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ABSTRACT 
Local texture descriptors have outperformed holistic texture 

descriptors in various pattern recognition applications. 

However, the local descriptors have limitations that can 

compromise the data in an image. For instance, the Local 

Binary Patterns (LBP) are sensitive to noise, Local Ternary 

Patterns (LTP) use a static threshold for all images making it a 

challenge to select an optimum threshold for all images in a 

dataset, and the Local Directional Patterns (LDP) use 

orientation responses to derive an image gradient disregarding 

the central pixel and 8−k responses. These limitations lead to 

the loss of subtle texture features while encoding an image. 

This paper proposes a Local Directional Ternary Patterns 

(LDTP) texture descriptor, which not only considers the 

central pixel in encoding image gradient but also takes into 

account all directional responses and an adaptive threshold. 

Findings from empirical records for the MIAS breast cancer 

dataset and using different classifiers show that LDTP attains a 

higher accuracy level for both normal/abnormal and 

benign/malignant classification compared to the other local 

texture descriptors. 

Keywords 
Breast cancer, Feature extraction, LBP, LDP, LTP, LDTP, 

Mammogram. 

1. INTRODUCTION 
Computer vision and pattern recognition applications widely 

use texture analysis because of its potential in extracting 

significant image features. Application of texture descriptors in 

facial image analysis[1], object detection [2], pedestrian 

detection [3], and Medical image analysis [4] have attracted a 

lot of research interest because they give deep insights to 

texture recognition processes. The two broad categories of 

texture descriptors are; holistic and local. Holistic descriptors 

describe an image as a whole to generalize the entire object, 

while local descriptors describe critical points in an image. 

Further, holistic descriptors base their dimension reduction on 

techniques such as Principal Component Analysis (PCA)[5] 

and  Linear Discriminant Analysis (LDA)[6]. These 

descriptors have been proved successful in pattern recognition 

applications; however, they often fail in small sample size 

problems[7].  

In recent years, much research has focused on the application 

of local descriptors for texture analysis because of their 

effectiveness, ease of extraction, robustness to illumination, 

and pose variation[8]. Local Binary Patterns (LBP) has 

emerged as one of the most prominent local texture descriptors 

because of its discriminative power and computational 

simplicity. Consequently, it has seen successful application in 

facial expression recognition [9], medical image analysis[10], 

and biomedical image analysis [11]. However, a significant 

limitation of LBP is that it misses the local structure of an 

image since it does not consider the effect of the central pixel. 

Furthermore, it is sensitive to noise, and sometimes it may 

falsely classify two or more different patterns to the same 

class. Consequently, owing to its low dimensionality and high 

efficiency[12], LBP resulted in a wide variety of descriptors 

aimed at improving its discrimination capability, robustness, 

and applicability. Some of its variants include; Local Ternary 

Patterns (LTP) [13] and Local Directional Patterns (LDP)[14].  

The Local Ternary Patterns introduced by Tan et al [13] aimed 

to make LBP less sensitive to the noise by extending it to a 

three value code instead of the two value code. Although LTP 

proved to be more robust to noise than LBP, it does not 

capture detailed information of the image and sometimes it 

may falsely classify different patterns to the same class as 

experienced by LBP. Additionally, it uses a static threshold 

defined by the user, which makes it subjective and 

dynamically inappropriate for all images in a given dataset. In 

a bid to overcome these challenges, Jabid et al [14] proposed 

the Local Directional Patterns (LDP) descriptor that is more 

consistent in the presences of noise and works by considering 

edge response value in different directions using compass 

masks such as Kirsch [15], Robinson[16], Frei-Chen [17]and 

Sobel[18]. 

The Kirsch is the most popularly used mask and works by 

deriving edge responses in eight directions. It uses the top k 

significant edge responses to derive the LDP code of the 

referenced pixel while ignoring the remaining 8-k responses.  

Although LDP generates different codes for different patterns, 

the reliance of top k significant responses leads to loss of 

information around a local neighborhood. Furthermore, failure 

to involve the central `pixel leads to loss of discriminant 

information, which may make LDP capture an image edge 

where there is none. Moreover, Shabat et al  [19] noted that 

LDP is computationally expensive compared to other local 

descriptors. 

The motivation of this work thus is two-fold. First, it seeks to 

improve on the limitations of known local descriptors to 

enhance the encoding of more salient texture features. As a 

result, this paper proposes a technique herein referred to as the 

Local Directional Ternary Patterns (LDTP) texture descriptor 

that seeks to improve on the limitations of LDP and LTP. This 

descriptor considers all the directional responses in encoding 

local texture in an image which enables more subtle texture 

features to be captured and improve the discriminative power 

of the extracted features. Additionally, the proposed descriptor 

uses an adaptive threshold, making it dynamically appropriate 

for all images in a dataset or diverse datasets. 

Second, the work sought to validate the proposed descriptor 
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using breast cancer data obtained from the MIAS dataset and 

compare the findings against those obtained when using the 

LTP and LDP descriptors. The 322 images in the dataset 

underwent data augmentation in which the original image was 

mirrored along the x-axis and the y-axis resulting in 966 

images.  Using the Support Vector Machines (SVM) and k-

Nearest Neighbors (KNN) classifiers, empirical findings show 

that the LDTP method has a better accuracy level than LTP 

and LDP. 

The remainder of the paper is organized as follows; Section II 

discusses related work, while Section III analyses existing 

local texture descriptors related to the proposed descriptor. 

Section IV presents the proposed LDTP descriptor, and 

Section V presents materials and experiments used in 

validating the LDTP approach for breast cancer classification. 

Section VI discusses the results, and finally, section VII 

presents the conclusion and gives further research insights. 

2. RELATED WORK 
Previous studies have used local texture descriptors for 

extracting breast cancer features. Muramatsu et al [20] 

developed the Radial Local Ternary Patterns (RLTP) that 

considered not only pattern orientation about the center of a 

mass but also robustness to image rotation. Using 376 ROI’s 

from Nagoya medical dataset and ANN, SVM and RF 

classifiers, for benign /malignant classification, they achieved 

the highest Area Under Curve (AUC) of 0.90 with ANN 

classifier. Even though the test was performed using Leave-

One-Case-Out cross-validation, the training and test dataset 

were not completely independent. Therefore to test the 

effectiveness of the proposed method there is a need to 

validate it with an independent dataset. 

Rabidas et al [21] compared the performance of LBP, LBP 

Variance, and Complete LBP extraction techniques for 

benign/malignant breast mass classification. By using a 

stepwise logistic regression method for feature selection and 

the Fisher Linear Discriminant Analysis classifier on 200 

mammograms from the DDSM database, they achieved a 

classification accuracy of 92.95% 87.7% and 90.6% with LBP, 

LBPV, and CLBP respectively using tenfold cross-validation. 

Even though LBP achieved the highest accuracy, it was not 

rotation invariant and therefore not suitable for benign/ 

malignant classification which requires edge orientation at the 

margin. 

In an attempt to achieve a local pattern that is rotation 

invariant, Rabidas et al [22] proposed  Discriminative Robust 

LBP (DRLBP) and Discriminative Robust LTP (DRLTP) 

texture descriptors for classification of mammographic masses 

as benign or malignant. Using Fisher Linear Discriminant 

Analysis classifier, stepwise logistic regression for feature 

selection, tenfold cross-validation on 58 masses from the Mini 

MIAS dataset. They achieved the best results with DRLBP 

having an AUC of 0.98. Even though the results of DRLBP 

and DRLTP were very close to each other, the authors did not 

test the statistical significance of that difference. 

Ponraj et al [23] proposed a Local Binary Textual Patterns that 

considers the central pixel. The central pixel is compared with 

the neighboring pixel to generate a binary bit. The binary bit 

converts to a decimal number by counting the number of zeros 

and ones. Then textual features are used to classify a 

mammogram into either a normal or an abnormal class. By 

using an SVM classifier and 70 images from the MIAS 

database, they achieved an accuracy of 97.2% and 96.4% for 

Binary pattern one and Binary pattern two, respectively. The 

main criticism of the approach is that it leads to long 

histograms that increase the computational speed. Further, 

there was no comparative analysis of the proposed method 

with Original LBP or existing LBP variants as evidence of 

significant contribution. 

Gardezi and Faye [24] fused Completed Local Binary Patterns 

(CLBP) with curvelet features for Normal/Abnormal 

classification using images from MIAS and IRMA datasets. 

Firstly, they computed CLBP features using rotationally 

invariant mapping; then, they computed curvelet features from 

the curvelet sub-band coefficient. The extracted CLBP and 

curvelet features were fused and passed to a classifier. They 

obtained a classification accuracy of 96%. The high accuracy 

is attributed to feature a fusion of different texture features and 

using images from two different datasets. 

Paramkusham et al [25] extracted the Local Quinary Patterns 

to classify a mass into a normal or abnormal class, then 

geometric features to classify the abnormal tumor into a benign 

or malignant class. Using images from the IRMA dataset and 

SVM classifier, they attained classification accuracy of 

99.27% and 79.13% for the normal/abnormal and 

benign/malignant classification, respectively. 

From the previous work on the application of local texture 

features for breast cancer feature extraction in mammogram 

images and classification, it is evident that the extraction of 

breast cancer features sparingly employs local texture features, 

because of low classification accuracy levels achieved 

especially for benign/malignant classification. Studies that 

produced high accuracies either used privately owned datasets 

that cannot be accessed for verification or used a few images 

for testing. Therefore, there is a need to develop a better 

texture feature extraction approach for extracting breast cancer 

features, which consequently will improve classification 

accuracy. 

3. LOCAL FEATURE DESCRIPTORS 

3.1 Local Binary Patterns 
Local Binary Patterns (LBP) is a texture descriptor based on 

local pixels. The original LBP proposed by Ojala et al [26] 

forms labels from an image pixel by thresholding a 3 × 3 

circular neighborhood of each pixel with the center pixel. 

Given an image pixel, LBP code is generated by thresholding 

the neighborhood of each pixel by following the pixels along a 

circular path, either clockwise or counter-clockwise on 

distance R, which is the radius of comparison. Figure 1 shows 

a sample of 3 × 3 LBP operation. 

 

Figure 1: A sample 3 X 3 LBP operation with P=8 and R=1 

for (a) original pixel values of the sample image region and 

(b) the resultant image after thresholding 

LBP code is obtained by applying the equation (1) on the 

image region and then a thresholding function τ as defined in 

(2); 

LBPP,R xc , yc =  2n

N−1

n=0

τ gn − gc                                    (1) 
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                τ x =  
1, 𝑥   ≥ 0
0, 𝑥   < 0

                                                        (2) 

Where N is the number of neighboring pixels, R the distance 

of neighboring pixels from the center pixel, gc  the gray-value 

of the center pixel, gn  for n = 0, 1, 2,..., N − 1 is the gray value 

of a neighboring pixel on a circular symmetric neighborhood 

of distance R>0 and the function τ x  is a thresholding 

function that generates a binary bit for a particular pixel. 

Concatenating all the eight bits results in a binary number that 

is converted to its decimal equivalent and allocated to the 

central pixel as its LBP code. For instance, the resultant LBP 

code for Figure. 1 is 010100012=8110. Then it generates a 

histogram of an LBP-encoded image that represents micro-

pattern structures in an image whose histogram is defined by 

equation (3): 

Hi =  I LBPP,R xc,yc , i , i = 0,1,2, … 2p

x,y

− 1  (3) 

Where p is the number of texture patterns that LBP operator 

can encode, and I is defined by equation (4):   

                I a =  
1                 𝑖𝑓 𝑎 𝑖𝑠 𝑇𝑅𝑈𝐸
0                Otherwise

       (4) 

Even though the LBP descriptor is computationally 

straightforward and robust to monotonic gray scale changes, it 

is sensitive to noise because it relies on the central pixel, and 

therefore, inadequately dependable in capturing breast cancer 

discriminant features. 

3.2 Local Ternary Patterns 
Reliance on the central pixel as a threshold in LBP makes it 

sensitive to noise. A small change of the central pixel greatly 

changes the LBP code. To overcome this challenge, LTP 

extends LBP by thresholding the pixels into (0, +1,-1) bits 

instead of (0, +1) bits. Using three value bits makes LTP 

robust to noise than LBP. Consider threshold constant k, center 

pixel c, and a neighboring pixel p. The LTP formula is given 

by equation (5): 

S P =  

1,   if  p > 𝑐 + 𝑘                   
0     if c − k < 𝑝 <  𝑐 + 𝑘

−1      if p < 𝑐 − 𝑘                   
              (5)  

Where S (P)  is the pth neighbor containing the LTP code. 

Once pixels are split into (0, +1,-1) bits, the negative values 

are eliminated by dividing the ternary pattern into upper and 

lower patterns. Extending LTP to a three-bit code makes it 

robust to noise and encodes more patterns; however, it utilizes 

one static threshold defined by the user for all datasets or all 

images in a dataset. Consequently, the chosen threshold, k is 

invariant to grey value variation, and there is no defined 

approach of selecting an optimum value for the threshold. This 

makes LTP highly subjective and biased to the selected 

threshold. Figure 2 shows a sample 3 x 3 image region for LTP 

code. 

 

Figure 2: Generation of an LTP code with (a) showing the 

Original image pixels, (b) the LTP code with k=±5 (c) 

Upper LTP pattern and (d) Lower LTP pattern 

3.3 Local Directional Patterns 
Both LBP and LTP use pixel intensity values to encode an 

image gradient, which makes feature discrimination inadequate 

and may lead to similar codes for two or more different 

patterns.  Jabid et al [16] proposed Local Directional Patterns 

(LDP), which computes an 8-bit binary code for every pixel in 

the image by comparing edge responses of each pixel in 

different directions instead of raw pixel intensities like LBP 

and LTP. Some of the edge detectors used to encode an image 

gradient in LDP include; Kirsch [17], Robinson [16], and 

Sobel [20]. Among these edge detectors, Kirsch is the most 

popularly used mask because it is robust in directional edge 

detection since it considers all eight neighbors[27].  

3.3.1 Kirsch edge detector 
This is a first-order derivative edge detector that gets an image 

gradient by convolving  3 × 3  image regions with a set of 

masks. Kirsch [27] defined a nonlinear edge detector technique 

as defined in equation (6); 

𝑃(𝑥,𝑦) = max⁡{1, maxk=0
7   5  Sk − 3Tk              (6) 

In which; 

Sk = Pk + Pk+1 + Pk+2 

and 

     Tk = Pk+3 + Pk+4 + Pk+5 + Pk+6 + Pk+7 

Where P(x,y) is the kirsch gradient, the subscripts  Pk  are 

evaluated modulo 8 and Pk  [k: 0, 1, 2..., 7] are eight 

neighboring pixels of P(x, y) shown in Figure 3a.  

 

Figure 3: Illustration of (a) the Eight neighbors of pixel 

P(x, y), and (b) their corresponding Kirsch mask 

 

For each center pixel 𝑝𝑥,𝑦 , there are eight directional response 

values. High (absolute) response values depict the presence of 
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an edge or a corner in that particular direction. The interest of 

LDP is to determine k significant directional responses and set 

their corresponding bit-value to 1 and the remaining 8−k bits to 

0. This binary code is converted to decimal and assigned to 

𝑝𝑥,𝑦  as its LDP code. This process is repeated for all pixels in 

an image to obtain an LDP-encoded image. The LDP 

descriptor then finds the image gradient towards a particular 

direction by convolving 3 × 3  image regions with the 

respective mask Mk as illustrated in Figure 4. 

 
−𝟑 −𝟑 𝟓
−𝟑    𝟎 𝟓
−𝟑 −𝟑 𝟓

            
−𝟑    𝟓    𝟓
−𝟑    𝟎    𝟓
−𝟑 −𝟑 −𝟑

  

(a) East M0                        (b) North East M1 

 
    𝟓    𝟓    𝟓
−𝟑    𝟎 −𝟑
−𝟑 −𝟑 −𝟑

            
   𝟓   𝟓 −𝟑
   𝟓    𝟎 −𝟑
−𝟑 −𝟑 −𝟑

  

 (c) North  M2                   (d) North West M3 

 
𝟓 −𝟑 −𝟑
𝟓    𝟎 −𝟑
𝟓 −𝟑 −𝟑

              
−𝟑 −𝟑 −𝟑
   𝟓    𝟎 −𝟑
   𝟓    𝟓 −𝟑

   

(e) West M4                        (f) South West M5 

 
−𝟑 −𝟑 −𝟑
−𝟑    𝟎 −𝟑
   𝟓    𝟓    𝟓

             
−𝟑 −𝟑 −𝟑
−𝟑    𝟎    𝟓
−𝟑    𝟓    𝟓

  

 (g) South M6                        (h) South East M7 

Figure 4: Kirsch edge response masks in eight 

directions 

For k significant responses, it calculates the LDP code shown 

in Figure 5 as;  

LDPk =  b((mj − mk) × 2j

7

j=0

)                   (7) 

In which b is: 

b a =  
1, if  a  ≥  0

0,       Otherwise
            

Where mk is the kth significant directional response, and mj is 

the response of Kirsch mask Mj. LDP operator generates Ck
8 

distinct patterns in the LDP encoded image and uses a 

histogram H (i) with Ck
8 bins to represent the input image of 

size M × N as; 

H i =   f LDPk m, n , i        (8)

N

n=0

M

m=0

 

Where f is: 

f p, i =  
1,           if   p = i

0, Otherwise
         (9)  

Where f (p, i) is a logical function that compares if the LDP 

code at location p(m,n) of the LDP-encoded image is equal to 

current LDP pattern i for all i in the range 0 ≤ i ≤ Ck
8. The 

resultant histogram with dimensions 1×Ck
8 represents the 

image. The resultant feature has spots, corners, edges, and 

texture information about the image. The limitation of LDP is 

not considering all responses in generating the LDP code. The 

discarded responses though not among top k could contribute 

to making LDP robust and pattern discriminative. 

Furthermore, some of the top k directional responses could be 

in particular orientation like west-east. 

 

Figure 5: Process of encoding an image with an LDP 

operator when k = 3 for (a) Original Image region (b) 

Kirsch masks as presented in Figure 4,(c) Result of 

convolving each pixel in (a) with 8 Kirsch masks; (d) Pick 

top k = 3 significant responses, set their corresponding bit 

to 1 and the rest to 0 and finally (e) Resultant LDP code 

4. METHODS AND MATERIALS 

4.1 Materials 
This researcher used mammogram images obtained from the 

Mammographic Image Analysis Society (MIAS) breast cancer 

dataset. A UK researcher group interested in understanding 

mammograms created the publically accessible dataset for 

scientific research. It has 322 digitized mammographic images 

of both breasts from 161 patients and provides background 

information on the class of abnormalities present in a 

mammogram. The class of abnormalities consists of normal/ 

abnormal class, and based on the severity of abnormality; it 

splits the abnormal class into a malignant and benign class. 

Out of 322 images, 207 images are normal, and 115 images are 

abnormal. Among the 115 abnormal images, 64 are benign, 

and 51 are malignant[28]. Because the database has few 

images, there was a need to increase the number of images. 

This was achieved through data augmentation in which an 

original image was mirrored along the x-axis and the y-axis. 

These ensured the images are increased from 322 to 966 

images.  

4.2 Methods 
In section 3, the existing local texture descriptors (LBP, LDP, 

and LTP) were presented. This study proposes a Local 

Directional Ternary Patterns (LDTP) texture descriptor as 

presented in subsection 4.2.1; 

4.2.1 Local Directional Ternary Patterns 
As earlier indicated, the Local Ternary Patterns (LTP) uses 

static threshold τ defined by a user for all datasets or images in 

a dataset. The chosen threshold is invariant to grey-value 

variations, static and lacks a defined technique of selecting an 

optimum value for the threshold. The Local Directional 

Patterns (LDP) only considers top k directional responses 

when encoding local texture in an image. Although the 

difference between a reference pixel and its neighbors derives 

an image gradient, it does not consider the central pixel, 

thereby deteriorating the discriminative power of the features 

extracted. Further, LDP disregards 8−k responses, which leads 

to a loss of subtle texture features.  Herein, a Local Directional 

Ternary Patterns (LDTP) texture descriptor is proposed. 
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Unlike LDP and LTP, the LDTP descriptor considers the 

central pixel, takes into account all directional responses, and 

uses an adaptive threshold for 3 × 3 image regions when 

deriving an image gradient. 

The LDTP applies Kirsch masks to compute responses for all 

the eight directions for central reference pixel in a 3×3 image 

region. It uses the sign of the directional responses to 

increasing the discriminative nature of the encoded image 

gradient. Given a 3 × 3 image region, LDTP first finds the 

absolute difference in grey-values between neighboring pixels 

and central reference pixel as defined by (10); 

Pi,j =  Pi,j − Pc                                                         (10) 

Where Pi,j , is the gray value at row i, column j, and Pc  is the 

gray value of the central pixel.  

The absolute differences are then convolved with the Kirsch 

masks to get directional responses. Figure 6 illustrates a 3 × 3 

image region, the absolute difference in grey values, and 

corresponding directional responses. 

 

Figure 6: LDTP process (a) Image region (b) Absolute 

differential values (c) Directional responses using kirsch 

masks 

The directional responses are then normalized using the min-

max normalization technique as shown in (11); 

xi,j
norm =

xi,j − min

Max − Min
                                   (11) 

Where xi,j  is the absolute response at index i, j and Max and 

Min are the maximum and minimum responses respectively, 

and xi,j
norm  is the normalized value for xi,j  responses.  

The normalized values are in the range of 0…1, but they add 

up to a value of more than 1. However, to ensure the values 

add to a maximum value of 1, the normalized values are 

passed through a softmax function given by (12) and illustrated 

in Figure 7(b) in comparison to the min-max technique in 7(a); 

Pi,j =
exi ,j

norm

 exi ,j
norm                                     (12) 

Where Pi,jis the likelihood for the presence of an edge towards 

a given direction, exi ,j
norm

is the exponential value of the 

normalized absolute responses at index i,j and  exi ,j
norm

is the 

summation of all the exponential values 

 
Figure 7:  Normalization process with (a) Min-Max 

Normalization and (b) Soft-max technique 

Once the normalization is done, the probability space is split 

into three parts for -1,0,+1 bits for the generated ternary 

pattern and calculates two thresholds, Tp and Tn as shown in 

(13); 

   TP =
1

4
  L

T

i

3

i=0

                                                                (13) 

Tn =
1

4
  L

B

i

3

i=0

                          

Where LTi is the ith top likelihood, and LBi is the ith bottom 

likelihood. For the likelihoods shown in Figure 7 (b), the 

thresholds are Tp=0.1589 and Tn =0.0911, respectively. 

Where Tp  is calculated as the average of the four highest  

values given by  0.1739, 0.1904, 0.1503 and 0.1209, while Tn 

is the average of the four lowest values given by 0.1192, 

0.1026, 0.0726 and 0.0700 

LDTP code is calculated as; 

LDTP =   p(Li −  Tp|Tn ) × 2i)

7

i=0

              (14) 

 

p …  =

 
 
 

 
 

       1,     if Li − Tp  ≥ 0

−1, if Li − Tn ≤ 0

       0, Otherwise

                       

Where Li is a likelihood i as shown in Figure 7 (b) 

For the likelihoods in figure 7(b), Figure 8 shows the resultant 

ternary pattern and the corresponding positive and negative 

LTP codes. The LDTP code is split into a positive and 

negative LTP code, as shown in Figure 8(b) and Figure 8(c), 

respectively 

 

Figure 8: Resultant Ternary Pattern with (a) Resultant 

LDTP code (b) Positive LTP code (c) Negative LTP code 

The positive and negative gradients of an M × N image shown 

in Figure 8(b) and Figure 8(c) are  represented as Hp and Hn 
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and defined as expressed in equation (15); 

Hp i =   f(LDPp m, n , i)

N

n=0

M

m=0

                                       (15) 

Hn i =   f(LDPn   m, n , i)

N

n=o

M

m=0

                        

f x, i =  
1,               if x = i
0        Otherwise

      
                                             

  

Where f (x, i) is a logical function that compares if the LDP 

code at location x (m, n) of the LDP encoded image is equal to 

current LDP pattern i for all i in the image0 ≤ i ≤ Ck
8.  

The resultant histogram has dimensions1 × Ck
8, which 

represent the image. The two histograms could be fused and 

used for any pattern recognition application.  

4.2.2 Classification 
Once features were extracted, the researchers implemented 

different kernels for Support Vector Machines (SVM) and K-

Nearest Neighbors (KNN) classifiers for the classification of 

two different labels. Level one classification classifies a tumor 

into a normal or abnormal class, and level two classifies an 

abnormal tumor into a benign or malignant class. This was 

done for the various local texture descriptors including LDTP 

and the results recorded for comparative purposes. 

4.2.3 Validation and evaluation protocol 
The proposed feature extraction technique is validated using 

ten-fold cross-validation and the SVM and KNN classifiers. 

The performance of the model is then mapped into a True 

Positive (TP), True Negative (TN), False Positive (FP) and 

False Negative (FN) using a confusion matrix from which 

performance metrics Accuracy, Sensitivity and Specificity are 

calculated. Accuracy defines the proportion of accurate results 

on the total number of instances tested, calculated by (16); 

Accuracy =
TN + TP

FN + FP + TN + TP
            16  

The sensitivity metric evaluates the effectiveness of a classifier 

by obtaining the proportion of positive examples correctly 

predicted as positive defined as in (17); 

Sensitivty =
TP

FN + TP
                                     17  

Specificity measures the effectiveness of a classifier by 

obtaining the proportion of negative examples correctly 

predicted as unfavorable defined as shown in (18); 

Specificity =
TN

FP + TN
                                                               18  

5. RESULTS AND DISCUSSION 
This research molded the breast cancer problem as a two-class 

classification problem in which it classified the breast tumor 

into a normal or abnormal class and then classified the 

abnormal tumor into a benign or malignant class. To visualize 

the performance of the classifiers, Table 1 and Table 2 shows 

the accuracy comparison of LDP, LTP, and LDTP with 

different kernels for SVM and KNN classifiers. 

Table 1 and Table 2 show Normal/Abnormal classification 

accuracy comparison between LDP, LTP, and LDTP using 

different kernels for SVM and KNN classifiers. It is observed 

that in all instances LDTP outperformed LDP and LTP except 

for SVM with fine Gaussian. From the results achieved, it is 

also evident that the highest classification accuracy of 91% 

was achieved by the weighted KNN. 

5.1 Accuracy comparison of LDP, LTP, and 

LDTP 
Table 1 and Table 2 presents the comparative results of the 

different local texture descriptors that exist against the 

proposed local directional ternary pattern. As observed in both 

tables, LDTP outperforms all the existing descriptors in 

classifying normal/abnormal breast cancer mammograms. 

Table 1: Normal/Abnormal accuracy comparison of LDP, 

LTP, and LDTP using SVM classifier 
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Table 2: Normal/Abnormal accuracy comparison of LDP, 

LTP, and LDTP using KNN classifier 
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Tables 3 and 4 show Benign/ Malignant classification accuracy 

comparison between LDP, LTP, and LDTP using different 

kernels for SVM and KNN classifiers. The LDTP performed 

better than LDP and LTP in all instances except for SVM with 

fine Gaussian where the LTP outperformed the LDTP. The 

highest classification accuracy was 90.6% achieved by the 

weighted KNN classifier. 

Table 3: Benign/Malignant accuracy comparison of LDP, 

LTP, and LDTP using SVM classifier 
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Table 4: Benign/Malignant accuracy comparison of LDP, 

LTP, and LDTP using KNN classifier 
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LDP 80.5 61.4 64.9 61.8 61.4 82.8 

LTP 75.9 64.9 66.9 65.4 64.9 81.6 

LDTP 88.7 79.1 80.4 79.5 79.7 90.6 

 

Generally from Tables 1, 2, 3, and 4, it is evident that in terms 

of classification accuracy, the weighted KNN outperformed 

the SVM classifier in both instances of normal/abnormal and 

benign/malignant classification. However, the LDTP showed 

consistency in all the cases hence an indicator that a feature 

extractor plays a significant role in classification. 

5.2 Sensitivity and Specificity comparison of 

LDTP using Weighted KNN and Cubic 

SVM 
Figure 9 shows the sensitivity of the LDTP using weighted 

KNN and Cubic SVM. For the normal abnormal class, 

weighted KNN outperformed SVM, while for the 

Benign/Malignant class Cubic SVM and the Weighted KNN 

classifiers had equal sensitivity of 99.5%. 

 

Figure 9: Sensitivity comparison of LDTP using Weighted  

KNN and Cubic SVM 

Figure 10 presents the specificity of LDTP using weighted 

KNN and Cubic SVM. For both the Normal/Abnormal and 

Benign/Malignant classification, Cubic SVM achieved a 

higher specificity than weighted KNN. 
 

 

Figure 10: Specificity comparison of LDTP using Weighted 

KNN and Cubic SVM 

Even though the weighted KNN performed better than Cubic 

SVM in terms of classification accuracy, Cubic SVM proved 

to be more effective at predicting positive and negative 

examples as positive and negative respectively than weighted 

KNN. 

6. CONCLUSION 
This study proposed a local texture feature extraction approach 

implemented for breast cancer classification problem. The 

researchers molded the breast cancer problem as a two-level 

classification problem in which it first classifies the breast 

tumor into a normal or abnormal class; then, it classifies the 

abnormal tumor into a benign or malignant class. The features 

are extracted through the LDTP approach using different 

kernels for SVM and KNN classifiers on 966 mammogram 

images from the MIAS dataset. For the normal/abnormal 

classification, the model achieved the highest accuracy of 

91%, sensitivity of 93.5%, and specificity of 89.9% with the 

weighted KNN classifier. For the benign/malignant 

classification, the model attained the highest accuracy of 

90.6%, the sensitivity of 99.5% with the weighted KNN, and 

specificity of 100% with Cubic SVM classifier. The LDTP 

approach has shown impressive results and can effectively be 

used to predict breast cancer tumor type with higher precision 

than LDP and LTP descriptors. The experiment performed 

reveals the validity of the approach using images from the 

MIAS dataset. 

The prospect of this work is to evaluate the success of the 

developed approach by comparing how closely its findings 

match with studies conducted by other researchers in a similar 

area. Also, to use alternative classifiers and datasets to provide 

a full comparison between the effect of various classification 

approaches and the number of mammogram images selected. 

Further, to use a database with many images to demonstrate 

more feasibility of the approach. 
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