
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 37, July 2020

25

Improvement in Convolutional Neural Network for

CIFAR-10 Dataset Image Classification

Suyesh Pandit
M.Tech Scholar

LNCT, Bhopal, India

Sushil Kumar
Professor & Head

LNCT, Bhopal, India

ABSTRACT
Image classification requires the generation of features capable of

detecting image patterns informative of group identity. The

objective of this study was to classify images from the public

CIFAR10 image dataset by leveraging combinations of disparate

image feature sources from deep learning approaches. The

majority of regular convolutional neural networks (CNN) are

based on the same structure: modification of convolution and the

process of max-pooling layers connected with a number of

entirely linked layers. In this paper, the prime objective is to

improve the effectiveness of simple convolutional neural network

models. The Artificial Neural Network (ANN) algorithm is

applied on a Canadian Institute For Advanced Research dataset

(CIFAR-10) using two different CNN structures. The result of the

improved model achieves 88% classification accuracy rate by

running for 10 hours. The deep learning models are implemented

with the use of Keras library available for Python programming

language.

Keywords
Artificial neural networks; cifar-10; classification; image;

convolutional neural networks; keras; python; jupyter note book;

machine learning

1. INTRODUCTION
The ability to classify things correctly requires many hours of

training. People get things wrong many times, until eventually,

they get it right. The same structure applies to machine learning.

By using a high-quality set of data, deep learning can classify

objects comparatively well or even better than humans can. With

achieving utterly accurate image classifier, some of the

monotonous jobs could be replaced by machines, so that

humanity could focus on the most enjoyable activities.

Achieving high classification rate on a set of tiny images tends to

be difficult, as some of the features that identify specific class are

barely visible even to human eyes. The area of computing vision

is under constant development in order to be the most effective in

investigating and successfully classifying every kind of object.

This type of analysis could advance, for example, the usefulness

of autonomous cars, which tend to be ineffective in particular

situations of object recognition, leading to significant damages.

Most of the traditional neural network algorithms do not achieve

as satisfying results to be acceptable for most available jobs. The

indicated fact disqualifies machines from replacing the

monotonous human activities.

This project implements the structure of CNNs different from

traditional, where it performs classification on 10 classes of

multiple, evenly distributed images available in the CIFAR- 10

dataset. The improved model replaces the max-pooling and dense

function with two-dimensional convolution layers, with the

achievement of higher classification rate, basing its structure on

the model .

2. LITERATURE REVIEW
According to [1], —The traditional convolutional neural network

usually initializes the weights of all network layers at one time

before network training, and then updates the weights of the

network by back-propagation algorithm to improve the accuracy

of the network during network training. However, with the

increase of network depth, the computational cost of this method

will increase dramatically and the test accuracy will be affected.

In order to solve this problem, a method of gradually

reinitializing the weights of each layer is proposed, that is, after a

certain training period, the weight of the previous layer is

determined and remain unchanged, then initialize the weights of

all subsequent layers, repeat this step until the weights of all

layers are determined. In order to verify the performance of the

method, a series of experiments were carried out on the CIFAR10

dataset. The results show that the accuracy of the network is

improved by 9% and the training time is reduced by 29%. It

shows that the method can improve the accuracy of the network

and reduce the training time.

In [2], Training the deep learning models involves learning of the

parameters to meet the objective function. Typically the objective

is to minimize the loss incurred during the learning process. In a

supervised mode of learning, a model is given the data samples

and their respective outcomes. When a model generates an

output, it compares it with the desired output and then takes the

difference of generated and desired outputs and then attempts to

bring the generated output close to the desired output. This is

achieved through optimization algorithms. An optimization

algorithm goes through several cycles until convergence to

improve the accuracy of the model. There are several types of

optimization methods developed to address the challenges

associated with the learning process. Six of these have been taken

up to be examined in this study to gain insights about their

intricacies. The methods investigated are stochastic gradient

descent, nesterov momentum, rmsprop, adam, adagrad, adadelta.

Four datasets have been selected to perform the experiments

which are mnist, fashionmnist, cifar10 and cifar100. The optimal

training results obtained for mnist is 1.00 with RMSProp and

adam at epoch 200, fashionmnist is 1.00 with rmsprop and adam

at epoch 400, cifar10 is 1.00 with rmsprop at epoch 200, cifar100

is 1.00 with adam at epoch 100. The highest testing results are

achieved with adam for mnist, fashionmnist, cifar10 and cifar100

are 0.9826, 0.9853, 0.9855, 0.9842 respectively. The analysis of

results shows that adam optimization algorithm performs better

than others at testing phase and rmsprop and adam at training

phase.

In [3], Training neural networks is a computationally challenging

problem that requires significant time efforts. In this paper, we

propose two approaches that improve efficiency of this task by

actively selecting most relevant points from a training data set.

The first approach forms a batch that maximizes the reduction of

the estimator’s entropy, while the second approach only trains on

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 37, July 2020

26

datapoints whose predicted probability is below a predetermined

threshold. Both techniques rely on data metrics to speed up

training while retaining the epoch based neural network training

framework. The results demonstrate that the proposed methods

enable significant reduction of training time in experiments on

the CIFAR10 dataset without compromising the accuracy.

3. PROBLEM DEFINITION
Described problem holds significance in the entire area of

autonomous devices, which implement a diversified number of

classifiers to work independently from human control. The most

common autonomous applications can be observed in the

automobile and scientific industry, where scientists try to

automate the running of vehicles or the analysis of medical scans,

which would also output the accurate diagnosis. Both of the

mentioned fields are crucial to people as the matter of life

depends on a single decision. The goal of automating devices and

letting them control the monotonous jobs is to provide the most

accurate predictions in the shortest time followed by immediate

reaction. With a knowledge of the fastest and most accurate

image classification model, multiple industries could advance

with the implementation of the most-suited algorithms. However,

according to the no free lunch theorem, there is not a single

algorithm that will solve every kind of a problem, as each neural

network algorithm works differently with different datasets. For

example, the CNN model examined in this research should find

its usefulness mainly in classifying a low number of classes,

made up of tiny images.

The attempt to solve the introduced problem is performed on the

widely popular CIFAR-10 dataset, which is commonly used for

the evaluation of image classification algorithms. The dataset

consists of ―60000 32x32 colour images in 10 classes, with 6000

images per class‖ [3]. The entire set of images is divided into the

two sets of 50000 images for the training set and the rest of

10000 images for testing set. The training batch consists of 5000

images from each class, whereas the testing batch has 1000

images representing every class. The CIFAR-10 dataset is a set of

the 10 classes divided into six types of animals (bird, cat, deer,

dog, frog, horse) and four kinds of vehicles (airplane, automobile,

ship, truck). As the publisher informs, the classes are mutually

exclusive with no overlaps of similarity, for example, between

trucks and automobiles.

The datasets – CIFAR-10 can be downloaded from the official

website [5]. The files are available to download in various

formats of Python, Matlab and binary version, which is suitable

for C programs. After downloading the Python version (cifar-10-

python.tar.gz), the data has to be extracted, to reveal the

following files:

• batches.meta – consists of a Python dictionary object that

defines label names of the 10 included classes.

• data_batch_1, data_batch_2, …, data_batch_5 – training

data of 50000 images divided into five files of 30 MB each.

• readme.html – HTML document linking to the official

website of the dataset.

• test_batch – testing data of 10000 images in one 30 MB file.

In order to see the actual images and use them, the files have to

be decoded with the use of a Python script

IV PROPOSED WORK
The primary object of the current research is to test and compare

the performance of various CNN models implemented with the

use of scripts written in Python programming language. The

image classification pipeline of tiny images used in this project

reinvents state of the art, by dropping several components used in

a regular CNN model. On a successful implementation, the

reinvented model should improve the classification rate. Testing

of the deep neural network models is applied on one of the

famous image classification dataset, which is the CIFAR-10

dataset, as afterwards the results can be compared with the rest of

the published solutions.

Figure 1. Proposed Block Diagram

Step 1: We can download the CIFAR-10 dataset from official

website.

Step 2: Before building a model we can decode the dataset to see

the actual images and use them, the files have to be decoded with

the use of a Python script.

Step 3: We can build two CNN model and trained that models on

training dataset.

Step 4: We can test the model on testing dataset and evaluate the

performance result of both the model and compare the

performance.

4. EXPERIMENTAL & RESULT

ANALYSIS
Running deep neural network models requires a lot of time, All

of the software is installed on top of the Python, which enables

for Jupyter Notebook that is used to run the entire code. Python

programming language is implemented in the decoder file to

import CIFAR-10 dataset into a Jupyter Notebook in a

compatible format.

In order to run CNN models, Python requires the following

packages:

• Tensorflow 1.7.0

• Keras 2.1.5

• Pickle (Python’s built-in package)

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 37, July 2020

27

• NumPy 1.14.2

• Matplolib 2.2.2

The Keras library is the main component of the entire setup,

which initialises CNN models [14]. The package allows basing

its backend on CPU or GPU component what might vary the

experiment running time.

Initially, each Python project requires the import of used

packages shown in figure 2 that simplify the process of typing the

code. The main component of the following setup is the Keras

package running on top of Tensorflow – open source machine

learning framework developed by Google, which enables faster

implementation of CNN networks in Python script.

Figure 2. Import of packages

Secondly, the project requires the import of ―decoder.py‖ file that

contains a set of functions written for decoding the CIFAR-10

dataset using the Pickle package and plotting the labels and

images data into arrays using the NumPy library. The code of the

whole decoder can be accessed from the link on the end of this

chapter for later investigation.

The next step requires using the imported functions from the

―decoder.py‖ file to load class names, check the number of

classes and define the size of the input image, which is 32 by 32

pixels, and specify the number of channels to be three (red, green

and blue). The three arrays of numbers consist of values from 0 to

255 what indicates the pixel intensity at that point. With this

information, the CNN can describe the probability of an object

being of a specific class.

Another significant operation is to decode and fetch the images.

The labels of classes are using integer data type, whereas class is

using one-hot encoded vectors. The entire CIFAR-10 data divides

into two sets – 83% (50000) of images for training and the rest

17% (10000) for testing, what is verified using the ―print()‖

statement shown in figure 3.

Figure 3. Process of decoding and fetching data

Keras library makes building models very intuitive since every

layer can be defined in one line of code using ―model.add()‖

function. The code used for the entire operation is self-

explanatory and summarises the CNN model using four two-

dimensional layers after executing the function shown in Figure

4. Firstly, the model is initialised using a sequential function,

which allows building a linear stack of layers treated as a stack of

objects, where each of them passes data to the next one. The first

two ―Conv2D(32, (3, 3)‖ scripts initialise 32 convolution filters

of 3x3 size each, after which another two ―Conv2D(64, (3, 3)‖

scripts use increased number of filters.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 37, July 2020

28

Figure 4. Simple CNN model building

Afterwards, the model is trained on the training data.

―ModelCheckpoint()‖ method saves the best model after every

epoch. The compile method discussed in the previous chapter

specifies the loss function, optimiser and metrics for model

evaluation. Lastly, the model fits the provided data using a batch

size equal to 128, which is the number of samples per gradient

update. The model uses 100 iterations (epochs).

After the successful training, the model is evaluated and presents

the accuracy and loss on the matplotlib graphs. The IPython

notebook includes few scripts for predicting class for the test set

of images shown in figure 5.

Figure 5. Sample predictions

Improved CNN Model
Firstly, the notebook requires importing a few additional

functions from Keras and decoder packages. The process of

importing class names as well as fetching and decoding the data

remains unchanged.

Definition of the improved CNN model consists of the most

essential changes shown in figure 6. As mentioned in the

introduction, the improved model replaces the max-pooling and

dense function with two-dimensional convolution layers. The

architecture uses nine layers with a different number of

convolution filters. In the end, the model uses the operation of

two-dimensional global average pooling. After the structure

definition, the model is built and summarised.

Figure 6. Improved CNN model building

The model is trained using the same parameters, where the only

difference is the increased number of 350 epochs. and the

prediction result are shown in figure 7.

Figure 7. improved Model prediction

Comparison
The accuracy, as well as running time of all the tested models, are

presented in the following table.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 37, July 2020

29

Table 1. Accuracy Of The CNN Models

Figure 8. Comparison of models

The results indicate 10% improvement between the simplest and

the most advanced model used in the experiment. CNN model

after dropping max-pooling and dense function did improve its

accuracy up to 87.94%; however, as of running three times more

epochs, the running time increased for the improved CNN.

Now we illustrate the model accuracy and model loss of each of

the tested CNN model shown in figure 9.

Figure 9. Simple CNN model accuracy and loss

From the first figure, it is observed that the model stopped

improving its accuracy after about 60 epochs, whereas the loss

stabilised after about 40 epochs.

The second graph shown in figure 10 of the improved model

indicates identical situation as the simple CNN model. The model

similarly stopped improving its accuracy after about 60 epochs,

whereas the model loss started slowly increasing after about 150

epochs resulting with overfitting the data.

Figure 10. Improved CNN model accuracy and loss

5. CONCLUSION
The results obtained in this research are important as they

indicate that it is possible to increase the accuracy of CNN

models by easily running and modifying its traditional structure

with the use of programming language. One of the interesting

conclusions is the ratio between accuracy and running time, as

the last model required the most computational power to achieve

the best accuracy, whereas the most traditional CNN structure

obtained the best running time to accuracy ratio. Basing on the

possessed components, the AI implementers would have to

decide if it is worth to go for the more robust models.

6. REFERENCES
[1] Yifeng Zhao1 ,Weimin Lang1 ,Bin Li2 ―Performence

analysis of neural network with improved weight training

process‖ in IEEE 2019.

[2] Raniah Zaheer , Humera Shaziya ―A Study of the

Optimization Algorithms in Deep Learning‖ in IEEE 2019.

[3] Sara Mourad, Haris Vikalo and Ahmed Tewfik ―ONLINE

SELECTIVE TRAINING FOR FASTER NEURAL

NETWORK LEARNING‖ in IEEE 2019.

[4] K. Simonyan and A. Zisserman, ―Very deep convolutional

networks for Large-Scale image recognition,‖ Sep. 2014.

[5] S. Liu and W. Deng, ―Very deep convolutional neural

network based image classification using small training

sample size,‖ in 2015 3rd IAPR Asian Conference on

Pattern Recognition (ACPR), Nov. 2015, pp. 730–734.

[6] Y. Chen, Y. Yang, W. Wang, and C. C. Jay Kuo,

―Ensembles of feedforward-designed convolutional neural

networks,‖ Jan. 2019.

[7] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D.

Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen,

―GPipe: Efficient training of giant neural networks using

pipeline parallelism,‖ Nov. 2018.

[8] M. Tan and Q. V. Le, ―EfficientNet: Rethinking model

scaling for convolutional neural networks,‖ May 2019.

[9] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V.

Le, ―AutoAugment: Learning augmentation policies from

data,‖ May 2018.

[10] N. Nayman, A. Noy, T. Ridnik, I. Friedman, R. Jin, and L.

Zelnik-Manor, ―XNAS: Neural architecture search with

expert advice,‖ Jun. 2019.

[11] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei,

―ImageNet: A large-scale hierarchical image database,‖ in

2009 IEEE Conference on Computer Vision and Pattern

Recognition, Jun. 2009, pp. 248–255.

[12] IPython Development Team (2018) Ipython Interactive

Computing [online] available from <https://ipython.org/>

[26 April 2018]

[13] Project Jupyter (2018) Jupyter [online] available from

<http://jupyter.org/> [26 April 2018]

[14] Chollet, F. (2018) Keras Documentation [online] available

from<https://keras.io/> [26 April 2018]

[15] Google Brain Team (2018) Tensorflow [online] available

from<https://www.tensorflow.org/> [21 April 2018]

IJCATM : www.ijcaonline.org

