
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

Modeling Performance and Scalability of Cloud
Services over Unikernels

Wagner S. Marques
Federal Institute Farroupilha

Alegrete - Brazil

Arthur F. Lorenzon
Federal University of Pampa

Alegrete - Brazil

Marcelo C. Luizelli
Federal University of Pampa

Alegrete - Brazil

Fabio D. Rossi
Federal Institute Farroupilha

Alegrete - Brazil

ABSTRACT
Virtualization provides several benefits to computing. However,
applications have presented a low performance on traditional vir-
tualized platforms. Unikernels are an alternative for cloud plat-
forms application deployment in order to overcome such limita-
tions. It comprises a small system for the cloud, providing de-
ployment agility and portability among virtualization platforms.
Moreover, Unikernels performance evaluation concerning other
virtualization alternatives such as containers and traditional vir-
tual machines is still lacking. This work evaluates Unikernels’
performance and scalability running HTTP services. The data
was collected through a benchmark tool execution and mod-
eled using a polynomial and a linear equation. The results illus-
trate that Unikernels is a promising alternative since it presents
a 34.9% better performance than traditional virtual machines.

General Terms
Algorithm, Network

Keywords
Unikernels; Containers; Virtualization; HTTP; Web application;
Cloud

1. INTRODUCTION
Virtualization technology provides several benefits to computing,
such as equipment acquisition costs reduction and enhancing com-
puter resources managing. This technology consists in to execute
some operating systems (OS) simultaneously on the same host,
where each system, which is called a virtual machine (VM), is pre-
sented as an autonomous system, starting a kernel instance and run-
ning several applications. Each of these instances is specialized and
used for a specific purpose, such as a web server or a database [8].
However, the applications have a lower performance on VMs than
on physical machines. The overhead generated by the virtualiza-
tion layer (hypervisor) is one of the main concerns when virtualized
environments are adopted. In this sense, identifying and reducing
such cost has been several study research subjects [6] [13]. In order
to address such limitations, container virtualization was proposed.

Unlike traditional virtualization, it does not implement a kernel for
each virtualization instance and does not have a hypervisor for run-
ning VM. Instead, such technology focuses on the performance of
applications (at the price of security and isolation), considering that
all instances running on the same kernel [16].
Currently, a new proposal of virtualization arises, focusing on the
need for more security and computational performance: Uniker-
nels. A Unikernel is a specialized VM that eliminates the operat-
ing system layer and provides a minimal attack surface and a quick
booting [14]. This new type of VM is based on operational library
systems, and its purpose is offering smaller, faster, and more secure
systems, optimized for a single application. These characteristics
make Unikernels suitable to restricted environments that aim for
the lowest computational resources cost and use, such as clouds
[10].
Unikernels are single address space systems that enable a selection
of system component bundle for a specific application into a single
system image. Such a simple image can be run on the cloud or di-
rectly on the hardware, depending on what driver components are
available for that particular Unikernel system adopted during devel-
opment. Unikernels can be implemented in two ways: (i) Uniker-
nels use single languages such as Erlang, Haskell, or OCaml, and
a clean-slate implementation of everything, and (ii) Unikernel ex-
ecutes the software which runs on current operating systems and
servers, such as Apache2, Haproxy, and Nginx.
This work proposes Unikernels performance and scalability eval-
uation (Mirage/Rumprun) concerning other virtualization alterna-
tives, such as traditional virtual machines (Xen), and containers
(Docker) running HTTP services. It also evaluates Unikernels’ be-
havior over two different load balancers. It presents two equa-
tions in order to predict the impact on the performance when some
Unikernels are adopted over the same host. In this way, this work
creates a polynomial function to express the trendline of the transfer
rate during the Unikernels numbers increase. It also illustrated the
results applied in the Linear progression to represent the relation-
ship between Unikernels’ performance and the number of vCPU
available on the host.
The results were considered promising from Unikernels since they
presented a better performance compared to traditional virtualiza-
tion using the Xen hypervisor. The containers still present a better
performance than Unikernels. This paper is organized as follows:

1



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

Section 2 presents a background showing fundamental applications
and technologies concepts. The evaluation and results are discussed
in Section 3. Section 4 discusses some related works. Section 5
brings conclusions and future work.

2. BACKGROUND
Unikernels are specialized VM compiled into a single and mini-
mal system image based on operating system libraries, runtime lan-
guage, configuration, and application files. They are bootable on a
hypervisor such as Xen or KVM [14]. The OS library aims that en-
tire customization of the OS on which an application depends runs
in its address space as a library [12]. Besides, when the Unikernels
are executing on a standard hypervisor, it avoids hardware incom-
patibility found when is used a traditional library system. In the
same context, it is structured differently compared to the conven-
tional operating system because it is implemented with all services
and libraries linked to the application. Precisely, the application is
related to several libraries that provide a set of high-level abstrac-
tions of the operating system, such as processes and files [8]. Figure
1 presents the difference between traditional and Unikernel virtual-
ization architectures.

Fig. 1. Difference between traditional and Unikernel virtualization archi-
tectures.

The Unikernels premise is to have small file size and lower attack
surface than conventional VMs. Unikernels’ file image rarely ex-
ceeds 1 MegaByte (MB), and many situations accomplish their task
using only 32 MB of memory with to almost instant initialization.
Thus, it is possible to have thousands of Unikernels on a single
physical host [14]. Besides treating the database or the web server
as standalone applications such as traditional VMs, Unikernels treat
it as libraries within a single application, allowing the developer to
create them using simple library calls. Although there are many ex-
isting Unikernel systems currently and each of these applications
was developed with specifics proposes.

2.1 Xen
Xen was developed in order to enable running multiple operating
systems on a single server and to provide migration of operating
system instances running among different servers. Such technology
allows resources partitioning of a host and then providing resource
isolation for VM. Besides, it also enables that multiple different
operating system images can run in a parallel way on the same
physical host. Xen is a type 1 hypervisor that is characterized by
running directly on the hardware without the need for an operating
system, unlike the type 2 hypervisor, which runs as software on the
operating system. The difference between hypervisor type 1 and

type 2 is only where it is presented. Otherwise, it has the same
function [11]. Figure 2 shows the Xen hypervisor architecture.

Fig. 2. Xen hypervisor architecture.

Xen architecture is divided into Control Domain (Domain 0) and
Guest Domains (VMs). The Control Domain is a specialized layer
that offers exclusive privileges such as the capability to access the
hardware directly, running directly on the device, and it is respon-
sible for managing CPU, memory, and interrupts. The Control Do-
main also provides an API that allows the management of all virtual
machines. Also, several guest domains can be used simultaneously
on a single hypervisor, such as Unikernels (Rumprun), and general-
purpose systems (Ubuntu).

2.2 Docker
Containers provide a different level of abstraction and isolation
compared to traditional virtualization. Whereas hypervisors vir-
tualize hardware drivers for each VM instance, which generates
overhead, containers avoid such overhead implementing a process
of isolation at the operating system level. In other words, a con-
tainer runs as an isolated process in userspace on the operating
system, while the host operating system kernel is shared among
all instances of containers. Then, the lack of driver virtualization,
coupled with the use of a shared kernel, provides the capability to
achieve higher performance and smaller disk images [9] [1].
Docker is an open-source platform. It introduces an underlying con-
tainer mechanism and a functional Application Programming Inter-
face (API) that makes it easy to build and to manage (i.e., applica-
tion removal). Within a Docker container, one or more processes
and applications can be run concurrently. In this sense, since the
Docker containers do not need the hardware and driver virtualiza-
tion, coupled with the use of the shared kernel, it provides the abil-
ity to achieve higher performance and smaller disk images [9] [1].

2.3 Mirage
The MirageOS is an application that allows the Unikernels develop-
ment to compile and link the code into a bootable Xen VM image.
MirageOS uses the OCaml language with libraries that support net-
work and storage and work under Unix during its development, but
become OS drivers when compiled for deployment in production
on a hypervisor. OCaml is an imperative and object-oriented sys-
tem programming language adopted by presenting a flexible pro-
gramming model. It is characterized by its brevity, which reduces
counts of code lines that are often considered correlated with an
attack surface in systems [8].
MirageOS is stable and usable, having reached release 3.0 in 2017.
The project website1 has proper documentation, a few samples, and

1MirageOS. Available at: <https://mirage.io>.

2



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

tutorials to help the new developers to start to build Unikernels.
It also contains some tutorials and presentations that provide sup-
port to the new ones. Several MirageOS contributors have authored
academic white papers, and the Docker now employs a significant
MirageOS portion. Besides, Mirage includes clean, functional im-
plementations of protocols ranging from TCP/IP, DNS, SSH, and
HTTP.

2.4 Rumprun
Similar to Mirage, Rumprun is considered an alternative to contain-
ers, with more reliable isolation. It is based on rump kernels that
provide free, portable, and componentized kernel drivers. Further-
more, this application allows the running of existing unmodified
software (e.g., Nginx, haproxy) as a Unikernel [5]. Also, Rumprun
supports multiple platforms, including bare metal and hypervisors
such as Xen and KVM. In order to use various cores is a need to
generate multiple Unikernels on the same host. This type of Uniker-
nel can be created with an experimental toolchain to facilitate all
processes of making.
Rump kernels use the NetBSD kernel architecture to provide un-
modified NetBSD drivers. It avoids porting errors and gives the user
the ability to choose the upstream drivers’ vintage. In the same con-
text, Rumprun is available under the BSD license, making it free for
use. Unlike Docker, the application constructed to Rumprun does
not depend on a full operating system (OS) installation and can be
sent as self-contained with small-sized images. Since a rumprun
image includes less code than an entire OS image, there is also less
chance of shipping code with latent security lacks [5] [4].

3. MODELING AND RESULTS
This section presents the testbed used to feed the model, the mod-
eling process, results, and discussion.

3.1 Testbed to feed the model
This work developed a simple static web page to evaluate the trans-
fer rate on all of the virtualization alternatives adopted in this paper.
To evaluate, this work used the Apache Benchmark (AB) tool. This
application allows performing several HTTP requests to simulate
many users simultaneously for a host in order to obtain the transfer
rate of the service. In this sense, this work played 10.000 requi-
sitions with 1.000 concurrent users. In the same context, all tests
were performed on a host that comprises a CPU with 4 cores and
8 GB of RAM. The operating system used in the host, container,
and Xen was the Debian Wheezy (release 8.8.0). This work also
highlights that the Nginx HTTP server was applied over all of the
virtualizations alternatives performed.
This work created a local Ethernet network to perform the eval-
uation and to avoid Internet connection latency. The requests us-
ing HTTP were delivered through another device connected to the
same network of the machine defined as a server. In the server,
was created bridged networking used to connect virtual machines
to the external network using the host computer Ethernet adapter.
Besides, the IPtables were used to connect VMs with the Internet
and the other hosts on the same local network. IPTables is a Linux
tool for firewalling and routing chains that perform port forward-
ing on a computer or server. The requests were executed by other
equipment connected to the local network of virtualization system
host. Such a network is illustrated in Figure 3.
Initially, it builts mirage Unikernels intended for HTTP service
evaluations and compiled them into images for the Xen Hypervi-
sor. However, such Unikernels presented a transfer rate of only 30

Fig. 3. Network connection configuration on our experiment

kilobytes per second. According to Briggs et al. [2], the Mirage
TCP/IP library leaks memory every time a TCP connection is re-
leased, and it causes the Mirage performance losses. This error pro-
vides for Unikernels a lower result regarding performance when
comparing to traditional virtual machines or containers. Unfortu-
nately, this bug makes mirage Unikernels not be a suitable choice
for HTTP services. This complete result is illustrated in Figure 6.

3.2 Modeling
This proposal created two equations in order to model the rela-
tionship between the Unikernels transfer rate performance and the
Unikernels increase. To do this was adopted a polynomial regres-
sion. In the same context, it used linear regression to express the re-
lationships among the performance and the number of vCPU units
on the host. The features of this regressions are described below:

—Polynomial regression: It is commonly used in order to express
the trendline of data that represents nonlinear results, and in
our case, provide a Unikernel transfer rate estimation during the
HTTP services execution.

y = b1 + b0.x+−20x2

where y stands for transfer rate performance of Unikernels im-
planted and x for the number of Unikernels running on the server
hosting the Xen hypervisor. The constants b0 and b1, the y-axis
intercept, and they can vary among different applications.

—Linear Regression: In the same sense of the polynomial regres-
sion, this alternative can be used to apply a linear regression on
the data to get a trendline and to predict the results. However, this
solution is used when the collected data represent linear results.

y = b1 ∗ x+ b0

The same variables were adopted in this equation as well, where
y presents the transfer rate performance and b1 and b0 the x-
axis intercept. Although, the X represents the number of vCPU
to Unikernels on the host or between different hosts through the
sharing of computer resources to an application.

The trendline generated by a polynomial regression is illustrated in
Figure 4. Highlights that just one Unikernel cannot use many vC-
PUs since it is a single-core system can be noted. Using this equa-
tion, one can see that it can be utilized eleven Unikernels, with the
execution of the same application or with use of the different appli-
cations and services, without performance damage when compared
to the use of just one Unikernel. The loss of performance occurs as
the processor’s resources are disputed among the Unikernels. One
also can see a higher performance loss on every four Unikernels,
and it happens because this Unikernel is competing for resources
with the Domain0 that could be defined with just one vCPU as
well.

3



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

Fig. 4. Polynomial regression among performance and number of Uniker-
nels

To demonstrate the performance concerning the increase of vCPU
on the host, the linear progression trendline was chosen (shown
in Figure 5). This equation was determined in order to provide a
performance prediction of Unikernels with a different number of
available vCPUs. It can be used to obtain the transfer rate with
all Unikernels running on the same host or with these systems in
different hosts through the use of a load balancer application. The
trendline illustrates an increase in performance that occurs when
are adopt just one image of the system for each vCPU, consider-
ing that our collected data have shown this increase when only one
Unikernel is applied for each vCPU available. In this sense, it can
be used to verify the adoption viability of Unikernels for a specific
service or host.

Fig. 5. Linear regression between performance and number of vCPUs
available on the host.

3.3 Results and Discussion
Rumprun presented a 34.9% transfer rate better than traditional
VMs over the Xen hypervisor. The build process was performed
with an experimental toolchain and compiled to a Xen image
bootable. This Unikernel, supported by Xen, is created and stays
in a pause state. It will listen to the network waiting in a for a con-
nection. When a connection exists, this Unikernel meets that user’s

demand and after returns to a pause state waiting for a new connec-
tion. Thus, the service cycle for connections is repeated. Even so,
Unikernels have little startup time, managing to respond to users’
connections faster than virtualized services in traditional environ-
ments such as Xen.
However, Unikernels still have lower transfer rates during the ex-
ecution of HTTP services when compiled into containers. Docker
presented a transfer rate of 46% better than Unikernels Rumprun,
with very close application performance in the native system. It oc-
curs because containers eliminate the virtualization layer and run-
ning as processes on to the host operating system. In this sense,
these features make the containers perform better compared to
Unikernels and traditional VMs. Besides, the system used in the
containers was a version of Debian 8 modified for docker.

Fig. 6. Virtualization alternatives performance evaluation.

In the same context, Rumprun Unikernels are single-core, and in
order to use all cores of the host processor, was developed and
implemented a series of Unikernels on the same host. To do this
was configured a load balancing application. For analysis purposes,
was adopted two load balancer alternatives: Nginx and Haproxy.
The Nginx is an open-source application commonly used as a web
server, and it also can be used with a load balancer. Tha Haproxy
is an open-source solution to load balancer as well. Although, it
is focused on the single-purpose that is only to offer load balanc-
ing among applications. Both applications have the following load
balancing algorithms:

—Round-robin: it is one simple method for distributing client re-
quests across a group of servers. With the list of servers in the
group, the round-robin load balancer forwards a client request to
each server in turn.

—Leastconn: the next request is assigned to the server with the
fewest active connections. The server selected with the least
number of connections is recommended for longer sessions.

—Ip-hash or Source: it is a hash function that is used to determine
what server should be selected for the next request based on the
clients IP address. Also, it is one method to ensure that a user
will connect to the same server.

The algorithm used in both applications was round-robin during all
tests. The results indicate a significant improvement in the trans-
fer rate when 4 Unikernels were used in both load balancing ap-
plications. It occurs because the host used has 4 processing cores.
The results, presented in Figure 7, illustrated that with more than

4



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

4 Unikernels, the transfer rate decreases due to competition for
processor resources. The hypervisor allows the processor sharing
among the virtual machines through mechanisms that aim for ef-
ficient use of these resources. Each of the vCPUs (virtual Central
Processing Unit) represents one physical processor unit.
In this sense, it is possible to perform the allocation of several vir-
tual processors for virtual machines. Each of our Unikernels was
implanted using just one of these vCPUs, and the Dom0 performed
your tasks with only one vCPU as well. The transfer rate using
Haproxy with 4 Unikernels is 20,2% better than when only one
is used with a haproxy load balancer. In the same context, using
the Nginx as the load balancer, 4 Unikernels presented 22,7% of
improvement. The results that 4 Unikernels are 2% better using
haproxy than when used the Nginx.

Fig. 7. Virtualization alternatives scalability evaluation.

However, the use of the load balancing tools generated an overhead
in the transfer rate. Using only a Unikernel without a load balancing
application, the results have 33% better performance than our best
result with 4 Unikernels using the same applications. This result is
because the algorithms use health checks to determine if a backend
server is available to process requests. This feature aims to establish
a TCP connection to the server and checks if the backend server is
running on the configured IP address and port. In this sense, the
overhead is generated.
Although Unikernels have a lower transfer rate than containers and
applications on a native host, Unikernels are a promising virtual-
ization alternative. When one considers that security is paramount,
Unikernels presents as the best alternative since they have a bet-
ter transfer rate than traditional VMs and have a minimal attack
surface. Besides, the Unikernels can be used in embedded devices
with virtualization support (e.g., CubieBoard 2) that in the Inter-
net of Things frequently perform critical tasks, and the security is
essential.

4. RELATED WORK
Several papers have developed and evaluated the performance of
Unikernels in clouds. Xavier et al. [15] performed the spawning
of several instances in order to investigate the impact on provi-
sioning time. The authors chose the OSv project as the Unikernel
representative since it supports different hypervisors and language
runtimes. The Docker and KVM were the other virtualization al-
ternatives wanted during the evaluation. The results were obtained

on multiple instances concurrently in an OpenStack cloud platform
and indicated that OSv outperforms the alternatives.
Sfyrakis et al. [14] presented the VirtusCap, a capability-based
access-control system that aims to facilitates the construction of
least-privileged Unikernels. This tool is an access-control system
integrated across the virtualization layers. The authors empha-
size that their application is the first capability-based access con-
trol combined with Unikernels for the Xen hypervisor and allows
Unikernel deployments to offer a potent combination of a minimal
attack surface and minimum privileges, reducing the likelihoods.
The evaluation also indicated that the new system makes it possi-
ble to tighten the security of Unikernels considerably, with similar
performance to the XSM-Flask.
Pasquier et al. [10] proposed the PHP2Uni in order to facilitate
broader adoption of Unikernels, and ease deployment of innova-
tive solutions in resource-constrained environments. This tool per-
forms the PHP language transcompilation to code into C++ classes.
It builds Unikernels images from them as results demonstrate the
transcompilation feasibility in the Unikernel context construction
and preliminary comparison regarding computing and memory us-
age of the proposed approach against other types of deployments.
Farinier et al. [3] proposed the Jitsu, an application built to man-
age multi-tenant networked applications on an embedded device
infrastructure securely. In order to reduce the overhead caused by
the adoption and manipulation of conventional VM, Jitsu provides
low latency with network services using Unikernels as the deploy-
ment unit. This tool initializes a VM in response to DNS requests in
real-time. Therefore, the authors describe how to construct efficient
and secure Unikernels for Xen hypervisors on ARM processors.
Madhavapeddy et al. [7] developed the Jutsu that provides a direc-
tory service that launches Unikernels in response to network traffic.
This tool aims to mitigate the problems with network latency on
cloud services by moving computation out to remote data centers
by rapidly instantiating local services near the user. The authors
indicated through results that Jitsu is a power-efficient and respon-
sive platform for hosting cloud services in the edge network while
preserving the strong isolation guarantees of a type-1 hypervisor.
This paper aims to present the modeling of Unikernels’ perfor-
mance and scalability during HTTP services execution. The eval-
uations were performed using a model to obtain the transfer rate
metric among the evaluated alternatives, and the collected data was
applied to a polynomial and linear progression equation. Such an
approach is innovative since it was not previously performed. It is
significant because it allows for understanding the performance and
scalability of HTTP services when using Unikernels.

5. CONCLUSION
Traditional virtualization mechanisms provide a plethora of bene-
fits to computing. However, in such environments, the applications
present a low performance. In this sense, several studies have been
developed in order to improve virtualized application performance.
Currently, emerged a new technology that aims to generate a small
image system to provide more security and fast booting, the Uniker-
nel. Moreover, a Unikernel performance and scalability evaluation
concerning other virtualization alternatives are still lacking. In this
context, this paper aims to present a Unikernels transfer rate evalu-
ation for HTTP services execution.
The results indicated that Rumprun Unikernels present 34,9% bet-
ter performance compared to traditional VM executing over the
Xen hypervisor. Each new connection, the virtual machine changes
from the execution state to the paused state, waiting for a new con-
nection. However, Unikernels have almost instant startup times,

5



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

which means it has a higher transfer rate in seconds than traditional
VM over Xen. The containers still present a better transfer rate per-
formance than Unikernels. Unfortunately, the Mirage TCP/IP li-
brary leaks memory every time a TCP connection is released, which
causes the performance of Mirage to be inferior, around 30 kilo-
bytes per second.
The scalability evaluation indicated that Unikernels have a better
transfer rate with 4 instances. It occurs because the Unikernels are
single-core, and the host adopted during all tests has 4 processing
cores. Besides, load balancing tools generated an overhead in the
transfer rate. Using only a Unikernel without a load balancing ap-
plication, the results present 33% better performance than our best
result, with 4 Unikernels, using these applications. It occurs be-
cause the algorithms use health checks to determine if a backend
server is available to process requests. This feature aims to estab-
lish a TCP connection to the server and checks if the backend server
is running on the configured IP address and port that generate over-
head.
This proposal also adopted a polynomial and a linear equation to
apply our obtained data during the performance evaluation. The
polynomial progression was utilized to express the performance
loss over the increase of Unikernels numbers. On the other hand,
the Linear progression was adopted to provide the performance in-
crease when more vCPUs are available over the same host or on
the different hosts with services of load balancing and live migra-
tion that is adopted on virtualized environments.
The Unikernels are promising virtualization alternative since it pro-
vides smaller systems with only the services necessary for opera-
tion, which provides a minimum surface of attack. Besides, based
on our experimental evaluation results, Unikernels are not mature
enough and present more performance overheads during HTTP ser-
vices execution than other well-known virtualization platforms. In
this sense, the choice of virtualization technique depends on de-
ployment requirements. If running a single shared kernel version is
not an issue, containers present the fastest virtualization technique.
However, with hypervisor-based virtualization, the Unikernel is a
suitable choice. As future work, the authors aim to perform these
tests on embedded devices and extend our experiments with OSV
Unikernels.

6. ACKNOWLEDGEMENT
We gratefully acknowledge the support of National Council for Sci-
entific and Technological Development CNPq.

7. REFERENCES

[1] I. Alobaidan, M. Mackay, and P. Tso. Build trust in the cloud
computing - isolation in container based virtualisation. In
2016 9th International Conference on Developments in eSys-
tems Engineering (DeSE), pages 143–148, Aug 2016.

[2] Ian Briggs, Matt Day, Yuankai Guo, Peter Marheine, and Eric
Eide. A performance evaluation of unikernels. 2015.

[3] Benjamin Farinier, Thomas Gazagnaire, and Anil Mad-
havapeddy. Mergeable persistent data structures. In Vingt-
sixièmes Journées Francophones des Langages Applicatifs
(JFLA 2015), 2015.

[4] Antti Kantee. The Design and Implementation of the Anyker-
nel and Rump Kernels. PhD thesis, doctoral dissertation. De-
partment of Computer Science and Engineering, Aalto Uni-
versity, 2012.

[5] Antti Kantee. The rise and fall of the operating system, 2015.

[6] Zheng Li, Maria Kihl, Qinghua Lu, and Jens A Andersson.
Performance overhead comparison between hypervisor and
container based virtualization. In Advanced Information Net-
working and Applications (AINA), 2017 IEEE 31st Interna-
tional Conference on, pages 955–962. IEEE, 2017.

[7] Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad,
Thomas Gazagnaire, David Sheets, David J Scott, Richard
Mortier, Amir Chaudhry, Balraj Singh, Jon Ludlam, et al.
Jitsu: Just-in-time summoning of unikernels. In NSDI, pages
559–573, 2015.

[8] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos,
David Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith,
Steven Hand, and Jon Crowcroft. Unikernels: Library operat-
ing systems for the cloud. In ACM SIGPLAN Notices, vol-
ume 48, pages 461–472. ACM, 2013.

[9] R. Morabito. Virtualization on internet of things edge devices
with container technologies: a performance evaluation. vol-
ume PP, pages 1–1, 2017.

[10] Thomas Pasquier, David Eyers, and Jean Bacon. Php2uni:
Building unikernels using scripting language transpilation. In
Cloud Engineering (IC2E), 2017 IEEE International Confer-
ence on, pages 197–203. IEEE, 2017.

[11] Anchal Pokharana and Rahul Hada. Performance analysis of
guest vm’s on xen hypervisor. In Green Computing and Inter-
net of Things (ICGCIoT), 2015 International Conference on,
pages 1452–1457. IEEE, 2015.

[12] Donald E Porter, Silas Boyd-Wickizer, Jon Howell, Reuben
Olinsky, and Galen C Hunt. Rethinking the library os from
the top down. In ACM SIGPLAN Notices, volume 46, pages
291–304. ACM, 2011.

[13] Amit SanWariya, Revathy Nair, and Savita Shiwani. Analyz-
ing processing overhead of type-0 hypervisor for cloud gam-
ing. In Advances in Computing, Communication, & Automa-
tion (ICACCA)(Spring), International Conference on, pages
1–5. IEEE, 2016.

[14] Ioannis Sfyrakis and Thomas Gros. Virtuscap: Capability-
based access control for unikernels. In Cloud Engineering
(IC2E), 2017 IEEE International Conference on, pages 226–
237. IEEE, 2017.

[15] Bruno Xavier, Tiago Ferreto, and Luis Jersak. Time provi-
sioning evaluation of kvm, docker and unikernels in a cloud
platform. In Cluster, Cloud and Grid Computing (CCGrid),
2016 16th IEEE/ACM International Symposium on, pages
277–280. IEEE, 2016.

[16] Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C.
Ferreto, Timoteo Lange, and Cesar A. F. De Rose. Perfor-
mance evaluation of container-based virtualization for high
performance computing environments. In Proceedings of the
2013 21st Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing, PDP ’13, pages
233–240, Washington, DC, USA, 2013. IEEE Computer So-
ciety.

6


	Introduction
	Background
	Xen
	Docker
	Mirage
	Rumprun

	Modeling and Results
	Testbed to feed the model
	Modeling
	Results and Discussion

	Related Work
	Conclusion
	Acknowledgement
	References

