
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

11

An Empirical Study on Stack Overflow Security

Vulnerability in Well-known Open Source Software

Systems

Md. Masudur Rahman
Department of CSE

Ahsanullah University of Science
and Technology

Abdus Satter
Institute of Information Technology

University of Dhaka

B. M. Mainul Hossain
Institute of Information Technology

University of Dhaka

ABSTRACT

Stack overflow is one of the most common security

vulnerabilities in software systems. It occurs when a program

tries to load more data in a buffer than its allocated limit. It

may result in serious security issue when a program having

the vulnerability is run with administrator privileges.

Attackers can inject malicious code into the running program

through overflowing its stack. When the malicious code is

executed, it allows the attackers to take control of the

program. So, this security vulnerability is considered as one of

the easiest and reliable techniques to gain unauthorized access

to a computer system. In this article, it has been shown that

how stack overflow occurs in a software system. Besides, a

survey has been conducted on three popular open source

projects - Linux, Git and PHP. The survey results show that

the projects contain such code portions in which it is possible

to overflow the stacks and inject malicious script to harm the

normal execution of processes. In addition, this article raises a

concern to avoid writing such codes which are potentially

sources for the security attack.

Keywords

Computer Security Vulnerability, Buffer Overflow Attack,

Stack Overflow, Open Source Projects, Software Security.

1. INTRODUCTION
A stack overflow (also known as buffer overflow) condition

occurs when a program tries to store more data in its allocated

buffer that exceeds the allowed size of the buffer. It causes the

program to destroy data, change files and execute malicious

code, because it overwrites the adjacent buffers in the

computer memory. It happens when developers write code

that does not check the boundary of input data. Due to the

increased presence of stack overflow vulnerabilities in all

types of software systems [14], attackers use these to access

and take control of the systems [5] [20]. These vulnerabilities

can occur in an Operating System (OS) or an application, or

even in hardware such as network devices [17]. These are also

commonly used in the remote network penetration, because

attackers inject malicious code through overflowing buffers.

The code may contain instructions to change the execution

flow of the infected program and take control of the whole

system, which ultimately results in serious security threats [6]

[15].

Usually, different programming languages, for example, C,

C++, etc. provide some built-in functions which are

vulnerable to buffer overflow attacks [17] [18]. For instance,

C programming language provides some built-in functions

such as gets(), strcpy(), strcat(), scanf(%s), etc. in which stack

overflow attack could be possible.

A buffer is a contiguous block of memory which is used to

store data during the execution of a program. For example, a

buffer is known as an array in C programming language.

Usually, two types of variables are found in a program – static

and dynamic. Data segment of the buffer is used to allocate

static variables at load time of the program. On the other

hand, stack segment of the buffer is used to store all the

dynamic variables at runtime of the program. In order to

overflow the buffer, it is required to fill with data until the

boundaries of the buffer are crossed. Overflowing the stack

segment of the buffer is known as stack-based buffer overflow

[10]. Before diving into the stack overflow vulnerability in

details, it is needed to understand the memory organization of

a process that has been discussed in the following subsection.

1.1 Memory Organization of a Process
To understand stack buffers, first of all, it is needed to

understand how a process is organized in a memory. When a

program is in execution mode, it is termed as a process [11].

A process must execute in a sequential manner. In order to

accomplish a task, a process needs certain resources such as

memory, CPU cycle, I/O devices, etc. Usually, a process

comprises three regions – Text, Data and Stack [4] as shown

in Figure 1.

Fig 1: Process Memory Organization

The text region of a process is the read-only portion of the

process memory which is used to store code, instructions and

executable files. It is also termed as code region. The BSS

segment contains all the uninitialized variables of the

program, and the variables are initialized with zeroes. All the

static and global variables of the program are stored in the

data segment. Heap is used to store dynamic variables that are

declared at process runtime. Memory management module of

OS usually handles the size of the heap. Stack segment of the

process stores all the function calls at process runtime along

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

12

with their arguments. The size of stack is dynamically

managed by OS during process runtime, and it grows or

shrinks based on the number of function calls and the size of

the corresponding arguments.

1.2 Structure of a Stack
A stack is an important part of memory that is used to hold

data. Basically, it is a contiguous block of memory containing

data that resizes dynamically according to process needs. A

stack has a register that points to the top of the stack. The

register is known as Stack Pointer (SP). There is a bottom part

of the stack which has a fixed address. Actually, SP is

responsible to dynamically adjust its size with the help of the

kernel at runtime of the process. It is important to note that,

there are two key operations of stack: PUSH and POP. PUSH

operation adds an element at the top of the stack. In contrast,

POP operation reduces the stack size by one through

removing the last element at the top of the stack. The Central

Processing Unit (CPU) implements the instructions to PUSH

onto and POP off of the stack. Specifically, a stack of

elements has the property that the last element placed on the

stack will be the first element to be removed. This property is

commonly known as Last In, First Out queue or a LIFO.

Usually, the stack segment in a process memory grows up or

down based on its implementation scheme [6]. When it grows

up, it goes toward the higher memory addresses. When it

grows down, it goes to the lower memory addresses. Although

SP of a stack may point the last address or its immediate next

available address depending on its implementation, it is

assumed in the example that it points to the last address of the

stack.

A stack holds a set of stack frames of a program. When a

function is called, a stack frame is created. The frame contains

the parameters of the function, local variables, relevant data of

the previous stack and the instruction pointer’s value when the

function is called. Each time when a function is called, its

corresponding stack frame is created and pushed into the

stack. When the function returns, the corresponding stack

frame is popped from the stack.

Fig 2: Stack Structure of a Function

An example is demonstrated in Figure 2 to understand the

memory organization of a function. As shown in the figure,

the function has two parameters and two local variables.

When the function is called, a stack frame is created which

contains all the parameters and local variables. It also contains

return address and some other related values for pointing to

the previous stack frame. In the example, the stack frame is

pushed into the stack from higher address to lower address.

1.3 Our Contributions
In summary, this article makes the following major

contributions:

i. Show how stack overflow occurs in a program.

ii. Show stack overflow vulnerabilities in the

renowned open source projects: Linux, Git and PHP

System.

iii. Provide attention not to use vulnerable codes.

The remainder of this article is organized as follows: Section

2 discusses the existing works on Buffer overflow attacks.

Section 3 describes buffer overflow vulnerabilities in three

popular open source systems – Git, Linux and PHP. Section 4

concludes the article.

2. RELATED WORK
Buffer overflow has become one of the most common security

vulnerabilities nowadays [13] [16]. Several researches have

been carried out to understand the presence and impact of this

vulnerability. Some researchers proposed different techniques

and tools to detect and remove the vulnerability. Some

significant works in this domain are discussed below.

In comparison with other security attacks, buffer overflow

attacks are very common and easy to exploit [6][12]. In paper

[6], Aleph One showed the process of stack overflow attacks

by injecting malicious scripts in target system. The work in

this article is inspired by the Aleph's work.

Crispin Cowan et al. conducted a survey on various types of

buffer overflow vulnerabilities and attacks [5]. They discussed

various defensive measures to mitigate buffer overflow

vulnerabilities. They investigated different combinations of

approaches to find and fix buffer overflow vulnerabilities in

software system without changing system functionalities and

performance. StackGuard is a promising defensive method for

resisting buffer overflow attacks without changing system

behavior or performance [5] [7] [8] [9].

Usman et al. investigated the root cause of different security

threats in web-based application [12]. They highlighted that

traditional software development models cannot identify

different security threats rigorously. One of the main reasons

is the diversity of security threats. To alleviate this problem,

they proposed a model that identifies security threats from

requirement analysis to product deployment phase. The model

was compared with other existing models to check its

effectiveness. According to their analysis, the model helps to

develop more secured web application when it is used with

the existing software development model.

Satter et al conducted a survey on thirty emerging websites

against four common web attacks such as Man in the Middle

Attack, SQL Injection, Cross Site Scripting and Denial of

Service [19]. According to their study, most of the websites

are vulnerable to these attacks. They found that security issues

were not considered during the designing and development

phase of those sites. This reveals how important to check the

security issues during software development and maintenance

phases.

Sariman et al. proposed a security assessment method for

software systems [13]. The method can be used to detect

different security vulnerabilities in the earlier stage through

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

13

analyzing source code and calculating different metrices. It is

found in the literature that identifying and fixing security

issues earlier reduces software development time and cost

significantly. Usually, security vulnerabilities are injected or

created during the design phase when proper security

measures are not taken care of. These vulnerabilities are

reflected in the implementation phase, and thus, the final

product contains security flaws. Identifying those security

issues in the final product is more time consuming and

expensive. The cost increases when developers need to

change the source code. Sariman et al. showed that

automatically identification of vulnerabilities using their

proposed method significantly decreases overall software

development cost and time.

Significant number of works have been carried out to

understand how attackers exploit stack overflow attacks in

software systems. To the best of the authors’ knowledge, no

one finds the vulnerabilities in the existing widely used open

source projects like – Linux [1], Git [2], PHP [3] and many

others. In this paper, source code of three popular open source

projects – Linux, Git and PHP have been analyzed to find

stack overflow vulnerabilities in the systems. Besides,

vulnerable functions or code snippets in the systems in which

it is possible to exploit stack overflow attacks are also

described in the article. While using the systems, it has been

encouraged to avoid those vulnerable codes or functions that

cause stack overflows.

3. EXPERIMENTAL ANALYSIS OF

STACK OVERFLOW
Stack overflow occurs when a program writes more data to a

buffer located on the stack than its original size. Usually,

buffers are created to store a fixed amount of data. However,

when the buffer is used to store extra data that exceeds its

capacity, the data is loaded into the adjacent buffers. It causes

the data previously written into the adjacent buffers to be

overwritten or corrupted. This situation may occur

accidentally due to programming error or intentionally by

attackers. When a program has the vulnerability, attackers

could push malicious code in the extra data. The code may

contain instructions to steal data, take control of the program,

change data, damage confidential information, take full

control of the system, etc. The popularity of stack overflow

attacks is increasing rapidly, because many systems are built

using the frameworks or libraries (specially in C and C++)

that contain buffer overflow vulnerabilities in the source code.

Some poor programming practices are also responsible for

this.

Fig 3: Example of a Typical Stack Overflow

A function with a typical buffer overflow vulnerability is

shown in Figure 3. In the figure, the function copy() takes a

string as input without any bound checking and copies it into

a variable mem[] using strcpy() instead of strncpy(). When the

program is executed, it will show segmentation fault message.

The structure of the stack is shown in Figure 4 when the

function is called. Content of the variable input_str is assigned

to the function parameter *str. Next, the function strcpy()

copies the content of *str into another variable mem[] until a

null character is encountered.

Fig 4: Stack Structure for The Function in Fig 3

It can be seen in Figure 3 that the size of mem[] is 25, and the

size *str is 300. The program is trying to store all the 300

bytes into mem[]. 1st 25 bytes will be stored into mem[], that

means 25 bytes of the stack allocated for mem[] will be used,

and rest 275 bytes after mem of the stack will be overwritten.

So, it will change the values of the Stack Frame Pointer

(SFP), Return Address (RET) and *str as shown in Figure 4.

Since the input_str is filled with ‘B’ and the hex value of ‘B’

is (42)16, the return address will be 0x424242. This points to

the outside of the process address space, and when the

function tries to return the value, it will get segmentation

violation. This is the basic scheme to change the execution

flow of a program through overflowing a stack.

3.1 Functions with Stack Overflow

Vulnerabilities
Like strcpy(), C programming language have some widely

used built-in functions which are vulnerable for stack

overflow attacks. The standard C library provides a number of

functions for copying or appending strings, that perform no

boundary checking. These include: strcat(), strcpy(), sprintf()

and vsprintf(). These functions operate on null‐ terminated

strings and do not check for overflow of the receiving string.

gets() is another example of the functions that reads a line

from stdin into a buffer until it finds a terminating newline or

End of File (EOF). It performs no checking for buffer

overflows. The scanf() function also suffers from buffer

overflow vulnerabilities due to not considering boundary

checking. The reason is that when %s is used in the function

for taking string as input, it stops taking input until it

encounters a white space character in the input string.

3.2 Stack Overflow Vulnerabilities in Open

Source Projects
In this article, it has been shown that renowned open source

projects which have been developed in C programming

language, have such stack overflow security vulnerabilities.

More specifically, the article presents the stack overflow

vulnerability code portions in three popular open source

projects - Linux [1], GIT [2] and PHP [3]. Detailed analysis of

the vulnerabilities of the projects is given in the following

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

14

subsections.

3.2.1 Vulnerable Codes in Linux System
Linux is a well-known operating system and widely used by

software developers or programmers. However, as this system

has been developed in C, it contains several functions which

are vulnerable for stack overflow attacks. As a result, an

attacker can easily take control over the system through

overflowing its stack or can hamper the system by injecting

malicious scripts. Figure 5 shows such a vulnerable code that

has been found at the file srm_puts.c in Linux [1], since it

contains character pointer *str as a parameter. *str is the

vulnerable portion of the code, as it is possible to call the

srm_puts() function having a large argument for *str

parameter that results in stack overflow condition.

Some other examples are shown in Figure 6 where vulnerable

code snippets are - function vsprintf() and parameter *fmt.

Here, the *fmt parameter can be overflowed by providing a

larger argument. In Figure 7, the parameters buf, fmt and the

statement *str++ = *fmt in the loop are also vulnerable to

stack overflow attacks.

Fig 5: Vulnerable Code in Linux: srm_puts.c File

Fig 6: Vulnerable Code in Linux: srm_printk.c File

3.2.2 Vulnerable Codes in Git System
Git is a popular open source version control system [2]. It is

widely used for managing source code of software system. It

has been developed in C programming language, and hence

some stack overflow vulnerabilities are found in the Git

project [2]. These vulnerabilities are shown in Figure 8, 9 and

10.

Fig 7: Vulnerable Code in Linux: stdio2.c File

Fig 8: Vulnerable Code in Git: basename.c File

In Figure 8, if a malicious script is passed through the

function’s argument char *path, and this could be possible to

jump to the attacker instructions through the statement return

path. This could cause the severe hamper of the system. In

another code snippet shown in Figure 9, it could be possible to

overflow the parameter char hashout[20] of the function by

providing an argument, that is larger than its original size. In

Figure 10, the vulnerable statement is fputs(prompt,

output_fh), since an attacker could use the *prompt parameter

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

15

in order to inject vulnerable script that could be stored in the

file located by the variable output_fh.

Fig 9: Vulnerable Code in Git: sha1.c File

Fig 10: Vulnerable Code in Git: terminal.c File

3.2.3 Vulnerable Codes in PHP:
PHP is a server scripting language and a powerful platform

for making dynamic and interactive Web pages. It is a widely-

used open source platform developed using C programming

language. However, it also contains some vulnerable codes,

some of those are shown in Figure 11, 12 and 13.

An example code snippet is shown in Figure 11 where the

built-in function strcpy(buf, tmp) in C which is severely

vulnerable to stack overflow attacks, because strcpy() does

not check the input boundary resulting the buffer overflow

condition. In another example shown in Figure 12, a

vulnerable function vsprintf() is used. In Figure 13, the return

statement is vulnerable as its return control could be

dominated by an attacker through the parameter *pattern and

could access the control. There exist many vulnerable codes in

PHP system like the examples stated above.

Fig 11: Vulnerable Code in PHP: reentrancy.c File

Fig 12: Vulnerable Code in PHP: php_sprintf.c File

Fig 13: Vulnerable Code in PHP: fnmatch.c File

Like those examples, there exist many vulnerable codes in

Linux, Git and PHP systems. So, these vulnerable code

snippets should be removed or rewritten with boundary

checking, and vulnerable C built-in functions should be

avoided.

4. CONCLUSION
Stack overflow is such a severe security vulnerability that an

attacker could easily damage the control of the actual program

flow. An attacker can easily get the control of the computer

which is running the process having vulnerable codes. This

article has shown the stack overflow security vulnerabilities

that occur due to the use of some built-in C functions

unconsciously and without boundary checking of the buffer.

However, many popular open source projects like – Linux,

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

16

Git, PHP, etc. contain such vulnerabilities which have been

discussed in this article. This article tries to raise a concern

among the developers to build applications secured from stack

overflow attacks by avoiding or carefully using vulnerable

built-in functions. The article suggests that developers should

give extra attention when they use built-in C functions such as

- gets(), strcpy(), strcat(), etc.

5. REFERENCES
[1] “GitHub - torvalds/linux: Linux kernel source tree”,

https://github.com/torvalds/linuxl, Online; accessed 06

May, 2019.

[2] “GitHub - git/git: Git Source Code Mirror”,

https://github.com/git/git, Online; accessed 06 May,

2019.

[3] “GitHub - php/php-src: The PHP Interpreter”,

https://github.com/php/ php-src, Online; accessed 06

May, 2019.

[4] Silberschatz, A., Galvin, P.B. and Gagne, G., 2009.

Operating system concepts with Java. Wiley Publishing.

[5] Cowan C, Wagle F, Pu C, Beattie S, Walpole J. Buffer

overflows: Attacks and defenses for the vulnerability of

the decade. InProceedings DARPA Information

Survivability Conference and Exposition. DISCEX'00

2000 Jan 25 (Vol. 2, pp. 119-129). IEEE..

[6] One, Aleph. ”Smashing the stack for fun and profit.”

Phrack. vol. 7. 1996.

[7] Cowan C, Pu C, Maier D, Walpole J, Bakke P, Beattie S,

Grier A, Wagle P, Zhang Q, Hinton H. Stackguard:

Automatic adaptive detection and prevention of buffer-

overflow attacks. InUSENIX security symposium 1998

Jan 26 (Vol. 98, pp. 63-78).

[8] Cowan, Crispin, and Calton Pu. ”Survivability from a

Sow’s ear: The retrofit security requirement.”

Proceedings of the 1998 Information Survivability

Workshop. 1998.

[9] Cowan, Crispin, et al. ”Protecting systems from stack

smashing attacks with StackGuard.” Linux Expo. 1999.

[10] Litchfield, David. ”Defeating the stack based buffer

overflow prevention mechanism of microsoft windows

2003 server.” 2003.

[11] Silberschatz, Abraham, J. L. Peterson, and P. B. Galvin.

”Operating systems.” Publication By John Wiley & Sons

1991.

[12] Usman S, Niaz H. Building Secure Web-Applications

Using Threat Model. International Journal of Information

Technology and Computer Science (IJITCS).

2018;10(3):52-62.

[13] Sariman G, Küçüksille EU. SASMEDU: Security

assessment method of software in engineering education.

International Journal of Information Technology and

Computer Science. 2018:1-2.

[14] Luo P, Zou D, Du Y, Jin H, Liu C, Shen J. Static

detection of real-world buffer overflow induced by loop.

Computers & Security. 2020 Feb 1;89:101616.

[15] Khwaja AA, Murtaza M, Ahmed HF. A security feature

framework for programming languages to minimize

application layer vulnerabilities. Security and Privacy.

2020 Jan 1:e95.

[16] Silverstone A, inventor; Computer Protection Ip, Llc,

assignee. Protecting computing devices from

unauthorized access. United States patent application US

16/520,051. 2020 Jan 9.

[17] AlHarbi KN, Lin X, inventors; NORTHERN BORDERS

UNIVERSITY, assignee. Preventing stack buffer

overflow attacks. United States patent US 9,251,373.

2016 Feb 2.

[18] Ye T, Zhang L, Wang L, Li X. An empirical study on

detecting and fixing buffer overflow bugs. In 2016 IEEE

International Conference on Software Testing,

Verification and Validation (ICST) 2016 Apr 11 (pp. 91-

101). IEEE.

[19] Satter A, Hossain BM. Vulnerabilities assessment of

emerging web-based services in developing countries.

International Journal of Information Engineering and

Electronic Business. 2016 Sep 1;8(5):1.

[20] Pincus, Jonathan, and Brandon Baker. "Beyond stack

smashing: Recent advances in exploiting buffer

overruns." IEEE Security & Privacy 2.4 (2004): 20-27.

IJCATM : www.ijcaonline.org

