
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

Evaluating Embedded GPUs Performance via Computer
Vision Applications

Paulo S. S. de Souza
Pontifical Catholic University of Rio Grande do Sul

Porto Alegre - Brazil

Arthur F. Lorenzon
Federal University of Pampa

Alegrete - Brazil

Marcelo C. Luizelli
Federal University of Pampa

Alegrete - Brazil

Fabio D. Rossi
Federal Institute Farroupilha

Alegrete - Brazil

ABSTRACT
Computer vision applications usually present significant demand
for computing resources, which limit its usage on embedded sys-
tems, since such devices typically have limited processing capacity.
In this sense, hybrid embedded architectures are becoming more
popular by offering higher levels of parallelism through Graph-
ics Processing Units (GPUs). Despite the similarities with general-
purpose architectures that already exploit the benefits of GPUs,
this new kind of embedded devices presents some architectural
singularities, such as differences in memory access bandwidth. In
this paper, we present an evaluation, considering how much these
differences affect GPUs’ gains in the context of embedded sys-
tems. The results show that, despite the architectural limitations,
using such devices can lead to a speed-up of 8 times compared
to traditional embedded systems processing data only on CPUs.

General Terms
Algorithm, Processor.

Keywords
Embedded Systems; GPGPU; Computer Vision; Performance
Analysis.

1. INTRODUCTION
Recently, computer vision applications are becoming more popular
by providing solutions to the most diverse scenarios like health-
care, industry development, and urban mobility. The use-cases are
many: localizing and tracking vehicles in real-time, monitoring
multiple variables in situations requiring strict control like nuclear
power plants, or even helping students understand complex con-
cepts school [14][7].
However, there are still problems with exploiting the potential of
computer vision applications. They are usually deployed in embed-
ded systems, which are small devices with limited capacity (e.g.,
sensors and cameras), typically used to gather data from the envi-
ronment [8].
Embedded systems commonly present architectural limitations due
to concerns with temperature and battery consumption. They pro-

vide limited processing power, which can affect essential metrics
to customers like Quality of Service (QoS) and Quality of Expe-
rience (QoE). In this sense, heterogeneous embedded architectures
were introduced with the proposal of increasing the performance
of some applications by exploiting the massive amount of parallel
cores of GPUs [11][17].
However, increasing the performance of image processing algo-
rithms in heterogeneous architectures is not a trivial task since par-
allelism’s effectiveness is highly linked to the application behavior.
In this sense, some frameworks to support such features were pro-
posed [4].
In this context, OpenCV (Open Source Computer Vision Library)
is an open-source computer vision and machine learning software
library that allows the development of parallelism applications.
Moreover, this library is available to the most commonly used op-
erating systems nowadays, like Windows, macOS, and Linux [15].
Considering that several embedded systems are based on Linux,
OpenCV arises as a feasible alternative to implement parallel com-
puter vision applications in these systems. Also, OpenCV was de-
signed for computational efficiency and with a strong focus on real-
time applications. There are several OpenCV algorithms available
with the most diverse goals, such as detection of objects, faces,
cars, or even specific shapes such as lines, circles, and ellipses. As
a consequence, usually, each application has its particular process-
ing demands.
Thus, the utilization of embedded devices with heterogeneous ar-
chitectures, i.e., that provide multiple processing components like
CPUs and GPUs could be a feasible alternative to improve the per-
formance of computer vision applications without sacrificing rele-
vant metrics like power consumption and temperature. The reason
for such gains is that modern GPUs support a massive number of
logical units, so tasks designed to run in GPUs can take advantage
of higher levels of parallelization.
Due to the minimalist architecture of embedded devices, embed-
ded GPUs usually do not have dedicated memory, so the operating
system makes a pointer to the data in the main memory, which can
cause performance loss. While architectures with high processing
power via GPUs can achieve performance greater than 240x com-
pared to traditional CPUs [9], GPUs on embedded devices have not
yet been thoroughly evaluated.

7



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

Consequently, not every application whose performance is known
as being boosted by running on general-purpose GPUs would
present a similar behavior by running on embedded GPUs, due
to the architectural differences that must be considered. There-
fore, this paper presents a performance evaluation of embedded
GPUs during the processing of computer vision applications in
order to verify the feasibility of heterogeneous embedded ar-
chitectures to execute computer-vision applications.
The remaining of this paper is organized as follows: Section 2
presents a theoretical background in computer vision. Section 3
shows some previous researches that focused on evaluating the per-
formance of computer vision applications in embedded devices.
Section 4 presents details of how the evaluation was conducted.
Section 5 presents a discussion about the results. Section 6 is re-
served for the final remarks and directions for future research.

2. BACKGROUND
Transformation of data from a video or camera into either informa-
tion or a new representation is called Computer Vision [16]. Sev-
eral changes are performed to accomplish a specific goal. The input
data may include contextual information about cars, people, or the
most diverse objects. Computer vision emerged as a solution for
several computing problems, and it has been applied in many envi-
ronments.
Computer vision applications deal with considerable amounts of
data and, by consequence, require high processing capacity. There-
fore, many processor units are needed, but impossible to embed
on in a small quantity of hardware design space. GPUs play a sig-
nificant role in this context since a considerable part of computer
vision involves image processing; one of the areas where GPUs
are excellent. Given this opportunity, GPU designer engineers em-
ployed strategies to make general-purpose GPUs (GPGPU), GPUs
designed to perform non-specialized calculations that were typi-
cally conducted by the CPU.
Despite the high computational throughput achieved through
GPUs, from a programmability standpoint, GPU programming is
still complicated as it requires the use of specific mechanisms that
are not always easy to handle [12]. In this sense, CUDA was pro-
posed in order to facilitate GPU programming with a general inter-
face. Using this execution model, the GPU is a co-processor that
performs several threads in parallel, such as the single instruction
multiple data (SIMD) model of execution. A data-parallel compu-
tation process can be offloaded to the GPU to be executed, and the
collection of threads is divided into a grid of thread blocks [1].
Advances in digital circuits manufacturing have enabled the devel-
opment of smaller GPUs at lower costs, which in turn allowed the
introduction of such components into the embedded systems land-
scape. As a consequence, GPUs arose out of the need to offload
massive processing from the CPU and handle mathematical cal-
culations required for tasks like 3D rendering [5]. Therefore, this
large processing capacity in a small hardware design space drives
the use of edge devices to meet the demands of Big Data.
With the popularization of the Internet of Things, these technolo-
gies are becoming even more famous by delivering additional ca-
pabilities to tasks like camera monitoring. However, as embedded
systems usually present architectural limitations, embedded com-
puter vision applications must be designed to provide high perfor-
mance without sacrificing the battery of the devices [3]. To meet
these needs, several heterogeneous architectures were introduced to
cope with the computational requirements, such as NVIDIA Jetson
TX1 and NVIDIA Jetson TX2, which provide specialized process-
ing capabilities through CPUs and GPUs.

Unlike server architectures where GPUs have dedicated memories,
and the data is transferred between main memory and GPU mem-
ory, in embedded systems with GPUs, the data to be processed is re-
ceived by the CPU and stored in the system’s memory. In this kind
of architecture, shown in Figure 1, usually, there is no dedicated
memory to the GPUs due to embedded design issues. Therefore,
the operating system allows the GPU to access data in the main
memory through programming objects like pointers that stores the
memory address of another value located in computer memory.
Thus, as GPUs must fetch data from main memory, the higher the
amount of data, the greater the overhead on the bus that will be used
in the communication between GPUs and the host system, which
will lead to a loss in performance. In this sense, depending on the
application’s memory access pattern, offloading data to the GPU
could lead to performance losses despite the greater parallelism ca-
pabilities.
Therefore, this paper aims to analyze the feasibility of using em-
bedded GPUs with shared-memory to execute computer vision ap-
plications, besides verifying which characteristics of applications
should be taken into account when considering using embedded
systems with hybrid CPU-GPU architectures.

Fig. 1. Data is acquired by CPUs and stored in system’s memory. The
operating system provides a pointer to the data in main memory, allowing it
to be accessed by the GPUs.

3. RELATED WORK
Due to this topic’s relevance, improving the performance of com-
puter vision applications on embedded systems has been studied
by several researchers. For example, Dekkiche et al. [4] proposed
an approach to target both operating-system and kernel-level opti-
mizations in embedded systems real-time computer-vision applica-
tions such as ADAS. The authors’ approach consists of combining
a Domain Specific Embedded Language (DSEL) C++ library and
the OpenVX framework.
Hurtado et al. [7] presented a system for tracking vehicles in real
time. The authors used computer-vision algorithms in an embed-
ded platform for an ADAS, which uses a monocular color camera.
The video is processed using support vector machines (SVM) and
convolutional neural networks (CNN). The authors used as proof-
of-concept platform a Jetson TK1 and several libraries like CUDA,
OpenCV, and CudNN to perform the application optimization.

8



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

Table 1. Technical specifications of the NVIDIA Jetson TX2
Developer Kit.

Components Specifications
Processors HMP Dual Denver 2/2MB L2 + Quad ARM A57/2MB L2

GPU NVIDIA PASCAL (256 CUDA cores)
Memory 8GB 128bit LPDDR4 59.7GB/s

Networking 1 Gigabit Ethernet, 802.11ac WLAN, Bluetooth
Operating System Linux Ubuntu 16.04.3 LTS (kernel 4.4.15-tegra)

Honegger et al. [6] emphasize that the computational power of
smartphones has increased substantially in recent years. However,
they are still incapable of performing intensive computer-vision
tasks in real-time, at high frame rates, and low latency. In this sense,
the authors present a combination of FPGA (Field Programmable
Gate Array) and mobile CPU to reduce the computational and la-
tency limitations of mobile CPUs. The FPGA actuates as an addi-
tional layer between the image sensor and the CPU. The system
is capable of improving the performance of computer-vision algo-
rithms to real-time performance.
Che et al. [2] developed and analyzed an application for moni-
toring stem diameter information without interrupting the natural
growth of the crops to provide water-saving irrigation. The authors
designed an embedded software for image acquisition, edge detec-
tion, and data storage. Such a proposal enables one to automatically
measure and record the plant stem’s diameter and perform com-
parisons to show the effect of stem measurement under different
illuminating methods.
Meng et al. [13] proposed a human action recognition system suit-
able for embedded computer-vision applications and can be used
in security systems, and intelligent environments. The authors de-
scribe that the system was based on a linear support vector machine
(SVM), and combines MHI (Motion History Image) and HMHH
(Hierarchical Motion History Histogram) to extract a low dimen-
sion feature vector to be used in the SVM classifier. In order to
evaluate their proposal, the authors performed several experiments
through a challenging human action recognition database with six
types of social actions played several times by 25 subjects in four
different scenarios. The results of their proposal were compared
with other methods, and the results showed significant improve-
ments.
Pauly et al. [14] presented an optical measurement device which fo-
cuses on using computer vision applications to provide a less costly
and more efficient alternative to object measurement in industrial
environments. The device consists of an image sensor, several laser-
line projectors, and an ARM microcontroller.
Embedded devices are being widely used for computer vision
tasks, which can take advantage of specialized processing units like
GPUs. However, due to design issues, most embedded GPUs do not
have dedicated memory, so the GPU has to access the main mem-
ory through pointers created by the operating system.
In this context, to the best of our knowledge, no other work has
brought a performance evaluation of heterogeneous embedded sys-
tems during the execution of computer-vision applications in order
to analyze the optimal processing strategy in such kind of archi-
tecture, either keeping data only being processed in the CPU or
combining the processing between CPU and GPU.

4. EVALUATION
We conducted experiments to analyze the impact of exploiting the
parallelism provided by embedded GPUs during the execution of
four computer vision algorithms:

—Generalized Hough: used to identify defined types of shapes
like lines, circles, and ellipses, or detect arbitrary forms. It uses
edge information to establish a mapping of objects from the ori-
entation of an edge point to a reference point of the shape.

—Hough Lines: used in image analysis to find instances of objects
within a particular class of shapes by identifying its edge lines,
which is relevant in tasks such as object recognition.

—Histogram of Oriented Gradients (HOG): identifies objects
in an image by analyzing the distribution of intensity gradients.
This algorithm is used in many applications, like hand gesture
recognition, traffic sign recognition, and human recognition.

—Super Resolution: enhances the resolution of images by explor-
ing a sharpness index. This algorithm is employed to combine a
sequence of low-resolution frames from a scene and produce a
higher resolution picture or series.

In this study, we took into account two well-known parallel algo-
rithm metrics [10]: i) Speedup, which is the ratio of the serial run-
time of the best sequential algorithm for solving a problem to the
time taken by the parallel algorithm to solve the same problem on p
processors, and ii) Efficiency, which consists in the ratio of speed-
up to the number of processors.
Moreover, we adopted the NVIDIA embedded System-on-a-Chip
(SoC) development kit Jetson TX21. This board is suitable for high-
performance computing applications such as robots, drones, smart
cameras, and portable medical devices.
Also, this embedded device comprises a GPU with 256 CUDA
cores making it ideal for our experiment. Table ?? presents more
details about this embedded platform. In order to perform the ex-
periments, we used implementations of the chosen algorithms in
OpenCV version 3.3.0. The results presented next are the mean of
10 executions of each algorithm with a standard deviation of less
than 2%.
The results revealed that GPU’s parallelism capabilities led to per-
formance increases in the chosen algorithms. Although the speed-
up ratio was favorable in all the executed tests, as we can notice
in Figure 2, the analysis of the parallelism efficiency showed that
the use of the computing resources was not ideal, that is, despite
the performance speed-up, some of the GPU processors were kept
inactive during some parts of the algorithms’ execution.

5. DISCUSSION
The most significant speed-up was achieved by running the Hough-
lines algorithm in the GPU. This result can be understood by ana-
lyzing the structure of such an algorithm, which implementation
allows the exploitation of the massive parallelism provided by the
GPU.
More specifically, this algorithm manipulates information related
to the edge points of the tested image into matrices. At this point,
the GPU approach shows a considerable advantage over the CPU
by processing higher amounts of arrays data at the same time into
their cores. Hence, Houghlines executed eight times faster in the
GPU.
The HOG feature descriptor algorithm also presented positive re-
sults, where offloading the processing method to the GPU led to
a four-time speed-up. This performance gain is explained through
the analysis of the algorithm behavior. The Hog descriptor calcu-
lates the gradient orientations and magnitude of each pixel of an
image.

1https://developer.nvidia.com/embedded/buy/jetson-tx2

9



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

[A] [B]

[C] [D]

Fig. 2. Performance comparison between CPU and GPU during the execution of different computer vision algorithms in a Jetson TX2 device.

Next, it divides the image into groups of pixels (which are called
cells). Then, it creates histograms of gradient orientations of each
of these cells and groups them into blocks that will be analyzed by
a descriptor. In other words, the Hog algorithm distributes several
threads among the GPU cores to process multiple pixels, cells, and
blocks simultaneously. This behavior allows the HOG feature de-
scriptor to take advantage of GPUs’ parallelism since each of these
processing steps can be divided into small pieces and performed
simultaneously.
The results also showed that offloading the Generalized Hough to
the GPU could generate performance gains since it manipulates in-
formation related to the edge points of the tested image into matri-
ces. At this point, the GPU presents a considerable advantage over
the CPU by processing higher amounts of arrays data at the same
time into its massive number of cores.
Looking at this algorithm’s behavior in-depth, we can notice that
it detect shapes through processing realized in five parallelizable
phases. First, the algorithm recognizes the edges in the selected
image using mechanisms that run entirely on the GPU. After, it an-
alyzes the edge points that belong to each line of the image to detect
all possible lines passing through it. Such a phase takes consider-
able advantage of GPU processing power since it does not require
communication with the system memory.
In a first moment, each thread converts a part of the image to an
array of pixel coordinates in the GPU’s shared memory. A sec-
ond thread then processes the array of pixel coordinates to create
a Hough line in the GPU’s shared memory. Only when the threads

finish processing the entire set of coordinates can the Hough line be
copied to the corresponding Hough space in the system’s memory.
Executing the Super-Resolution algorithm upon the GPU increases
the speed-up in 65% when compared to the CPU. The Super Res-
olution algorithm firstly analyzes each image sequence, detecting
points with poor quality and replacing such points by other com-
patible ones from the different frame that presents better quality.
The search by similar points can include the analysis of previous or
even upcoming image sequences. In this context, depending on the
image sequence being processed, the Super Resolution algorithm
may have to look for new frames to access several different posi-
tions in the system memory. This irregular memory access pattern
increases the chances of occurring performance-degrading events
due to more cache misses.
The results showed that performance gains could vary significantly
depending on the algorithms’ behavior. The main reason for the
considerable difference is the algorithm’s capability of performing
its tasks without requiring excessive data transfer between the sys-
tem memory and the GPU memory.
For example, the best result was achieved by the Houghlines al-
gorithm, which manipulates images information through matrices
that can be managed in parallel. This algorithm does not require
data transfer among the GPU memory and the system’s memory
during its tasks.

10



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.36, July 2020

6. CONCLUSIONS AND FUTURE WORK
Computer vision covers a broad range of applications in the land-
scape of embedded systems. However, embedded devices usually
present architectural limitations due to issues like hardware-design
space, temperature limits, and battery consumption.
In this sense, heterogeneous embedded systems that distribute the
data to be processed between CPUs and GPUs are becoming more
popular by allowing the use of high-parallelized applications. How-
ever, embedded GPUs do not have dedicated memory. Conse-
quently, the communication between the GPU and the main mem-
ory could lead to performance leaks in applications that rely on
random memory access.
Unlike high-performance GPU-based architectures, embedded de-
vices do not support the same diversity of dedicated memories due
to reduced design space. Therefore, GPUs must fetch the dataset
in the main memory resulting in performance losses. Thus, in this
paper, experiments were conducted to verify the feasibility of using
embedded GPUs in computer vision applications.
The results showed that this approach presents performance gains
in all of the algorithms adopted. The more significant effect indi-
cated an 8 times speed-up when GPUs are taken. As future work,
we intend to i) verify the impact of hybrid CPU-GPU architectures
in other metrics such as temperature and power consumption, and
ii) implement load balancing among various edge devices with hy-
brid architectures to provide scalability according to demand fluc-
tuations in computer vision applications.

7. ACKNOWLEDGEMENT
We gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Jetson TX2 Development Kit used for this
research and National Council for Scientific and Technological De-
velopment CNPq for the support.

8. REFERENCES
[1] Nicola Bombieri, Sara Vinco, Valeria Bertacco, and De-

bapriya Chatterjee. Systemc simulation on gp-gpus: Cuda vs.
opencl. In Proceedings of the eighth IEEE/ACM/IFIP interna-
tional conference on Hardware/software codesign and system
synthesis, pages 343–352. ACM, 2012.

[2] Jiaxing Che, Chunjiang Zhao, Yunhe Zhang, Cheng Wang,
Xiaojun Qiao, and Xinlu Zhang. Plant stem diameter measur-
ing device based on computer vision and embedded system.
In World Automation Congress (WAC), 2010, pages 51–55.
IEEE, 2010.

[3] Djamila Dekkiche, Bastien Vincke, and Alain Merigot. In-
vestigation and performance analysis of openvx optimiza-
tions on computer vision applications. In Control, Automa-
tion, Robotics and Vision (ICARCV), 2016 14th International
Conference on, pages 1–6. IEEE, 2016.

[4] Djamila Dekkiche, Bastien Vincke, and Alain Merigot. Tar-
geting system-level and kernel-level optimizations of com-
puter vision applications on embedded systems. Journal of
Low Power Electronics, 13(4):607–615, 2017.

[5] Mark Harris. Many-core GPU computing with nvidia cuda. In
Proceedings of the 22Nd Annual International Conference on
Supercomputing, ICS ’08, pages 1–1, New York, NY, USA,
2008. ACM.

[6] Dominik Honegger, Helen Oleynikova, and Marc Pollefeys.
Real-time and low latency embedded computer vision hard-
ware based on a combination of fpga and mobile cpu. In In-

telligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ
International Conference on, pages 4930–4935. IEEE, 2014.

[7] Andrés Felipe Hurtado, Jairo Alejandro Gómez,
Vı́ctor Manuel Peñeñory, Iván Mauricio Cabezas, and
Felipe Elvira Garcı́a. Proposal of a computer vision system
to detect and track vehicles in real time using an embedded
platform enabled with a graphical processing unit. In Mecha-
tronics, Electronics and Automotive Engineering (ICMEAE),
2015 International Conference on, pages 76–80. IEEE, 2015.

[8] Faria Kalim, Shadi A. Noghabi, and Shiv Verma. To edge or
not to edge? In Proceedings of the 2017 Symposium on Cloud
Computing, SoCC ’17, pages 629–629, New York, NY, USA,
2017. ACM.

[9] D. Kumar and M. A. Qadeer. Fast heterogeneous computing
with cuda compatible tesla gpu computing processor (per-
sonal supercomputing). In Proceedings of the International
Conference and Workshop on Emerging Trends in Technol-
ogy, ICWET 10, page 925930, New York, NY, USA, 2010.
Association for Computing Machinery.

[10] Vijay P. Kumar and Anshul Gupta. Analyzing scalability of
parallel algorithms and architectures. Journal of parallel and
distributed computing, 22(3):379–391, 1994.

[11] Rui Li, Qiming Hou, and Kun Zhou. Efficient gpu path
rendering using scanline rasterization. ACM Trans. Graph.,
35(6):228:1–228:12, November 2016.

[12] Jacobo Lobeiras, Margarita Amor, and Ramon Doallo. De-
signing efficient index-digit algorithms for cuda gpu architec-
tures. IEEE Transactions on Parallel and Distributed Systems,
27(5):1331–1343, 2016.

[13] Hongying Meng, Nick Pears, and Chris Bailey. A human ac-
tion recognition system for embedded computer vision appli-
cation. In Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on, pages 1–6. IEEE, 2007.

[14] Nicholas Pauly and Nader I Rafla. An automated embedded
computer vision system for object measurement. In Circuits
and Systems (MWSCAS), 2013 IEEE 56th International Mid-
west Symposium on, pages 1108–1111. IEEE, 2013.

[15] SV Viraktamath, Mukund Katti, Aditya Khatawkar, and Pa-
van Kulkarni. Face detection and tracking using opencv. The
SIJ Transactions on Computer Networks & Communication
Engineering (CNCE), 1(3):2321–2403, 2013.

[16] Sunil Kumar Vishwakarma, Divakar Singh Yadav, et al. Anal-
ysis of lane detection techniques using opencv. In India Con-
ference (INDICON), 2015 Annual IEEE, pages 1–4. IEEE,
2015.

[17] Rui Wang, Xianjin Yang, Yazhen Yuan, Wei Chen, Kavita
Bala, and Hujun Bao. Automatic shader simplification us-
ing surface signal approximation. ACM Trans. Graph.,
33(6):226:1–226:11, November 2014.

11


	Introduction
	Background
	Related Work
	Evaluation
	Discussion
	Conclusions and Future Work
	Acknowledgement
	References

