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ABSTRACT 
Image classification requires the generation of features capable of 

detecting image patterns informative of group identity. The 

objective of this study was to classify images from the public 

CIFAR10 image dataset by leveraging combinations of disparate 

image feature sources from deep learning approaches. The 

majority of regular convolutional neural networks (CNN) are 

based on the same structure: modification of convolution and the 

process of max-pooling layers connected with a number of 

entirely linked layers. In this paper, the prime objective is to 

improve the effectiveness of simple convolutional neural network 

models. The Artificial Neural Network (ANN) algorithm is 

applied on a Canadian Institute For Advanced Research dataset 

(CIFAR-10) using two different CNN structures. The result of the 

improved model achieves 88% classification accuracy rate by 

running for 10 hours. The deep learning models are implemented 

with the use of Keras library available for Python programming 

language. 
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1. INTRODUCTION 
The ability to classify things correctly requires many hours of 

training. People get things wrong many times, until eventually, 

they get it right. The same structure applies to machine learning. 

By using a high-quality set of data, deep learning can classify 

objects comparatively well or even better than humans can. With 

achieving utterly accurate image classifier, some of the 

monotonous jobs could be replaced by machines, so that 

humanity could focus on the most enjoyable activities. 

Achieving high classification rate on a set of tiny images tends to 

be difficult, as some of the features that identify specific class are 

barely visible even to human eyes. The area of computing vision 

is under constant development in order to be the most effective in 

investigating and successfully classifying every kind of object. 

This type of analysis could advance, for example, the usefulness 

of autonomous cars, which tend to be ineffective in particular 

situations of object recognition, leading to significant damages. 

Most of the traditional neural network algorithms do not achieve 

as satisfying results to be acceptable for most available jobs. The 

indicated fact disqualifies machines from replacing the 

monotonous human activities. 

This project implements the structure of CNNs different from 

traditional, where it performs classification on 10 classes of 

multiple, evenly distributed images available in the CIFAR- 10 

dataset. The improved model replaces the max-pooling and dense 

function with two-dimensional convolution layers, with the 

achievement of higher classification rate, basing its structure on 

the model . 

2. LITERATURE REVIEW 
According to [1], —The traditional convolutional neural network 

usually initializes the weights of all network layers at one time 

before network training, and then updates the weights of the 

network by back-propagation algorithm to improve the accuracy 

of the network during network training. However, with the 

increase of network depth, the computational cost of this method 

will increase dramatically and the test accuracy will be affected. 

In order to solve this problem, a method of gradually 

reinitializing the weights of each layer is proposed, that is, after a 

certain training period, the weight of the previous layer is 

determined and remain unchanged, then initialize the weights of 

all subsequent layers, repeat this step until the weights of all 

layers are determined. In order to verify the performance of the 

method, a series of experiments were carried out on the CIFAR10 

dataset. The results show that the accuracy of the network is 

improved by 9% and the training time is reduced by 29%. It 

shows that the method can improve the accuracy of the network 

and reduce the training time. 

In [2], Training the deep learning models involves learning of the 

parameters to meet the objective function. Typically the objective 

is to minimize the loss incurred during the learning process. In a 

supervised mode of learning, a model is given the data samples 

and their respective outcomes. When a model generates an 

output, it compares it with the desired output and then takes the 

difference of generated and desired outputs and then attempts to 

bring the generated output close to the desired output. This is 

achieved through optimization algorithms. An optimization 

algorithm goes through several cycles until convergence to 

improve the accuracy of the model. There are several types of 

optimization methods developed to address the challenges 

associated with the learning process. Six of these have been taken 

up to be examined in this study to gain insights about their 

intricacies. The methods investigated are stochastic gradient 

descent, nesterov momentum, rmsprop, adam, adagrad, adadelta. 

Four datasets have been selected to perform the experiments 

which are mnist, fashionmnist, cifar10 and cifar100. The optimal 

training results obtained for mnist is 1.00 with RMSProp and 

adam at epoch 200, fashionmnist is 1.00 with rmsprop and adam 

at epoch 400, cifar10 is 1.00 with rmsprop at epoch 200, cifar100 

is 1.00 with adam at epoch 100. The highest testing results are 

achieved with adam for mnist, fashionmnist, cifar10 and cifar100 

are 0.9826, 0.9853, 0.9855, 0.9842 respectively. The analysis of 

results shows that adam optimization algorithm performs better 

than others at testing phase and rmsprop and adam at training 

phase.  

In [3], Training neural networks is a computationally challenging 

problem that requires significant time efforts. In this paper, we 

propose two approaches that improve efficiency of this task by 

actively selecting most relevant points from a training data set. 

The first approach forms a batch that maximizes the reduction of 

the estimator’s entropy, while the second approach only trains on 
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datapoints whose predicted probability is below a predetermined 

threshold. Both techniques rely on data metrics to speed up 

training while retaining the epoch based neural network training 

framework. The results demonstrate that the proposed methods 

enable significant reduction of training time in experiments on 

the CIFAR10 dataset without compromising the accuracy. 

3. PROBLEM DEFINITION 
Described problem holds significance in the entire area of 

autonomous devices, which implement a diversified number of 

classifiers to work independently from human control. The most 

common autonomous applications can be observed in the 

automobile and scientific industry, where scientists try to 

automate the running of vehicles or the analysis of medical scans, 

which would also output the accurate diagnosis. Both of the 

mentioned fields are crucial to people as the matter of life 

depends on a single decision. The goal of automating devices and 

letting them control the monotonous jobs is to provide the most 

accurate predictions in the shortest time followed by immediate 

reaction. With a knowledge of the fastest and most accurate 

image classification model, multiple industries could advance 

with the implementation of the most-suited algorithms. However, 

according to the no free lunch theorem, there is not a single 

algorithm that will solve every kind of a problem, as each neural 

network algorithm works differently with different datasets. For 

example, the CNN model examined in this research should find 

its usefulness mainly in classifying a low number of classes, 

made up of tiny images. 

The attempt to solve the introduced problem is performed on the 

widely popular CIFAR-10 dataset, which is commonly used for 

the evaluation of image classification algorithms. The dataset 

consists of ―60000 32x32 colour images in 10 classes, with 6000 

images per class‖ [3]. The entire set of images is divided into the 

two sets of 50000 images for the training set and the rest of 

10000 images for testing set. The training batch consists of 5000 

images from each class, whereas the testing batch has 1000 

images representing every class. The CIFAR-10 dataset is a set of 

the 10 classes divided into six types of animals (bird, cat, deer, 

dog, frog, horse) and four kinds of vehicles (airplane, automobile, 

ship, truck). As the publisher informs, the classes are mutually 

exclusive with no overlaps of similarity, for example, between 

trucks and automobiles. 

The datasets – CIFAR-10 can be downloaded from the official 

website [5]. The files are available to download in various 

formats of Python, Matlab and binary version, which is suitable 

for C programs. After downloading the Python version (cifar-10-

python.tar.gz), the data has to be extracted, to reveal the 

following files: 

• batches.meta – consists of a Python dictionary object that 

defines label names of the 10 included classes. 

• data_batch_1, data_batch_2, …, data_batch_5 – training 

data of 50000 images divided into five files of 30 MB each. 

• readme.html – HTML document linking to the official 

website of the dataset. 

• test_batch – testing data of 10000 images in one 30 MB file. 

In order to see the actual images and use them, the files have to 

be decoded with the use of a Python script 

IV  PROPOSED WORK 
The primary object of the current research is to test and compare 

the performance of various CNN models implemented with the 

use of scripts written in Python programming language. The 

image classification pipeline of tiny images used in this project 

reinvents state of the art, by dropping several components used in 

a regular CNN model. On a successful implementation, the 

reinvented model should improve the classification rate. Testing 

of the deep neural network models is applied on one of the 

famous image classification dataset, which is the CIFAR-10 

dataset, as afterwards the results can be compared with the rest of 

the published solutions.  

 

Figure 1. Proposed Block Diagram 

Step 1:  We can download the CIFAR-10 dataset from official 

website. 

Step 2: Before building a model we can decode the dataset to see 

the actual images and use them, the files have to be decoded with 

the use of a Python script. 

Step 3: We can build two CNN model and trained that models on 

training dataset. 

Step 4: We can test the model on testing dataset and evaluate the 

performance result of both the model and compare the 

performance. 

4. EXPERIMENTAL & RESULT 

ANALYSIS 
Running deep neural network models requires a lot of time, All 

of the software is installed on top of the Python, which enables 

for Jupyter Notebook that is used to run the entire code. Python 

programming language is implemented in the decoder file to 

import CIFAR-10 dataset into a Jupyter Notebook in a 

compatible format. 

In order to run CNN models, Python requires the following 

packages: 

• Tensorflow 1.7.0 

• Keras 2.1.5 

• Pickle (Python’s built-in package) 
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• NumPy 1.14.2 

• Matplolib 2.2.2 

The Keras library is the main component of the entire setup, 

which initialises CNN models [14]. The package allows basing 

its backend on CPU or GPU component what might vary the 

experiment running time. 

Initially, each Python project requires the import of used 

packages shown in figure 2 that simplify the process of typing the 

code. The main component of the following setup is the Keras 

package running on top of Tensorflow – open source machine 

learning framework developed by Google, which enables faster 

implementation of CNN networks in Python script. 

 

Figure 2. Import of packages  

Secondly, the project requires the import of ―decoder.py‖ file that 

contains a set of functions written for decoding the CIFAR-10 

dataset using the Pickle package and plotting the labels and 

images data into arrays using the NumPy library. The code of the 

whole decoder can be accessed from the link on the end of this 

chapter for later investigation. 

The next step requires using the imported functions from the 

―decoder.py‖ file to load class names, check the number of 

classes and define the size of the input image, which is 32 by 32 

pixels, and specify the number of channels to be three (red, green 

and blue). The three arrays of numbers consist of values from 0 to 

255 what indicates the pixel intensity at that point. With this 

information, the CNN can describe the probability of an object 

being of a specific class. 

Another significant operation is to decode and fetch the images. 

The labels of classes are using integer data type, whereas class is 

using one-hot encoded vectors. The entire CIFAR-10 data divides 

into two sets – 83% (50000) of images for training and the rest 

17% (10000) for testing, what is verified using the ―print()‖ 

statement shown in figure 3. 

 

Figure 3. Process of decoding and fetching data 

Keras library makes building models very intuitive since every 

layer can be defined in one line of code using ―model.add()‖ 

function. The code used for the entire operation is self-

explanatory and summarises the CNN model using four two-

dimensional layers after executing the function shown in Figure 

4. Firstly, the model is initialised using a sequential function, 

which allows building a linear stack of layers treated as a stack of 

objects, where each of them passes data to the next one. The first 

two ―Conv2D(32, (3, 3)‖ scripts initialise 32 convolution filters 

of 3x3 size each, after which another two ―Conv2D(64, (3, 3)‖ 

scripts use increased number of filters. 
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Figure 4. Simple CNN model building 

Afterwards, the model is trained on the training data. 

―ModelCheckpoint()‖ method saves the best model after every 

epoch. The compile method discussed in the previous chapter 

specifies the loss function, optimiser and metrics for model 

evaluation. Lastly, the model fits the provided data using a batch 

size equal to 128, which is the number of samples per gradient 

update. The model uses 100 iterations (epochs). 

After the successful training, the model is evaluated and presents 

the accuracy and loss on the matplotlib graphs. The IPython 

notebook includes few scripts for predicting class for the test set 

of images shown in figure 5. 

 

Figure 5. Sample predictions 

Improved CNN Model 
Firstly, the notebook requires importing a few additional 

functions from Keras and decoder packages. The process of 

importing class names as well as fetching and decoding the data 

remains unchanged. 

Definition of the improved CNN model consists of the most 

essential changes shown in figure 6. As mentioned in the 

introduction, the improved model replaces the max-pooling and 

dense function with two-dimensional convolution layers. The 

architecture uses nine layers with a different number of 

convolution filters. In the end, the model uses the operation of 

two-dimensional global average pooling. After the structure 

definition, the model is built and summarised. 

 

Figure 6. Improved CNN model building 

The model is trained using the same parameters, where the only 

difference is the increased number of 350 epochs. and the 

prediction result are shown in figure 7. 

 

Figure 7. improved Model prediction 

Comparison 
The accuracy, as well as running time of all the tested models, are 

presented in the following table. 
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Table 1. Accuracy Of The CNN Models 

 

 

 

Figure 8. Comparison of models 

The results indicate 10% improvement between the simplest and 

the most advanced model used in the experiment. CNN model 

after dropping max-pooling and dense function did improve its 

accuracy up to 87.94%; however, as of running three times more 

epochs, the running time increased for the improved CNN. 

Now we illustrate the model accuracy and model loss of each of 

the tested CNN model shown in figure 9. 

 

Figure 9. Simple CNN model accuracy and loss 

From the first figure, it is observed that the model stopped 

improving its accuracy after about 60 epochs, whereas the loss 

stabilised after about 40 epochs. 

The second graph shown in figure 10 of the improved model 

indicates identical situation as the simple CNN model. The model 

similarly stopped improving its accuracy after about 60 epochs, 

whereas the model loss started slowly increasing after about 150 

epochs resulting with overfitting the data. 

 

Figure 10. Improved CNN model accuracy and loss 

5. CONCLUSION 
The results obtained in this research are important as they 

indicate that it is possible to increase the accuracy of CNN 

models by easily running and modifying its traditional structure 

with the use of programming language. One of the interesting 

conclusions is the ratio between accuracy and running time, as 

the last model required the most computational power to achieve 

the best accuracy, whereas the most traditional CNN structure 

obtained the best running time to accuracy ratio. Basing on the 

possessed components, the AI implementers would have to 

decide if it is worth to go for the more robust models. 
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