device several techniques for 

obtaining different CG algorithms. This is because of its 

applications in astronomy, signal processing, meteorology and 

energy problems such as minimization of power losses in 

transmission lines [1, 2, 3]. Hence it is required to develop 

new method to solve large-scale unconstrained optimization 

problems. One efficient approach is a generalization of the 

CG method otherwise referred to as the spectral CG method. 

The primary objective of this paper is to study the 

performance of a nonlinear spectral-scaled method for 

unconstrained optimization satisfying descent and sufficient 

descent conditions. 

Consider the following unconstrained optimization problem  

}:)(min{ nxxf  ,                                ----              (1) 

where nf :  is continuously differentiable and its 

gradient is available. The iterates of the classical CG 

algorithm can be formulated as 

kkkk dxx 1                                           ----           (2) 

and  

0011 , gddgd kkkk                   ----         (3) 

where kg is the gradient of  )(xf at the point kx , kd is 

the search direction, k is the so-called conjugate parameter, 

and k is the positive scalar step-size which is determined by 

some line search. For instance, Hestenes and Stiefel (HS) [ 4], 

Fletcher and Reeves (FR) [5 ], Polak-Ribiere- Polyak (PRP)  

[6, 7], Liu and Storey (LS) [8 ], Dai and Yuan (DY) [9 ], and 

Fletcher (CD) [10] used conjugate parameter, respectively, 

given by 
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where 11   kkk ggy and denotes Euclidean norm 

of vectors. As it is well known that the choice of k affect 

the numerical performance of the method, hence many 

researchers studied choices of k . The CG algorithms, based 

on k  computation, can be classified as classical, hybrid, 

scaled and parametric [11, 28]. The classical algorithms are 

defined by (2) and (3), where the CG parameter is computed 

as in (4). Modified classical algorithms are abound in 

literature, consult [12-16], to mention a few.      

However, one of the earliest developed three term classical 

CG method may be found in Beale [17] as another important 

innovation to CG methods. In recent time, Babaie - Kafaki 

and Ghanbari [15] gave an extension of the three - term CG 

method proposed by Zhang et al. [33]. Taqi [12], developed a 

three - term CG algorithm for training feed - forward neural 

networks which was a vector based training algorithm derived 

from DFP quasi - Newton and has 0(n) memory. Application 

of the three - term CG method to regression analysis was 

reported by Moyi et al. [3]. Hybrids have been derived to 

exploit the exciting features of the classical algorithms using 

projective manner [20 -22], consideration of linear and 

convex combination of classical schemes [31] as well the use 

of notion involving the classical CG and quasi-Newton 

methods which started with Buckley [19 ]. Several others in 

this category can be found in  
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[18-19, 30]. Another innovation to the so-called three-term 

CG method is the case in which the search direction is 

determined as a linear combination of kk sg , and ky as 

kkkk ytstgd 21   

where 1t and 2t are scalars. CG methods in this category are 

termed scaled three-term and can be found in [25-26, 29] and 

references therein. 

The proposed spectral-scaled three-term method studied in 

this paper incorporates the BFGS updating scheme of the 

inverse Hessian approximation within the frame of a 

memoryless quasi-Newton approach.  In this case, the inverse 

Hessian approximation is restarted as a multiple of the 

identity matrix with a spectral scaling parameter in every 

iteration.   

The rest of the paper is organized as follows. In Section 2, we 

present another spectral scaled three-term CG and prove its 

descent property without any line search. Section3 presented 

preliminary numerical results under standard Wolfe line 

search using the performance profiles of Dolan and More. 

Finally, Section 4 presents our concluding remarks. 

2. DERIVATION OF THE SPECTRAL-

SCALED THREE-TERM CG 

ALGORITHM 
This section deals with derivation of the spectral-scaled (ON) 

method. Motivated by the methods proposed in [25, 26, 34], 

we state the ideas to propose a spectral-scaled CG method as 

follows. 

According to Broyden, Fletcher, Goldfarb and Shanno (1970) 

and reported in Andrei [ 25], one of the most efficient quasi-

Newton methods for solving small and medium sized 

unconstrained problem is the BFGS method. Likewise the 

theory behind the method and its global convergence are very 

well established [25]. The proposed method is derived by 

utilizing the BFGS update for the inverse Hessian 

approximation which preserves the sufficient descent 

conditions. Unlike Arzuka et al. [26] the quasi-Newton update 

is restarted with a multiple of the identity matrix with a 

spectral scaling parameter. As usual the search direction in the 

quasi-Newton method is given by  

kkk gdB                                       ---                            (5) 

and kg is as defined above. The matrix kB is the BFGS 

approximation to the Hessian )(2

kxf of f at xk , being 

updated by the formula  
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 where kkkkkk ggyxxs 
 11 ,  and 0B  being 

symmetric and positive definite. However, the search 

direction is computed in practical implementation as  

kKk gHd                                   ---                             (7) 

If kH is updated by the BFGS then 
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such that the secant equation 

 kkk syH                                                 ---                   (9)  

 is satisfied. The resulting BFGS update scheme takes the 

form adaptively from [26] 
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and thus, the search direction is defined by 
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The proposed method new search direction is defined by  

kkkkk ytstgd 2111                                     (12)  

where  
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In this paper, we solve (1) using a new iterative scheme in 

which the iterative point is generated by (12), where k  is 

the spectral gradient parameter. Obviously, if ,kk    it 

reduces to Arzuka et al. [26] provided the updating scheme is 

DFP and k  is due to Wolkowicz (1994) as reported in [26]. 

In this method, the parameter k   is selected in such a way 

that sufficient descent condition is guaranteed. 

Pre-multiplying by 
T

kg 1 , this gives 
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then we have 
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Assuming that 1k holds for any ,1k it follows from 

(3) and (17) that 
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Next, we present specific algorithm for ON method 

Algorithm 2.1 (ON algorithm). Step 0: Give the initial point 
nx 0  and set .0,,   Set 0k . 

Step 1: If ,kg stop. 

Step 2: Determine 0 using the standard Wolfe line 

search: 

 ,)()( k

T

kkxdkk dgxfdxf   ---            (18)                                           

,)( k

T

kk

T

kkk dgddxg                   --            - (19)                                              

where .10    

Step 3: Let the next iterate be ,1 kkkkk dxx 

where k are computed according to ([26], page 4) else 

kkkk dxx 1  

Step 4: Generate the next direction 1kd by (12 ) where 

1, tk and 2t are computed by (13 ) 

Step 5: Let ,1:  kk go to step1 

3. NUMERICAL EXPERIMENTS 
In this section, by numerical experiments, we are going to 

study the effectiveness and robustness of Algorithm 2.1 for 

solving unconstrained optimization problems. 

3.1 Benchmark test problems 
All the test functions used in our computational study were 

drawn from the CUTE library [23] and Andrei [24]. We 

selected 15 large-scaled problems in extended or generalized 

form. Each problem is tested 9 times for a gradually 

increasing number of variables: n 2, 10, 100, 500, 800, 

1000, … , 5000, 10000. These problems are listed below in 

Table 1: 

Table 1: Test Problems Functions 

No Name Dimensions 

1. Rayden 2 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

2.  Quadratic QF 1 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

3. Extended Rosenbrock 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

4. Rayden 1 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

5. Fletcher Function 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

6.  Extended PSC 1 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

7. Extended Himmelblau 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

8. Extended Tridiagonal 1 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

9. Diagonal 5 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

10. Nonquadratic Function 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

11. Hager Function 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

12. Extended Bohr 3 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

13. Extended Quadratic 

Penalty QP 1 

2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

14. EG 2 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

15 Diagonal 8 2, 50, 70, 180, 500, 863, 

1000, 6500, 11400 

 

3.2 Parameter Settings 
The parameters such as number of iterations and CPU time in 

seconds were indicators considered to evaluate the 

computational capability of ON as compared with the 

conventional FR [5], AZ [26], AN [25], ZH [29] methods. For 

each test problem, the stopping criteria used is ∥ 𝑔𝑘 ∥≤
10−6 . All problems implement the standard Wolfe line 

search with 9.0  and  0001.0  using MATLAB 

R2013 with CPU 1.30 GHz and 3.00GB RAM, on 

SAMSUNG PC notebook. 

3.3 Discussion of Results 
The performance profiles of Dolan and More [27] was used to 

compare the numerical strength of the proposed method (ON) 

against some known CG methods such as AZ, AN, ZH and 

FR methods based on number of iterations and CPU time. We 

plot fraction (𝜌) of the test problems for which the method is 

within a factor 𝜏of the best time for each method. The left 
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hand side of the figures gives the % of how fast is a particular 

method in solving the test problems. The right hand side of 

the figures gives the % of test problems that are successfully 

solved by each method. The solver with large probability is 

regarded as the best solver for the test problems. According to 

an anonymous referee’s suggestion, we detail the 

experimental analysis as follows: 

 Figures 1-2, show that ON is the fastest solver on 

approximately 44% of the test problems (together with AZ 

(43%), AN (38%), ZH (18%) and FR (14%)) for iterations  

while AZ and ZH on approximately 25% each are the fastest 

solver based on  CPU time follow by ON (20%), FR (8%) and 

AN (7%).  

However, ON competes well with AZ, ZH and FR by solving 

82% of the test problems with AN solving only 38% based on 

iterations and 83% of CPU time alongside AZ and ZH with 

FR solving 82% while AN exhibiting poor performance 

solving only 38% of the problems. Since all CG methods have 

been implemented with the same line search, we conclude that 

the efficiency and robustness of the proposed method is 

encouraging. 

4. CONCLUSIONS 
This paper, based on previous ideas of quasi-Newton 

approach and recently proposed scaled three-term CG 

methods, has presented another CG algorithm which satisfies 

descent condition and promising. Therefore, as part of future 

work, new hybrid  methods including the one introduced in 

this paper  and those exhibiting good global convergence 

properties would be developed, tested numerically and 

compared with highly efficient methods. 

 

Fig 1: Performance profiles of ON versus AZ, AN, ZH, and FR based on iterations   
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Fig 1: Performance profiles of ON versus AZ, AN, ZH, and FR based on CPU time 
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