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ABSTRACT 

As mathematical theory has evolved and computing 

capabilities have improved, what initially seemed to be 

adequately difficult trapdoor functions, were deemed not to be 

later. In this paper, a new block-encryption scheme named 

Modern Encryption Standard (MES) is proposed based on the 

multiple concepts arising from number theory for a highly 

secure and fast cryptosystem that can be considered as an 

alternative to the existing systems. This is a block cipher like 

AES, but the inherent algorithm is quite different. The 

security of the proposed MES algorithm stands on the 

fundamentals of the Chinese Remainder Theorem, Cantor 

Pairing Function and the Prime Number Theorem for creating 

an ingenious trapdoor function. Breaking this algorithm 

proves to be quite a daunting obstacle to overcome for an 

unwelcome interceptor.   
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1. INTRODUCTION 
In July 2017, National Institute of Standards and Technology 

(NIST) initially proposed retiring Triple Data Encryption 

Standard (3DES) following a security analysis and practical 

demonstration of attacks on 3DES in several real-world 

protocols. In November 2017, NIST restricted usage to 220 

64-bit blocks (8 MB of data) using a single key bundle, so it 

could no longer effectively be used for TLS, IPsec, or large 

file encryption. 

Advanced Encryption Standard (AES) was introduced in 2001 

to replace 3DES. Data Encryption Standard (DES), the 

algorithm is based on, was retired in 2005. NIST is 

supposedly going to retire 3DES by 2023 (Henry, 2018), 

leaving only AES as the strongest candidate to be widely used 

in all of hardware and software security protocols. Owing to 

the research and rapid developments in the sector of 

cryptanalysis, modern cryptographers are posed with the 

constant challenge to develop superior cryptosystems so that it 

takes an interceptor to spend a certain period in the system 

which allows the concerned authorities to track them down. 

This means they must be able to develop enigmatic trapdoor 

functions in order to achieve this.  

2. TRAPDOOR FUNCTION 
A trapdoor function is a highly useful concept in modern 

cryptography. These are functions that are easy to compute in 

one direction but extremely hard to compute in reverse if 

certain parameters or critical information for reversal is 

lacked. The main novelty of this cryptosystem is the use of the 

fundamental Chinese Remainder Theorem as a trapdoor 

function. The algorithm starts off with a secret message that 

needs to be encrypted (called the Plaintext). 

3. CHINESE REMAINDER THEOREM 
Statement: Let 𝑚1, 𝑚2, ⋯ , 𝑚𝑛  be 𝑛 arbitrary integers. If all 

𝑛𝑖’s are pairwise coprime, and it 𝑎1, 𝑎2, ⋯ , 𝑎𝑛  are integers 

such that 0 ≤ 𝑎𝑖 < 𝑚𝑖  for every 𝑖, there then is one and only 

one 𝑥 such that for the system of linear congruence equations 

𝑥 ≡ 𝑎1 mod 𝑚1 

𝑥 ≡ 𝑎2 mod 𝑚2 

⋮ 

𝑥 ≡ 𝑎𝑛  mod 𝑚𝑛  

Then the solution is given by  

𝑥 ≡ 𝑘 lcm 𝑚1, 𝑚2, ⋯ , 𝑚𝑛  

This theorem implies we can represent an element of ℤ𝑝𝑞  by 

one element of ℤ𝑝  and one element of ℤ𝑞 , and vice versa. In 

other words, we have a bijection between ℤ𝑝𝑞  and ℤ𝑝 × ℤ𝑞 . 

3.1 Direct Construction 
The computational steps for Chinese Remainder Theorem are 

as follows 

1. Compute 𝑀 = lcm 𝑚1, 𝑚2, ⋯ , 𝑚𝑛  

2. Let 𝑀𝑖 =
𝑀

𝑚 𝑖
 be the product of all moduli but one. 

Since 𝑚𝑖’s are pairwise coprime, 𝑀𝑖  and 𝑚𝑖  are 

coprime. 

3. Applying Bezout’s Theorem, there exist integers 𝐾𝑖  

and 𝑘𝑖  such that  

𝐾𝑖𝑀𝑖 + 𝑘𝑖𝑚𝑖 = 1 

4. Then the solution is given by  

𝑥 =  𝑎𝑖𝑀𝑖𝐾𝑖

𝑛

𝑖=1

 

There have been numerous papers (Lynn, n.d.; Chung-Hsien, 

Jin-Hua, & Cheng-Wen, 2001; Ding, Pei, & Salomaa, 1996; 

USA Patent No. 8,280,041, 2012; Grossschadl, 2000) where 

the authors have used Chinese Remainder Theorem to 

generate a private key or to encrypt a given message. It 

usually involved finding a solution for a set of two 

simultaneous congruence relations. This paper involves 

finding a solution to a set of two or many more such equations 

and a unique key generation paradigm based on the prime 

number theorem. 
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4. CANTOR PAIRING FUNCTION 
This is an elegant function proposed by the Russian 

mathematician George Cantor that takes in two natural 

numbers and turns it into a single number. This function is a 

primitive recursive pairing function. (Szudzik, 2006) 

𝜋: ℕ × ℕ → ℕ 

And is defined by 

𝜋 𝑥, 𝑦 =
1

2
 𝑥 + 𝑦  𝑥 + 𝑦 + 1 + 𝑦                  2  

Due to the way its defined, this is a one-to-one and onto 

function, which means it is invertible. This consequently 

means that given a single number, it can be readily mapped 

back to a unique  𝑥, 𝑦  ordered pair. 

In order to retrieve an ordered pair  𝑥, 𝑦  from a given 𝑡, the 

following transformations are used 

𝜔 = 𝑥 + 𝑦 

𝑡 =
1

2
𝜔 𝜔 + 1  

𝑧 = 𝑡 + 𝑦 

From the second equation, cross multiplying gives a quadratic 

in 𝜔 

𝜔2 + 𝜔 − 2𝑡 = 0 

Solving it gives us 

𝜔 =
 8𝑡 + 1 − 1

2
 

which is a strictly increasing and continuous function 

when 𝑡 is non-negative real. Since 

𝑡 ≤ 𝑧 = 𝑡 + 𝑦 < 𝑡 +  𝜔 + 1 =
 𝜔 + 1 2 +  𝜔 + 1 

2
 

This implies that 

𝜔 ≤
 8𝑧 + 1 − 1

2
< 𝜔 + 1 

And thus 

𝜔 =  
 8𝑧 + 1 − 1

2
  

Finally calculate 𝑥 and 𝑦 from 𝑧 as follows 

𝜔 =  
 8𝑧 + 1 − 1

2
  

𝑡 =
𝜔2 + 𝜔

2
 

𝑦 = 𝑧 − 𝑡 

𝑥 = 𝜔 − 𝑦 

5. PRIME NUMBER THEOREM 
Positive integers that are divisible by 1 and itself, are known 

as prime numbers. The sequence begins like the following... 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, ⋯ 

has held untold fascination for mathematicians, both 

professionals and amateurs alike. A result that gives an idea 

about an asymptotic distribution of primes is known as the 

prime number theorem (Goldstein, 1973). 

Let 𝜋 𝑥  be the prime-counting function that gives the 

number of primes less than or equal to 𝑥, for any real number 

𝑥. For example, 𝜋 10 = 4 because there are four prime 

numbers  2, 3, 5 and 7  less than or equal to 10. The prime 

number theorem then states that 
𝑥

ln 𝑥
 is a good approximation 

to 𝜋 𝑥 , in the sense that the limit of the quotient of the two 

functions 𝜋 𝑥  and 
𝑥

ln 𝑥
 as 𝑥 increases without bound is 1. 

lim
𝑥→∞

𝜋 𝑥 
ln 𝑥

𝑥
= 1 

known as the asymptotic law of distribution of prime 

numbers. Using asymptotic notation this result can be restated 

as 

𝜋 𝑥 ∼
𝑥

ln 𝑥
 

The logarithmic integral provides a good estimate to the 

prime counting function. 

𝜋 𝑥 ∼ li 𝑥  

In order to get an idea of the distribution of primes, it is 

important to count the number of primes in a given range and 

find the percentage of primes. The following table 

demonstrates this. 

Table 1: Prime density and approximation to logarithmic integral 

Search Size 𝑥 # of primes Density (%) li 𝑥  li 𝑥 − 𝜋 𝑥 

𝜋 𝑥 
× 100 

10 4 40 6.16 54.14 

102 25 25 30.13 20.50 

103 168 16.8 177.61 5.72 

104 1229 12.3 1246.14 1.39 

105 9592 9.6 9629.81 0.39 

106 78498 7.8 78625 0.17 

107 664579 6.6 664918 0.05 

108 5761455 5.8 5.76×106 0.01 
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Following is a visual demonstration 

 

Fig. 1: Demonstration of the Prime Number Theorem

6. PROPOSED ALGORITHM 
The following is the algorithm underlying this cryptosystem. 

1. Encryption 
a. An input string (plain text) is taken and split into 

blocks, padding is applied. Padding is used to 

maintain consistency of the modified plain text. 

User provides the input string and block size. 

b. All characters in the blocks are converted to their 

corresponding ASCII values. 

c. In every block, every 𝑖th value is combined with the 

 𝑖 + 1 th (adjacent) value using the Cantor pairing 

function, which takes two numbers as input and 

spits back a single, unique number. Now, each 

block has 
block size

2
 number of elements. Suppose the 

list is  

𝐴 =  𝑎1, 𝑎2, ⋯ , 𝑎blocksize/2  

2. Key Generation 
a. The Chinese Remainder Theorem requires that  

0 ≤ 𝐴𝑖 < 𝑀𝑖  

Where  𝐴 =  𝑀 =
block size

2
. This key 𝑀 must be 

generated. In order to ensure that this condition is 

met, the worst-case scenario is considered where 

two characters with maximum ASCII value of 128 

appears adjacent to each other. For these two 

numbers, the Cantor pairing function returns  

𝐶 128,128 = 33024 

All values of 𝑀 must be larger than 33024, and an upper 

bound 𝑈 is also required so a finite loop can be run 

over this range  𝜋 128,128 , 𝑁 . 

𝐶 128,128 ≤ 𝑀𝑖 ≤ 𝑈 

 
𝑀 =  𝑝1, 𝑝2, ⋯ , 𝑝𝑛 , ∀𝑝𝑖 ∈ Prime

 𝑀 = 𝑁 =
block size

2

  

b. This list of primes 𝑀 is shuffled and the solution to 

the following system of linear congruence equations 

generates the cipher text. 

𝑥 ≡ 𝐴𝑖  mod 𝑀𝑖  

3. Decryption 

a. Cipher text 𝑥 and list of primes 𝑀 must be known 

for successful decryption. The solution to the 

following system of congruence equation is required 

𝐴𝑖 ≡ 𝑥 mod 𝑀𝑖  

b. Each 𝐴𝑖  is passed through the reverse cantor pair 

function to get back two adjacent 𝑎𝑖 's that initiated 

the encryption procedure. 

These 𝑎𝑖’s are converted to ASCII characters and padding 

sequences are removed. 

7. DETERMINING THE UPPER BOUND 
The prime number theorem gives us an estimate of the 

number of primes within a search size 𝑥. This asymptotic 

distribution is defined as 

𝜋 𝑥 ∼
𝑥

ln 𝑥
 

1) # of primes less than 𝑛 ⟹ 𝜋 𝑛 ∼
𝑛

ln 𝑛
 

2) # of primes in  𝑎, 𝑏  

𝜋 𝑏 − 𝜋 𝑎 ∼
𝑏

ln 𝑏
−

𝑎

ln 𝑎
 

3) # of primes between 𝐶 128,128  and an upper 

bound 𝑈 

𝜋 𝑈 − 𝜋 𝐶 128,128  ∼
𝑈

ln 𝑈
−

𝐶 128,128 

ln 𝐶 128,128 
 

4) It was stated in the proposed algorithm that  

𝑁 =
block size

2
 

This means 

𝑁 =
𝑈

ln 𝑈
−

𝐶 128,128 

ln 𝐶 128,128          
𝐾

 

𝑁 + 𝐾 =
𝑈

ln 𝑈
 

ln 𝑈 =
𝑈

𝑄
        where 𝑄 = 𝑁 + 𝐾 
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𝑈 = 𝑒
𝑈
𝑄  

𝑈𝑒
−
𝑈
𝑄 = 1 

−
𝑈

𝑄
𝑒

−
𝑈
𝑄 = −

1

𝑄
 

−
𝑈

𝑄
= 𝑊−1  −

1

𝑄
  

𝑈 = −𝑄𝑊−1  −
1

𝑄
  

𝑈 = −  𝑁 +
𝐶 128,128 

ln 𝐶 128,128 
 𝑊−1  −

1

𝑁 +
𝐶 128,128 

ln 𝐶 128,128 

  

Where 𝑊𝑛  is the Lambert W Function means that it is 

possible to generate the upper limit for generating a list 

of primes for an arbitrary block size. Since the number of 

primes is positive, 𝑈 must be positi  (Weisstein, 2002; 

Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996) also 

known as the product log function. This ve so 

consequently 𝑊𝑛  −
1

𝑄
 < 0. It means that the branch 

𝑛 = −1.  

If 𝑈 = 𝑎 + 𝑖𝑏, that is if 𝑈 ∈ ℂ then, considering 𝑅𝑒 𝑈  

generates the upper limit. Let 𝑥1, 𝑥2 be the possible 

solutions after applying the Lambert W Function. Since 

𝑈 > 𝐶 128,128 , it can be safely assumed that 𝑈 =
max 𝑥1, 𝑥2 . 

Here is a table showing the initial number of values that must 

be checked to generate a list of primes. Then, five primes are 

chosen at random, from this shuffled list. 

Table 2: Block size and upper bound 

Block Size (bits) 𝑥1 𝑥2 𝑈 = max 𝑥1, 𝑥2  𝑈 − 𝐶 128,128  

8 1.0003 33116 33116 730 

16 1.0003 33208 33208 184 

32 1.0003 33393 33393 369 

64 1.0003 33761 33761 737 

128 1.0003 34500 34500 1476 

256 1.0003 35982 35982 2958 

512 1.0003 38961 38961 5937 

1024 1.0002 44975 44975 11951 

2048 1.0002 57202 57202 24178 

 

Following is a plot showing the connection between the block size and the length of the range of numbers in which to look for primes. 

It is observed to demonstrate a linear relationship. 

 

Fig. 2: Block size vs prime search range 

8. GENERATING THE LIST OF 

PRIMES 
For the convenience of runtime complexity, an infinite loop 

was run from 𝐶 128,128 . The SymPy module in Python3 

was used to generate primes adjacent to each other. The loop 

was terminated after the generation of 
block size

2
 prime numbers. 

This method, however, poses a serious problem. If an 

interceptor gets to know of this design, he/she would easily 

break the system using the classic Shor's Algorithm. 

On the other hand, if a set $S$ of randomly shuffled primes 

having sufficient gaps between each pair with cardinality of 
block size

2
 is generated between  𝐶 128,128 , 𝑈  where 𝑈 is the 
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upper bound calculated in section 7, then it would be quite 

tough for an interceptor to regenerate. 

9. FROM AN INTERCEPTOR’S 

PERSPECTIVE 

9.2 Shor’s Algorithm 
Pollard's rho algorithm, invented by John Pollard in 1975 

(Pollard, 2008) is used for integer factorization. This 

algorithm is known to work very fast for numbers with small 

factors but gets slower in cases where large factors are 

involved. The 𝜌 algorithm's most remarkable success was the 

factorization of the Fermat number 𝐹8 (Pollard, 2008). If the 

pseudorandom number 𝑥 = 𝑔(𝑥) occurring in the Pollard 𝜌 

algorithm were an actual random number, it would follow that 

success would be achieved half the time, by the Birthday 

paradox in 𝑂  𝑝 ≤ 𝑂  𝑛
1

4  iterations. It is believed that the 

same analysis applies as well to the actual rho algorithm, but 

this is a heuristic claim, and rigorous analysis of the algorithm 

remains open (Galbraith, 2012). Since the primes chosen in 

the MES are sufficiently large it stops any unwelcome 

interceptor by raising the toughness of integer factorization 

while maintaining reasonable run time. 

10. EXPERIMENTAL ANALYSIS 

10.1 String length vs Time for encrypt-

decrypt cycle 
For this test, block size of 128,192 and 256 were considered 

and the length of string(with repetition) was gradually 

increased in steps of powers of 10 while noting down the time 

it takes for successful encrypt-decrypt cycles 

Table 3: Effect of string length on run time for different block size 

String Length Block Size 

128 192 256 

10 0.001 0.002 0.003 

102 0.002 0.002 0.002 

103 0.011 0.012 0.011 

104 0.13 0.11 0.115 

105 0.943 1.053 1.062 

106 9.807 10.535 11.106 

107 99.458 106.824 111.409 

 

It was observed that if the length of string is n and a block size ≫ 𝑛 is used, then the time increases slightly owing to the excessive 

padding operation requirements 

 

Fig. 3: Block size vs run time 

In case 𝑛 ≫ block size, choosing a very small value for the 

block size vs choosing a comparatively larger block size leads 

to very similar time of execution but improved security in 

case of larger block size, thus making it all the more difficult 

for an interceptor to crack the message while ensuring 

reasonable run time complexity on the authorized pipeline 

 

10.2 Block size vs Time for encrypt-

decrypt cycle 
A function was written on Jupyter Notebook to test out how 

varying the block size has an impact on the time it takes to 

complete one successful encryption-decryption cycle. Note 

that for this test, a random alphanumeric string of 26000 

characters were considered. 
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Table 4: Effect of block size on run time 

Block Size (bytes) Run time (sec) 

2 0.405 

4 0.248 

8 0.229 

16 0.239 

32 0.286 

64 0.295 

128 0.264 

256 0.292 

 

Note that since every time the MES algorithm is executed, a 

unique secret key is generated depending on the block size. 

The bar and scatter plot in the first two images in Fig. 3 show 

a linear relationship with negligible slope when optimized. An 

ideal system should resemble a horizontal line. This entropy 

in the real time is caused by multiple background processes 

that maybe running during the execution of this program. 

 

Fig. 4: Block size vs run time 

11. CONCLUSION 
For benchmarking string length vs run time, 128,192 and 256 

were taken as the block sizes in the experiment since AES 

also uses these bitlength keys. However, it is crucial to note 

that AES and MES have a very different notion of block size 

and bit size. Unlike AES, the block size is not restricted to just 

128,192,256 in MES. Instead it can be any even positive 

integer chosen by the user. The idea of this paper was to 

introduce a new algorithm for future use. Since AES and DES 

involves bit wise calculations and MES simply works with 

ASCII values, there cannot be an effective comparison. 

However, if MES can somehow be converted into bits 

(Ariyama & Toyoshima, 1995; Chen & Yao, 2011) and 

calculations involving byte substitution, bit shifting etc., are 

introduced, the run time should be much faster than AES and 

DES. 

Use of ASCII values upfront is not the best approach for MES 

algorithm because it brings in computationally intensive task 

on the operations involved in the trapdoor function. However, 

if in future, the original message is converted into bits before 

applying MES then there would most likely be an exponential 

reduction in the complexity which can ultimately lead up to a 

great boost in performance of the algorithm to compete with 

industrially prevalent algorithms. 
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