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ABSTRACT 

Popularity of the web is increasing day by day and social 

media is becoming a huge source of information. It becomes 

difficult to analyze this enormous information quickly. Text 

summarization solves this problem, it minifies text such that 

repeated data are removed and important information is 

extracted and represented in the concise way which can help 

us to understand the information instantly. It is impossible to 

summarize all this information manually as it contains a huge 

number of unstructured information and reviews. Manual 

summarization is a tedious, monotonic and time consuming 

task. Therefore, method is needed for mining and 

summarizing information, reviews and produce representative 

summaries. To deal with this problem, an abstractive 

summarization of documents using an encoder decoder based 

approach is proposed. Abstractive Text Summarization gets 

the most essential content of a text corpus, compresses it to a 

shorter text, keeps its original meaning and maintains its 

semantic and grammatical correctness. For this, it uses deep 

learning architecture in natural language processing. It uses 

recurrent neural networks that connect the input and output 

data in encoder-decoder architecture with an added attention 

mechanism for better results. The proposed work is 

implemented with two datasets namely CNN/Dailymail and 

DUC 2004. It is worth mentioning that model achieves better 

performance than existing models, it improves result of 

ROUGE 1 metric to 41.75 for CNN/DailyMail and 35.12 for 

DUC2004.The experimental results show that the model 

produces a highly coherent, concise and grammatically correct 

summary. 
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1. INTRODUCTION 
Summarization is a process of reducing text documents in 

order to create an accurate, concise and informative summary 

which conveys the main meaning of original text and retains 

important information of original document. Summarization is 

mainly classified into two approaches Extractive and 

Abstractive Summarization. Extractive summarization 

generates a summary by extracting relevant keywords, phrases 

and sentences from the original document. It has the 

advantage of grammatical and semantic correctness and 

disadvantage of redundancy and incoherence between 

sentences. Abstractive summarization generates the document 

summary by forming sentences on its own with the help of 

natural language generation techniques. Abstractive 

summarization uses readable human language to summarize 

key information from original documents. It creates an 

internal semantic representation of text and use this 

representation to create a more diverse and novel summary 

same as human written abstract. The proposed model focuses 

on an abstractive summarization. 

Summarization is a sequence to sequence task for which a 

neural network based Encoder decoder model is used. In 

natural language processing, the neural network is widely 

used because of its promising performance. In text 

summarization, encoder reads variable length input sequence 

and produces a fixed dimensional feature vector from it.  The 

decoder then uses this vector to produce output sequence [1]. 

In sequence to sequence network, when long dependencies are 

available in the model then it might be hard to summarize the 

whole input sentence into one single feature vector. Solution 

to this problem is the use of attention mechanism. At every 

decoding step, attention mechanism keeps the entire input 

sequence and uses it to produce output. It helps encoder and 

decoder to focus on useful information of input sequence. 

Decoder uses it to decide which parts of the source sequence 

to focus on, instead of forcing the encoder to compress all of 

the information into a single feature vector and passing it to 

the decoder [2]. This Recurrent Neural Network with attention 

mechanism approach performs better on many datasets but it 

cannot handle rare, unseen and Out of vocabulary (OOV) 

words effectively. Solution to this is Pointer mechanism (PM) 

which helps decoder to point back to OOV words and phrases 

and copy them directly into output [3]. Copying mechanism is 

used in the input text to derive the representations of OOV 

words from their corresponding context [4]. 

Repetition problems usually happen in case of long sequence 

generation tasks. During decoding, the coverage mechanism 

prevents decoder from attending the same part of the input 

sequence and eliminates frequently occurring phrases, words 

from longer summaries [5]. Decoded information at the 

decoder can also avoid repetition problems. Intra attention 

mechanism can also be effective for eliminating repetition [6]. 

But, all these consider little information about the relations 

between the input tokens in the encoder and the already 

generated words by decoder. 

To solve all these problems, an abstractive summarization 

model is prepared using a dual encoding framework. This 

framework is an extension of the standard sequence to 

sequence framework. Framework consists of primary encoder, 

secondary encoder and decoder. Primary encoder reads an 

input sequence and produces a context vector for each word of 

the input sequence. Secondary encoder reweights remembered 

and forgotten parts in the input sequence. It calculates 
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importance weight for each word and recalculates the 

corresponding context vector. It uses input and previously 

produced output to generate a new context vector. This newly 

generated context vector is used by decoder to obtain more 

meaningful information and generate better output. To solve 

the repetition problem, a repetition avoidance mechanism 

(RAM) is used. RAM uses existing coverage mechanism with 

previously decoded content to reduce repetition problems in 

sequence to sequence tasks. 

2. RELATED WORK 
In 2015, Rush proposed work that uses a neural network 

based encoder decoder framework for an abstractive 

summarization. Model uses a convolutional neural network 

(CNN) as an encoder and a feed forward neural network as a 

decoder. It achieves good performance on DUC2003 and 

DUC2004 datasets [1].  

In 2016, Chopra extends the work proposed by Rush, using 

Recurrent neural network for decoder in place of feed forward 

neural network [2]. Attention mechanism is added into this 

framework by Bahdanau to consider context cues in the 

hidden state of the encoder which facilitates decoding of the 

target sequence. Attention mechanism focuses on specific 

words at each step of the input sequence, determines the 

output, and emits the next word of the summary based on the 

previous ones. Attention mechanism solves the memorizing 

and representation problem of longer sequences of standard 

encoder decoder framework [8]. 

In 2016, Nallapati proposed a feature-rich hierarchical 

attentive encoder. It is based on the bidirectional GRU to 

represent the document. The hierarchical encoder has two 

RNNs.  One RNN runs on the word-level and another runs on 

the sentence-level. The hierarchical attention re-weighs the 

word attention by the corresponding sentence-level attention. 

The weighted sum of the feature-rich input vectors is used to 

obtain document representation. The decoder is based on    

unidirectional GRU. The work uses the attention model on the 

hidden states of source and softmax layer on the target [3]. 

Input sequence consists of lots of rare words which are not 

available in target vocabulary. These rare, unseen and out of 

vocabulary (OOV) words prevent the model from learning 

new words during model training. In all previous work, a 

decoder uses a fixed target vocabulary to output the 

corresponding output at each time step. But it is unable to 

handle rare or OOV words. This problem can be solved by 

increasing the size of the target vocabulary, but this may 

increase the computational complexity in decoding as a 

softmax function needs to calculate over all possible words. 

This can be enhanced by applying a copy mechanism. At the 

time of decoding, the copy mechanism dynamically copies the 

words from the input sequence without enlarging the size of 

the vocabulary [3],[5],[7]. Zeng uses a copying mechanism to 

derive OOV words representation from their corresponding 

context vector in input text [4].  

An encoder decoder model often generates unnatural 

summaries consisting of repeated phrases, especially in case 

of long text summarization. A coverage mechanism keeps 

track of words that have been already summarized. It avoids 

the repetition problem. It records past attentional weights in 

the decoder and prevents the decoder from attending to the 

same parts of the input text when decoding in future [3].  

Paulus in 2018, proposed a deep reinforced model (DRM) for 

abstractive summarization. This model uses intra attention 

mechanism to eliminate repetition problems. In intra-attention 

mechanism, the decoder attends previously generated words. 

The main problem with this work is that they consider little 

about the relations between the input tokens in the encoder 

and the already generated words by decoder [6]. 

3. SYSTEM MODEL 
Abstractive text summarization is a task of generating output 

sequence from input sequence. The input is a text sequence 

represented as X=(x1, x2…..xm) where m is the number of 

words in the source text. Output is a shorter summary 

sequence such as Y= (y1, y2….yn) where n is number of words 

in summary text.  

Proposed model consists of a primary encoder, secondary 

encoder and decoder furnished with an attention mechanism. 

Pointer mechanism and Repetition avoidance mechanism 

(RAM) are employed in Decoder. Pointer mechanism handles 

rare and OOV words of input sequence effectively. RAM 

avoids repetitive words problem of longer sequence 

generation task. The details of the primary encoder, secondary 

encoder and decoder are described in the below section. 

3.1 System Architecture 
Figure 1 represents a block diagram of a dual encoding model. 

It gives detail overview about the system. Three main blocks 

are Primary Encoder, Secondary Encoder and the decoder 

performs its intended task and makes working or execution 

easy. 

1) The primary encoder block includes bidirectional Gated 

Recurrent Unit (GRU) as a recurrent unit. Primary 

encoder reads variable length input sequence, generates 

hidden state representation using bidirectional GRU. For 

each word position, Forward GRU sequentially computes 

hidden state representation and the backward GRU 

computes hidden representation in reversed sequence. 

Content representations for the whole input sequence is 

created by concatenating both hidden states 

representation and use this content to represent each 

word of input sequence. Primary encoder constructs a 

feature representation called a semantic vector for each 

word in the input sequence. Semantic vector contains 

hidden state representation and content representation.   

2) The decoder is equipped with the attention mechanism 

that performs decoding operation in stages and generates 

partial fixed length output at each stage. Partial fixed 

length output contains decoded content representation. 

3) Secondary encoder consists of a unidirectional GRU as a 

recurrent neural network. Hidden representation, content 

representation and decoded content representation is used 

by the secondary encoder to compute attention 

(importance) weights. Using these attention weights the 

corresponding context vector is recalculated and fed to 

the decoder to produce desired output. The secondary 

encoder does more fine encoding at each decoding stage. 

Decoder generates more accurate target output sequence 

using this new semantic context vector generated by 

secondary encoder. 

Output of the primary and the secondary encoder are 

combined and fed to the decoder to produce a highly coherent 

summary which decreases repetition problem for longer 

sequence generation task.  

3.1.1 Text Preprocessing 
Preprocessing is an important step and needs to be done 

before the actual analysis.  
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Figure 1: Block Diagram of Dual Encoding Model 

Noisy, unstructured, irrelevant data can be major flaws in the 

dataset and increases the time of the training process. 

Preprocessed data improves the performance of the entire 

system. In preprocessing, unstructured data is converted into 

structured data format. The preprocessing consists of steps 

like dehtmlifying, tokenization, stopword removal, stemming, 

and Lemmatization and case normalization. 

The data exist in HTML format so the first step in the 

preprocessing is to turn it into plain text and get rid of HTML 

tags. Tokenization can be done by removing punctuations and 

removing rare characters. Tokenization split sentences into 

words, usually white spaces, punctuations are used to delimit 

word boundaries. Then, these words can be simplified to 

reduce their number. At the end, tokens are obtained which is 

something more general than words. 

In stopword removal, frequently occurring uninformative 

words are removed to speed up the processing. Stop words are 

words which occur very often in a language. For example, 

“a”, “the” or “to” be considered as stop words for English 

language. Stemming trunks prefixes and suffixes from words 

and turns them into their stem forms that means to its root. 

Stemming reduces dimensions in word vector space and 

improves the algorithms. Lemmatization groups together 

words which are derivatives from the same word. For 

example, “eat, eats, eaten, eating, ate” can be reduced to a 

single token. Case Normalization converts all the characters to 

lowercase. 

3.1.2 Primary Encoder 
Proposed model employs a recurrent neural network as a 

primary encoder to handle variable length input sequences. A 

sequence of input word embedding (x1,x2.…xm) is provided to 

the primary encoder. Primary encoder performs encoding 

using Bidirectional Gated Recurrent Unit (GRU) based RNN. 

GRU has connections through sequences of nodes. At a 

different time scale, GRU captures dependencies in 

connection using Equation 1. 

In Equation 1, Wu, Wr and Wh are parameter matrices. xt 

indicate the corresponding input embedding vector and ht is 

the hidden state vector at the time step t, and ʘ is an element 

wise multiplication operator. 

 
 

 
                    

   

                             

                                      

                                     

                     Equation 1 

Hidden state representation      
 
     

 
        

 
         

 
   is 

sequentially computed using forward GRU for each word 

position using current word embedding and previous hidden 

state. The backward GRU for each word of input sentence 

computes hidden state      
 
     

 
        

 
        

 
   

representation in reversed order. Forward and backward 

hidden states are defined by Equation 2.  

 
     
 
                

 
 

     
 
                

 
 
                                      Equation 2 

A concatenated hidden state of forward and backward GRU as 

  
 
      

 
     

 
   is used to represent each word in the input 

sequence. The content representation CP is calculated by using 

Equation 3.  

           
 

 
   

 
   

 
                               Equation 3 

In Equation 3, Wp and bp are parameters, and N represents the 

length of the input sequence. For each iteration primary 

encoder using encoding mechanism reads each word in input 

sequence and generates the corresponding hidden state 

representation   
 

 and content representation CP. In the 

primary encoder, hidden representation is created only once in 

the model.  

3.1.3 Secondary Encoder 
Secondary encoder performs encoding using a unidirectional 

GRU based recurrent neural network. It reads the input 

sequence and computes importance weight αt for every K 

decoding step according to decoded information of each stage. 

The importance weight αt indicates how much attention 

should be paid to current input word xt. Importance weight is 

computed by using Equation 4 based on feature representation 

of each word in input sequence, CP content representation of 

entire input sequence  and Cd content representation of entire 

output sequence generated by decoder. For each word in input 

sequence importance weight is computed based on 

information itself, its saliency and redundancy. 

                  
 
               

  

   
  

    
  

   
     

   
     

                                        Equation 4 

W1, W2, Ws, Wr, b1, b2 are learning parameters in Equation 4. 

Saliency between every word and the entire content of source 

text is modeled as   
  

   
  and    

  

   
  .    

   
  forms 

the Redundancy between the source text content and decoded  

content of current stage is formed by .  

Importance weight is in the form of skip connection to bias 

the two information flows. If αt value is approximates to 1, 

then it is similar to a standard GRU, which is only influenced 
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from the current word. If the current input word xt has a very 

small weight αt, then the hidden state   
  is encoded by the 

secondary encoder which takes majority of information 

directly from the previous hidden      
  and neglect the effect 

of the current word using Equation 5. 

  
            

                 
            Equation 5 

Secondary encoder does more fine encoding on the input 

sequence at every K decoding step and generates a new 

semantic context vector   
 . It facilitates the decoder to 

produce output more accurately. A combination of the 

primary and secondary encoder completes a dual encoding 

process. 

3.1.4 Decoder 
The decoder and primary encoder forms a basic sequence to 

sequence model. To generate the output summary decoder 

uses GRU with an attention mechanism. Some advanced 

techniques are applied to model such as attention mechanism, 

copy mechanism, pointer generated network and coverage 

mechanism to achieve better performance of the model. A 

decoder with attention mechanism computes the context 

vector according to the hidden states    
 
   

 
     

 
     

 
  of 

the primary encoder. The context vector Ci is computed as a 

weighted sum of these hidden states using Equation 6.  

         
  

                                                           Equation 6 

aij of Equation 6 is the weight which is computed for each 

hidden state by using Equation 7.  

 
 
 

 
     

         

          
 
   

      
             

      
 
 

  
              

  

                          Equation 7 

eij is a score that represents how well the inputs around 

position j match with the output at position i. The decoder 

generates hidden state   
  based on its last hidden state      

  

and the ith target yi in the output sequence.  

Dual encoding model does not decode the whole output 

sequence at one time but decodes the partial fixed-length 

sequence in stages using Equation 8. 

           
 

 
   

  
                                     Equation 8 

In Equation 8, Wd and bd are parameters and L is length of 

current decoded sequence. Cd is the current content generated 

by the decoder. It adjusts attention weights of secondary 

encoder to each word in input sequence. A new final state   
   

is generated after every fixed length decoding and decoder is 

rewritten by using Equation 9. 

  
   

             
    

                  

            
                                 

      Equation 9 

Then, the current context vector Ci produced from the primary 

encoder and the decoder hidden state are concatenated and 

feed to decoder through one linear layer to produce the 

vocabulary distribution using Equation 10.  

                                   
      

                                                                             Equation 10 

In this Equation 10, Wv, bv are learning parameters and Pv is 

conditional probability distribution for the target word yi over 

all words in the vocabulary at time-step i. 

3.1.4.1 Pointer Mechanism 
Documents may contain some rare words or OOV words such 

as named-entities which prevents model from learning new 

words at training time. The proposed model handles such 

OOV words by simply pointing to their location in the source 

document. The PM is more robust in dealing with rare words 

as it uses the hidden state representation of rare words from 

the encoder to decide which word from the source document 

to point to. The hidden state depends on the entire context of 

the word so the model is still able to accurately point to 

unseen words which do not appear in the target vocabulary. 

Model uses a PM between the primary encoder and the 

decoder. Along with generating words from a fixed 

vocabulary, the model allows copying words via pointing.  

A soft switch Pp helps the model to choose words from the 

fixed vocabulary or copy a word from the input sequence. A 

word is generated from the fixed vocabulary by sampling 

from Pv or copy a word from the input sequence by sampling 

from the attention distribution αi. For time step i, a generation 

probability Pp is calculated using Equation 11. 

       
      

   
    

      
        Equation 11 

In this Equation 11, Wc, Wh,, Wy, Wd and bg are learning 

parameters. Ci is the context vector,   
    is the decoder hidden 

state, yi is decoder input and Cd is content representation of 

partial decoded sequence and σ is a sigmoid function.  

Extended vocabulary is denoted as the union of fixed 

vocabulary and all the words appearing in source document. 

The probability distribution over the extended vocabulary is 

calculated using Equation 12. If w is an OOV word then 

Pv(W)=0 and             is also zero. 

                                          Equation 12 

During training               computes the loss for time 

step i which is given by the negative log likelihood of the 

target word Wi. The overall loss for the whole sequence is 

computed as the average of all losses at each time step, which 

is given by Equation 13. In this, T denotes length of target 

sequence. 

  
 

 
   
 
                                              Equation 13 

3.1.4.2 Repetition Avoidance Mechanism 
Repetition is a common problem in sequence generation tasks 

such as summarization, mostly in generating multi sentence 

text summary. The coverage mechanism aims to deal with the 

repetition problems from the encoder by discouraging the 

decoder from attending to the same part of the input sequence 

according to the past attentional weights. Combination of the 

coverage mechanism and content produced in the earlier time 

steps by the decoder, avoids the repetition from both the 

encoder and the decoder. The proposed model uses an 

enhanced mechanism to solve this problem. The secondary 

encoder first generates an encoding of the feature vector at 

every K step. This allows the decoder to remember the 

content produced in the earlier time steps to avoid the 

repetition then it uses coverage mechanism [5]. The coverage 

vector Cv is defined as the sum of attention distributions over 

all previous decoder time steps using Equation 14.  

  
     

    
                                                              Equation 14 
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The coverage vector is also used as extra input to the attention 

mechanism in Equation 7.  So the formula is updated as  

       
            

      
 
      

         Equation 15 

An additional coverage loss is defined to penalize repeatedly 

attending to the same locations to avoid repetition. Combining 

coverage with Equation 13, the primary loss function is 

rewritten as 

  
 

 
                  

     
                     Equation 16 

In this Equation 16, λ is a hyper parameter. i is the decoding 

time step and j denotes the position in the input sequence. 

3.2 Model Training Algorithm 
Input: Preprocessed dataset which contains text to summarize 

(X) and reference summaries (Y). 

Output: Summary Sentences 

1. Given Training set <X,Y> 

2. for episode=0, M do 

3.    Sample (x,y) from source text X and gold summary Y 

4.    Compute the hidden state of primary encoder   
 

  for 

       each word in x Eq. (1) and Eq. (2) 

5.    Compute the content representation CP for x using Eq. (3) 

6.       for decoding time-step i = 0, len(Y) do 

7.         Compute the hidden state of decoder   
  using Eq. (7) 

8.         if i%K == 0 then 

9.            if i == 0 then 

10.            Set the content representation of partial generated      

                 Sequence Cd to zero 

11.          else 

12.          Compute Cd using Eq. (8) 

13.          end if 

14.          Compute the importance weight αt using Eq 4) 

15.          Compute the hidden state of secondary encoder   
       

                using Eq. (5) 

16.          Compute the hidden state of decoder   
  based on   

                  
   and   

  in Eq. (9) 

17.       end if 

18.       Compute the vocabulary distribution Pw using Eq. (12) 

19.     Update network parameters based on the overall loss      

          in Eq. (16)    

20.     end for 

21. end for 

Figure 2 represents step by step working of proposed model. 

4. EXPERIMENTAL RESULTS 
Proposed model uses a lot of training data so it requires GPU 

to handle data efficiently. The proposed model is 

implemented using Github’s atom IDE, Tensorflow and 

various packages provided by python. The model converges 

on the machine with a 2.3 GHz Intel Xenon processor, 16 GB 

memory and NVIDIA Tesla T4 GPU card coupled with 16 

GB memory.  

4.1 Dataset 
Experiment is performed on two challenging datasets 

CNN/DailyMail and DUC2004. CNN/DailyMail dataset is 

used to train and test the proposed model mostly multi 

sentence summarization. DUC2004 is used as a testing dataset 

to evaluate performance of proposed model. 

CNN/DilyMail  

CNN/DailyMail dataset contains a collection of articles 

mostly news, interviews that have been published on the two 

popular websites CNN.com and dailymail.com. This dataset 

originally has been gathered in the work of Hermann [9] for 

the question answering task, has become a standard source for 

training and evaluating text summarizer models and later 

modified for abstractive summarization task and has been 

used in many studies. In this dataset, there are on an average 

28 sentences per document in the training set, and an average 

of 3 ∼ 4 sentences in the reference summaries. The dataset 

contains 2,86,817 examples in the training set, 13,368 

examples in the validation set, and 11,487 examples in testing 

set. 

DUC 2004 

Document Understanding Conference DUC-2004 is one of the 

most used evaluation datasets for summarization task. It 

contains 500 articles issued by The New York Times and 

Associated Press paired. It also contains corresponding 

reference summaries written by four humans.  

4.2 Experimental Settings 
Proposed model has 3 main modules. The preprocessing 

module, training, and evaluation module. Each has a wide set 

of hyper parameters and is highly customizable. All the hyper 

parameters have a default value. The training module defines 

and customizes proposed models. These modules also define 

the training procedure and adjust the optimization parameter 

values. To train and test the model batch size is set to 32. The 

dimension of hidden states of both encoders and decoder are 

set to 512 and 768 respectively. The size of the vocabulary is 

limited to 50,000 by selecting the most frequent tokens in the 

training set. OOV words are represented as a token. The 

dimension of word embedding is set to 128 which are learned 

during training. Learning rate is set to 0.15. The decoding 

length is set to 20 for the CNN/DailyMail dataset and 10 for 

DUC2004 dataset. At the testing time, the same length 

settings have used and decoded the output summaries using 

beam search with beam size 5.   

4.3 Methods to Compare 
In this work, to compare the performance of proposed model 

some advanced methods of summarization are used.  

CNN/DailyMail Dataset 

1) words-lvt2k-temp-att – It is an abstractive encoder decoder 

based model with the temporal attention mechanism. 

Temporal attention mechanism keeps track of past attentional 

weights of the decoder and restricts the repetitive parts in the 

later sequence [3]. 

2) pointer-generator – It is a standard sequence to sequence 

an attentional model based on a hybrid pointer generator 

network. This hybrid pointer generator deals with rare or 

OOV words problem [5]. 

3) pointer-generator+coverage –“pointer-generator” model is 

extended by addition of a coverage mechanism to avoid the 

repetition and denoted by “pg+cg” [5]. 

4) RL+ML – It is a new training approach for abstractive 

summarization using a neural network with intra attention and 

Pointer generator mechanism [6]. 

5) seq2seq+atten – It is a standard sequence-to-sequence 

encoder-decoder model employed with attention mechanism 

for abstractive text summarization [8]. 

6) SummaRuNNer-abs – It is a RNN based model for 

abstractive summarization. It is converted from an extractive 

model by using a novel training mechanism [10]. 

All above approaches including the proposed model are the 

standard supervised sequence prediction model using 

maximum-likelihood training except hybrid training method. 



International Journal of Computer Applications (0975 – 8887) 

Volume 176 – No. 39, July 2020 

55 

 

Figure 2: Work Flow diagram of dual encoding model 

DUC2004 Dataset 

1) ABS - It uses a local attention-based mechanism to 

generate each word of the summary [1]. 

2) ABS+ - It combines a conventional ABS and an additional 

log linear extractive summarization model with hand crafted 

features [1]. 

3) RAS-Elman - In this, summarization is performed using an 

attentive encoder and RNN based decoder [2]. 

4) words-lvt5k-lsent – It is an attentional encoder decoder 

model and uses large vocabulary tricks for summarization [3]. 

5) TOPIARY - It uses a linguistically motivated compression 

method and an unsupervised topic detection algorithm for 

summarization [11]. 

6) SEASS - It is a selective encoding model with a selective 

gate network. It controls the information flow from encoder to 

decoder and constructs a second level sentence representation 

[12]. 

4.4 Evaluation Metrics 
In this work, ROUGE (Recall-Oriented Understudy for 

Gisting Evaluation) metric is used to automatically evaluate 

the performance of the proposed model and compare it with 

other reported performances in the literature. ROUGE is the 

standard metric used to evaluate summary qualities. It 

calculates a score for a generated summary based on how well 

the summary overlaps with a set of golden truth summary 

references. A loss is defined based on this ROUGE score. For 

the good summary, the ROUGE score should be high and the 

loss should be less. ROUGE-1 matches unigram, ROUGE-2 

matches bigrams and ROUGE-L matches longest common 

subsequences between reference summaries and system 

generated summaries. Pyrouge package provided by python is 

used to calculate ROUGE score. 

4.5 Results on CNN/DailyMail Dataset 
Table 1 shows experimental results of various model on 

CNN/DailyMail testing dataset. Here, decoding length is set 

to 20 to compare results across various models. The proposed 

model achieves state-of-art performance compared to others. 

Use of Pointer mechanism, RAM and dual encoding helps 

model to improve results and produce a better summary.  

Figure 3 shows performance comparison of various methods 

across proposed model in graphical format.  

Table 1 Performance comparison of various model on 

CNN/DailyMail dataset using F1 score 

Method ROUGE

1 

ROUGE

2 

ROUGE

L 

Seq2seq+atten 31.34 11.79 28.10 

Words-lvt2k-temp-att 35.46 13.3 32.65 

SummaRuNNer-abs 37.5 14.5 33.4 

Pointer-generator 36.44 15.66 33.42 

RL+ML 39.87 15.82 36.90 

Pg+cg 39.53 17.28 36.38 

DEATS 40.85 18.08 37.13 

Proposed System 41.75 19.44 38.81 

 

In all above compared methods, only the “pg+cg” approach 

uses a coverage mechanism to prevent the repetition. 

Proposed model uses enhanced repetitions avoid mechanism 

which combines the coverage mechanism with the previously 

generated output of decoder to improve the quality of the 

generated summary. All the compared methods conduct just 

one encoding process on the input sequence to generate the 

complete target summary in one step, while proposed method 

uses a dual encoding with multistep decoding operation. 

Specifically, the secondary encoding in the proposed model 

performs fine and selective encoding based on the input and 

the previous output that helps the decoder produce a better 

summary.  

Importance Weight αt 

Weighted sum of hidden states 

Partial Output Cd 

Semantic Vector 

 

 
Semantic Vector 

 

 

Pw 
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Figure 3: Performance comparison of various models on 

the CNN/DailyMail testing set using ROUGE F1 score  

To evaluate the influence of different decoding lengths on the 

performance, length is set to K = {10, 15, 20, 25, 30, 40, 50, 

100}. Model calculates ROUGE-1, ROUGE-2 and ROUGE-L 

Recall, Precision and F1 score for different decoding lengths. 

Table 2 shows experimental results of ROUGE precision 

score and Table 3 shows results of ROUGE recall score for 

different decoding lengths on CNN/DailyMail dataset.   

Table 2 Performance comparison of proposed system for 

different decoding lengths on the CNN/DailyMail testing 

set using rouge precision score 

Metric 
ROUGE-1 ROUGE-2 ROUGE-L 

Length 

10 40.74 19.06 37.89 

15 40.74 19.06 37.89 

20 40.73 19.05 37.89 

25 40.72 19.05 37.87 

30 40.69 19.02 37.84 

40 40.49 18.90 37.66 

50 39.87 18.56 37.07 

100 32.63 14.89 30.40 

Table 3 Performance comparison of proposed system for 

different decoding lengths on the CNN/DailyMail testing 

set using rouge recall score 

Metric 
ROUGE-1 ROUGE-2 ROUGE-L 

Length 

10 45.85 21.28 42.60 

15 45.86 21.28 42.60 

20 45.86 21.28 42.61 

25 45.89 21.29 42.63 

30 45.93 21.30 42.67 

40 46.16 21.39 42.89 

50 46.95 21.72 43.63 

100 55.53 25.35 51.76 
 

Figure 4: ROUGE Recall vs Precision score of proposed 

models on the CNN/DailyMail testing set 

According to results in Table 1 and Table 5, proposed model 

achieves more improvement in performance as compared to 

DEATS model for both CNN/DailyMail and DUC2004 

dataset. Repetition phenomenon affects the performance of 

the generated summary which is well handle by the proposed 

model. Secondary encoder of proposed model conducts a finer 

encoding and helps model to consider richer and more 

accurate information. Figure 4 shows comparison of ROUGE 

recall vs ROUGE precision of proposed model for different 

decoding lengths on CNN/DailyMail testing set.  Figure 

shows higher precision and lower recall results for different 

decoding lengths. 

Table 4 Performance comparison of proposed system for 

different decoding lengths on the CNN/DailyMail testing 

set using rouge F1 score 

Length 

ROUGE-1 ROUGE-2 ROUGE-L 

Proposed 

System 
DEATS 

Proposed 

System 
DEATS 

Proposed 

System 
DEATS 

10 41.74 38.26 19.44 16.44 38.80 34.90 

15 41.74 40.35 19.44 17.57 38.81 36.72 

20 41.75 40.85 19.44 18.08 38.81 37.13 

25 41.76 40.62 19.44 17.37 38.82 37.37 

30 41.72 40.71 19.44 18.18 38.83 37.23 

40 41.82 40.76 19.43 17.99 38.86 37.20 

50 41.88 40.75 19.42 17.52 38.93 37.16 

100 39.98 39.85 18.23 17.45 37.26 36.58 

 

Table 4 shows the experimental result of ROUGE F1 score for 

different decoding lengths on CNN/DailyMail dataset. Table 

compares result of proposed system vs result of DEATS 

model [13]. Results shows model achieves more improvement 

in performance compared to DEATS model.  
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Table 5 Performance comparison of various model on 

DUC 2004 dataset using Recall score 

Method ROUGE-1 ROUGE-2 ROUGE-L 

TOPIARY 25.12 6.46 20.12 

ABS 26.55 7.06 22.05 

ABS+ 28.18 8.49 23.81 

RAS-Elman 28.97 8.26 24.06 

words-lvt5k-lsent 28.61 9.42 25.24 

SEASS 29.21 9.56 25.51 

DEATS 29.91 9.61 25.95 

Proposed Method 35.12 15.49 28.82 
 

Table 5 shows the experimental result of various models on 

DUC2004 testing set. Decoding length is set to 10 for 

DUC2004 dataset. Proposed model achieves more 

improvement in performance as compared to DEATS model. 

Figure 5 shows performance comparison of various models 

across proposed model in graphical format. 

 
Figure 5: Performance comparison of various models on 

the DUC2004 testing set using ROUGE F1 score 

Table 6 shows experimental results of ROUGE recall score 

for different decoding lengths on DUC2004 dataset.  

Table 6 Performance comparison of proposed system for 

different decoding lengths on the DUC 2004 testing set 

using rouge recall score 

Metric 
ROUGE-1 ROUGE-2 ROUGE-L 

Length 

10 35.12 15.49 28.82 

15 35.63 15.65 29.16 

20 37.05 16.09 30.1 

25 39.37 16.82 31.51 

30 41.77 17.54 32.84 

40 45.43 18.70 34.92 

50 47.76 19.43 36.33 

100 52.16 21.22 39.45 
 

 

Figure 6 shows comparison of ROUGE recall vs precision of 

proposed model for different decoding lengths on DUC 2004 

testing set.  Figures shows higher precision and lower recall 

when decoding length is set to a smaller value. When 

decoding length is set to larger value it shows opposite results. 

When decoding length is set to 20-30, model achieves good 

tradeoff between recall and precision. 

 

Figure 6: ROUGE Recall vs Precision score of proposed 

models on the DUC 2004 testing set 

5. CONCLUSION 
Abstractive Summarization using a dual encoding framework 

is an extension of the standard sequence to sequence encoder 

decoder model with attention mechanism, Pointer mechanism, 

Repetition avoidance mechanism and multistage decoding. 

Pointer Mechanism of decoder handles rare and out of 

vocabulary words from input text.  It helps the model to learn 

new words during training and increases readability of the 

model without increasing vocabulary size. Repetition 

avoidance mechanism of decoder remembers the content 

produced in the earlier time-step, which helps model to avoid 

repetition problems. Dual encoding decodes the whole output 

sequence by stages and produces partial fixed length sequence 

at each stage which helps model to tackle problems of existing 

methods. Dual encoding with all basic approaches produces 

highly coherent and more accurate summary. It is worth 

mentioning that model achieves better performance than 

existing models, it achieves improved ROUGE 1 score 41.75 

for CNN/DailyMail and 35.12 for DUC2004. The proposed 

dual encoding model performs state of art results on 

CNN/DailyMail and DUC2004 dataset.  
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