
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

50

Abstractive Summarization of Document using Dual

Encoding Framework

Monika H. Rajput
PG Student

SSVPS’s B.S. Deore College of Engineering,
Dhule, 424005, India

B. R. Mandre
Associate Professor

SSVPS’s B.S. Deore College of Engineering,
Dhule, 424005, India

ABSTRACT

Popularity of the web is increasing day by day and social

media is becoming a huge source of information. It becomes

difficult to analyze this enormous information quickly. Text

summarization solves this problem, it minifies text such that

repeated data are removed and important information is

extracted and represented in the concise way which can help

us to understand the information instantly. It is impossible to

summarize all this information manually as it contains a huge

number of unstructured information and reviews. Manual

summarization is a tedious, monotonic and time consuming

task. Therefore, method is needed for mining and

summarizing information, reviews and produce representative

summaries. To deal with this problem, an abstractive

summarization of documents using an encoder decoder based

approach is proposed. Abstractive Text Summarization gets

the most essential content of a text corpus, compresses it to a

shorter text, keeps its original meaning and maintains its

semantic and grammatical correctness. For this, it uses deep

learning architecture in natural language processing. It uses

recurrent neural networks that connect the input and output

data in encoder-decoder architecture with an added attention

mechanism for better results. The proposed work is

implemented with two datasets namely CNN/Dailymail and

DUC 2004. It is worth mentioning that model achieves better

performance than existing models, it improves result of

ROUGE 1 metric to 41.75 for CNN/DailyMail and 35.12 for

DUC2004.The experimental results show that the model

produces a highly coherent, concise and grammatically correct

summary.

General Terms

Natural Language Processing, Encoder-decoder, Recurrent

Neural Network, Summarization, Abstractive Summarization,

Deep Learning

Keywords

Summarization, Abstractive Summarization, Deep Learning,

Natural Language Processing

1. INTRODUCTION
Summarization is a process of reducing text documents in

order to create an accurate, concise and informative summary

which conveys the main meaning of original text and retains

important information of original document. Summarization is

mainly classified into two approaches Extractive and

Abstractive Summarization. Extractive summarization

generates a summary by extracting relevant keywords, phrases

and sentences from the original document. It has the

advantage of grammatical and semantic correctness and

disadvantage of redundancy and incoherence between

sentences. Abstractive summarization generates the document

summary by forming sentences on its own with the help of

natural language generation techniques. Abstractive

summarization uses readable human language to summarize

key information from original documents. It creates an

internal semantic representation of text and use this

representation to create a more diverse and novel summary

same as human written abstract. The proposed model focuses

on an abstractive summarization.

Summarization is a sequence to sequence task for which a

neural network based Encoder decoder model is used. In

natural language processing, the neural network is widely

used because of its promising performance. In text

summarization, encoder reads variable length input sequence

and produces a fixed dimensional feature vector from it. The

decoder then uses this vector to produce output sequence [1].

In sequence to sequence network, when long dependencies are

available in the model then it might be hard to summarize the

whole input sentence into one single feature vector. Solution

to this problem is the use of attention mechanism. At every

decoding step, attention mechanism keeps the entire input

sequence and uses it to produce output. It helps encoder and

decoder to focus on useful information of input sequence.

Decoder uses it to decide which parts of the source sequence

to focus on, instead of forcing the encoder to compress all of

the information into a single feature vector and passing it to

the decoder [2]. This Recurrent Neural Network with attention

mechanism approach performs better on many datasets but it

cannot handle rare, unseen and Out of vocabulary (OOV)

words effectively. Solution to this is Pointer mechanism (PM)

which helps decoder to point back to OOV words and phrases

and copy them directly into output [3]. Copying mechanism is

used in the input text to derive the representations of OOV

words from their corresponding context [4].

Repetition problems usually happen in case of long sequence

generation tasks. During decoding, the coverage mechanism

prevents decoder from attending the same part of the input

sequence and eliminates frequently occurring phrases, words

from longer summaries [5]. Decoded information at the

decoder can also avoid repetition problems. Intra attention

mechanism can also be effective for eliminating repetition [6].

But, all these consider little information about the relations

between the input tokens in the encoder and the already

generated words by decoder.

To solve all these problems, an abstractive summarization

model is prepared using a dual encoding framework. This

framework is an extension of the standard sequence to

sequence framework. Framework consists of primary encoder,

secondary encoder and decoder. Primary encoder reads an

input sequence and produces a context vector for each word of

the input sequence. Secondary encoder reweights remembered

and forgotten parts in the input sequence. It calculates

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

51

importance weight for each word and recalculates the

corresponding context vector. It uses input and previously

produced output to generate a new context vector. This newly

generated context vector is used by decoder to obtain more

meaningful information and generate better output. To solve

the repetition problem, a repetition avoidance mechanism

(RAM) is used. RAM uses existing coverage mechanism with

previously decoded content to reduce repetition problems in

sequence to sequence tasks.

2. RELATED WORK
In 2015, Rush proposed work that uses a neural network

based encoder decoder framework for an abstractive

summarization. Model uses a convolutional neural network

(CNN) as an encoder and a feed forward neural network as a

decoder. It achieves good performance on DUC2003 and

DUC2004 datasets [1].

In 2016, Chopra extends the work proposed by Rush, using

Recurrent neural network for decoder in place of feed forward

neural network [2]. Attention mechanism is added into this

framework by Bahdanau to consider context cues in the

hidden state of the encoder which facilitates decoding of the

target sequence. Attention mechanism focuses on specific

words at each step of the input sequence, determines the

output, and emits the next word of the summary based on the

previous ones. Attention mechanism solves the memorizing

and representation problem of longer sequences of standard

encoder decoder framework [8].

In 2016, Nallapati proposed a feature-rich hierarchical

attentive encoder. It is based on the bidirectional GRU to

represent the document. The hierarchical encoder has two

RNNs. One RNN runs on the word-level and another runs on

the sentence-level. The hierarchical attention re-weighs the

word attention by the corresponding sentence-level attention.

The weighted sum of the feature-rich input vectors is used to

obtain document representation. The decoder is based on

unidirectional GRU. The work uses the attention model on the

hidden states of source and softmax layer on the target [3].

Input sequence consists of lots of rare words which are not

available in target vocabulary. These rare, unseen and out of

vocabulary (OOV) words prevent the model from learning

new words during model training. In all previous work, a

decoder uses a fixed target vocabulary to output the

corresponding output at each time step. But it is unable to

handle rare or OOV words. This problem can be solved by

increasing the size of the target vocabulary, but this may

increase the computational complexity in decoding as a

softmax function needs to calculate over all possible words.

This can be enhanced by applying a copy mechanism. At the

time of decoding, the copy mechanism dynamically copies the

words from the input sequence without enlarging the size of

the vocabulary [3],[5],[7]. Zeng uses a copying mechanism to

derive OOV words representation from their corresponding

context vector in input text [4].

An encoder decoder model often generates unnatural

summaries consisting of repeated phrases, especially in case

of long text summarization. A coverage mechanism keeps

track of words that have been already summarized. It avoids

the repetition problem. It records past attentional weights in

the decoder and prevents the decoder from attending to the

same parts of the input text when decoding in future [3].

Paulus in 2018, proposed a deep reinforced model (DRM) for

abstractive summarization. This model uses intra attention

mechanism to eliminate repetition problems. In intra-attention

mechanism, the decoder attends previously generated words.

The main problem with this work is that they consider little

about the relations between the input tokens in the encoder

and the already generated words by decoder [6].

3. SYSTEM MODEL
Abstractive text summarization is a task of generating output

sequence from input sequence. The input is a text sequence

represented as X=(x1, x2…..xm) where m is the number of

words in the source text. Output is a shorter summary

sequence such as Y= (y1, y2….yn) where n is number of words

in summary text.

Proposed model consists of a primary encoder, secondary

encoder and decoder furnished with an attention mechanism.

Pointer mechanism and Repetition avoidance mechanism

(RAM) are employed in Decoder. Pointer mechanism handles

rare and OOV words of input sequence effectively. RAM

avoids repetitive words problem of longer sequence

generation task. The details of the primary encoder, secondary

encoder and decoder are described in the below section.

3.1 System Architecture
Figure 1 represents a block diagram of a dual encoding model.

It gives detail overview about the system. Three main blocks

are Primary Encoder, Secondary Encoder and the decoder

performs its intended task and makes working or execution

easy.

1) The primary encoder block includes bidirectional Gated

Recurrent Unit (GRU) as a recurrent unit. Primary

encoder reads variable length input sequence, generates

hidden state representation using bidirectional GRU. For

each word position, Forward GRU sequentially computes

hidden state representation and the backward GRU

computes hidden representation in reversed sequence.

Content representations for the whole input sequence is

created by concatenating both hidden states

representation and use this content to represent each

word of input sequence. Primary encoder constructs a

feature representation called a semantic vector for each

word in the input sequence. Semantic vector contains

hidden state representation and content representation.

2) The decoder is equipped with the attention mechanism

that performs decoding operation in stages and generates

partial fixed length output at each stage. Partial fixed

length output contains decoded content representation.

3) Secondary encoder consists of a unidirectional GRU as a

recurrent neural network. Hidden representation, content

representation and decoded content representation is used

by the secondary encoder to compute attention

(importance) weights. Using these attention weights the

corresponding context vector is recalculated and fed to

the decoder to produce desired output. The secondary

encoder does more fine encoding at each decoding stage.

Decoder generates more accurate target output sequence

using this new semantic context vector generated by

secondary encoder.

Output of the primary and the secondary encoder are

combined and fed to the decoder to produce a highly coherent

summary which decreases repetition problem for longer

sequence generation task.

3.1.1 Text Preprocessing
Preprocessing is an important step and needs to be done

before the actual analysis.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

52

Figure 1: Block Diagram of Dual Encoding Model

Noisy, unstructured, irrelevant data can be major flaws in the

dataset and increases the time of the training process.

Preprocessed data improves the performance of the entire

system. In preprocessing, unstructured data is converted into

structured data format. The preprocessing consists of steps

like dehtmlifying, tokenization, stopword removal, stemming,

and Lemmatization and case normalization.

The data exist in HTML format so the first step in the

preprocessing is to turn it into plain text and get rid of HTML

tags. Tokenization can be done by removing punctuations and

removing rare characters. Tokenization split sentences into

words, usually white spaces, punctuations are used to delimit

word boundaries. Then, these words can be simplified to

reduce their number. At the end, tokens are obtained which is

something more general than words.

In stopword removal, frequently occurring uninformative

words are removed to speed up the processing. Stop words are

words which occur very often in a language. For example,

“a”, “the” or “to” be considered as stop words for English

language. Stemming trunks prefixes and suffixes from words

and turns them into their stem forms that means to its root.

Stemming reduces dimensions in word vector space and

improves the algorithms. Lemmatization groups together

words which are derivatives from the same word. For

example, “eat, eats, eaten, eating, ate” can be reduced to a

single token. Case Normalization converts all the characters to

lowercase.

3.1.2 Primary Encoder
Proposed model employs a recurrent neural network as a

primary encoder to handle variable length input sequences. A

sequence of input word embedding (x1,x2.…xm) is provided to

the primary encoder. Primary encoder performs encoding

using Bidirectional Gated Recurrent Unit (GRU) based RNN.

GRU has connections through sequences of nodes. At a

different time scale, GRU captures dependencies in

connection using Equation 1.

In Equation 1, Wu, Wr and Wh are parameter matrices. xt

indicate the corresponding input embedding vector and ht is

the hidden state vector at the time step t, and ʘ is an element

wise multiplication operator.

 Equation 1

Hidden state representation

 is

sequentially computed using forward GRU for each word

position using current word embedding and previous hidden

state. The backward GRU for each word of input sentence

computes hidden state

representation in reversed order. Forward and backward

hidden states are defined by Equation 2.

 Equation 2

A concatenated hidden state of forward and backward GRU as

 is used to represent each word in the input

sequence. The content representation CP is calculated by using

Equation 3.

 Equation 3

In Equation 3, Wp and bp are parameters, and N represents the

length of the input sequence. For each iteration primary

encoder using encoding mechanism reads each word in input

sequence and generates the corresponding hidden state

representation

 and content representation CP. In the

primary encoder, hidden representation is created only once in

the model.

3.1.3 Secondary Encoder
Secondary encoder performs encoding using a unidirectional

GRU based recurrent neural network. It reads the input

sequence and computes importance weight αt for every K

decoding step according to decoded information of each stage.

The importance weight αt indicates how much attention

should be paid to current input word xt. Importance weight is

computed by using Equation 4 based on feature representation

of each word in input sequence, CP content representation of

entire input sequence and Cd content representation of entire

output sequence generated by decoder. For each word in input

sequence importance weight is computed based on

information itself, its saliency and redundancy.

 Equation 4

W1, W2, Ws, Wr, b1, b2 are learning parameters in Equation 4.

Saliency between every word and the entire content of source

text is modeled as

 and

 .

 forms

the Redundancy between the source text content and decoded

content of current stage is formed by .

Importance weight is in the form of skip connection to bias

the two information flows. If αt value is approximates to 1,

then it is similar to a standard GRU, which is only influenced

Target Summary

Primary Encoder Decoder

Secondary Encoder

Hidden

Representation

Content

Representation

Decoded Content

Representation

Source Text

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

53

from the current word. If the current input word xt has a very

small weight αt, then the hidden state
 is encoded by the

secondary encoder which takes majority of information

directly from the previous hidden
 and neglect the effect

of the current word using Equation 5.

 Equation 5

Secondary encoder does more fine encoding on the input

sequence at every K decoding step and generates a new

semantic context vector
 . It facilitates the decoder to

produce output more accurately. A combination of the

primary and secondary encoder completes a dual encoding

process.

3.1.4 Decoder
The decoder and primary encoder forms a basic sequence to

sequence model. To generate the output summary decoder

uses GRU with an attention mechanism. Some advanced

techniques are applied to model such as attention mechanism,

copy mechanism, pointer generated network and coverage

mechanism to achieve better performance of the model. A

decoder with attention mechanism computes the context

vector according to the hidden states

 of

the primary encoder. The context vector Ci is computed as a

weighted sum of these hidden states using Equation 6.

 Equation 6

aij of Equation 6 is the weight which is computed for each

hidden state by using Equation 7.

 Equation 7

eij is a score that represents how well the inputs around

position j match with the output at position i. The decoder

generates hidden state
 based on its last hidden state

and the ith target yi in the output sequence.

Dual encoding model does not decode the whole output

sequence at one time but decodes the partial fixed-length

sequence in stages using Equation 8.

 Equation 8

In Equation 8, Wd and bd are parameters and L is length of

current decoded sequence. Cd is the current content generated

by the decoder. It adjusts attention weights of secondary

encoder to each word in input sequence. A new final state

is generated after every fixed length decoding and decoder is

rewritten by using Equation 9.

 Equation 9

Then, the current context vector Ci produced from the primary

encoder and the decoder hidden state are concatenated and

feed to decoder through one linear layer to produce the

vocabulary distribution using Equation 10.

 Equation 10

In this Equation 10, Wv, bv are learning parameters and Pv is

conditional probability distribution for the target word yi over

all words in the vocabulary at time-step i.

3.1.4.1 Pointer Mechanism
Documents may contain some rare words or OOV words such

as named-entities which prevents model from learning new

words at training time. The proposed model handles such

OOV words by simply pointing to their location in the source

document. The PM is more robust in dealing with rare words

as it uses the hidden state representation of rare words from

the encoder to decide which word from the source document

to point to. The hidden state depends on the entire context of

the word so the model is still able to accurately point to

unseen words which do not appear in the target vocabulary.

Model uses a PM between the primary encoder and the

decoder. Along with generating words from a fixed

vocabulary, the model allows copying words via pointing.

A soft switch Pp helps the model to choose words from the

fixed vocabulary or copy a word from the input sequence. A

word is generated from the fixed vocabulary by sampling

from Pv or copy a word from the input sequence by sampling

from the attention distribution αi. For time step i, a generation

probability Pp is calculated using Equation 11.

 Equation 11

In this Equation 11, Wc, Wh,, Wy, Wd and bg are learning

parameters. Ci is the context vector,
 is the decoder hidden

state, yi is decoder input and Cd is content representation of

partial decoded sequence and σ is a sigmoid function.

Extended vocabulary is denoted as the union of fixed

vocabulary and all the words appearing in source document.

The probability distribution over the extended vocabulary is

calculated using Equation 12. If w is an OOV word then

Pv(W)=0 and is also zero.

 Equation 12

During training computes the loss for time

step i which is given by the negative log likelihood of the

target word Wi. The overall loss for the whole sequence is

computed as the average of all losses at each time step, which

is given by Equation 13. In this, T denotes length of target

sequence.

 Equation 13

3.1.4.2 Repetition Avoidance Mechanism
Repetition is a common problem in sequence generation tasks

such as summarization, mostly in generating multi sentence

text summary. The coverage mechanism aims to deal with the

repetition problems from the encoder by discouraging the

decoder from attending to the same part of the input sequence

according to the past attentional weights. Combination of the

coverage mechanism and content produced in the earlier time

steps by the decoder, avoids the repetition from both the

encoder and the decoder. The proposed model uses an

enhanced mechanism to solve this problem. The secondary

encoder first generates an encoding of the feature vector at

every K step. This allows the decoder to remember the

content produced in the earlier time steps to avoid the

repetition then it uses coverage mechanism [5]. The coverage

vector Cv is defined as the sum of attention distributions over

all previous decoder time steps using Equation 14.

 Equation 14

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

54

The coverage vector is also used as extra input to the attention

mechanism in Equation 7. So the formula is updated as

 Equation 15

An additional coverage loss is defined to penalize repeatedly

attending to the same locations to avoid repetition. Combining

coverage with Equation 13, the primary loss function is

rewritten as

 Equation 16

In this Equation 16, λ is a hyper parameter. i is the decoding

time step and j denotes the position in the input sequence.

3.2 Model Training Algorithm
Input: Preprocessed dataset which contains text to summarize

(X) and reference summaries (Y).

Output: Summary Sentences

1. Given Training set <X,Y>

2. for episode=0, M do

3. Sample (x,y) from source text X and gold summary Y

4. Compute the hidden state of primary encoder

 for

 each word in x Eq. (1) and Eq. (2)

5. Compute the content representation CP for x using Eq. (3)

6. for decoding time-step i = 0, len(Y) do

7. Compute the hidden state of decoder
 using Eq. (7)

8. if i%K == 0 then

9. if i == 0 then

10. Set the content representation of partial generated

 Sequence Cd to zero

11. else

12. Compute Cd using Eq. (8)

13. end if

14. Compute the importance weight αt using Eq 4)

15. Compute the hidden state of secondary encoder

 using Eq. (5)

16. Compute the hidden state of decoder
 based on

 and

 in Eq. (9)

17. end if

18. Compute the vocabulary distribution Pw using Eq. (12)

19. Update network parameters based on the overall loss

 in Eq. (16)

20. end for

21. end for

Figure 2 represents step by step working of proposed model.

4. EXPERIMENTAL RESULTS
Proposed model uses a lot of training data so it requires GPU

to handle data efficiently. The proposed model is

implemented using Github’s atom IDE, Tensorflow and

various packages provided by python. The model converges

on the machine with a 2.3 GHz Intel Xenon processor, 16 GB

memory and NVIDIA Tesla T4 GPU card coupled with 16

GB memory.

4.1 Dataset
Experiment is performed on two challenging datasets

CNN/DailyMail and DUC2004. CNN/DailyMail dataset is

used to train and test the proposed model mostly multi

sentence summarization. DUC2004 is used as a testing dataset

to evaluate performance of proposed model.

CNN/DilyMail

CNN/DailyMail dataset contains a collection of articles

mostly news, interviews that have been published on the two

popular websites CNN.com and dailymail.com. This dataset

originally has been gathered in the work of Hermann [9] for

the question answering task, has become a standard source for

training and evaluating text summarizer models and later

modified for abstractive summarization task and has been

used in many studies. In this dataset, there are on an average

28 sentences per document in the training set, and an average

of 3 ∼ 4 sentences in the reference summaries. The dataset

contains 2,86,817 examples in the training set, 13,368

examples in the validation set, and 11,487 examples in testing

set.

DUC 2004

Document Understanding Conference DUC-2004 is one of the

most used evaluation datasets for summarization task. It

contains 500 articles issued by The New York Times and

Associated Press paired. It also contains corresponding

reference summaries written by four humans.

4.2 Experimental Settings
Proposed model has 3 main modules. The preprocessing

module, training, and evaluation module. Each has a wide set

of hyper parameters and is highly customizable. All the hyper

parameters have a default value. The training module defines

and customizes proposed models. These modules also define

the training procedure and adjust the optimization parameter

values. To train and test the model batch size is set to 32. The

dimension of hidden states of both encoders and decoder are

set to 512 and 768 respectively. The size of the vocabulary is

limited to 50,000 by selecting the most frequent tokens in the

training set. OOV words are represented as a token. The

dimension of word embedding is set to 128 which are learned

during training. Learning rate is set to 0.15. The decoding

length is set to 20 for the CNN/DailyMail dataset and 10 for

DUC2004 dataset. At the testing time, the same length

settings have used and decoded the output summaries using

beam search with beam size 5.

4.3 Methods to Compare
In this work, to compare the performance of proposed model

some advanced methods of summarization are used.

CNN/DailyMail Dataset

1) words-lvt2k-temp-att – It is an abstractive encoder decoder

based model with the temporal attention mechanism.

Temporal attention mechanism keeps track of past attentional

weights of the decoder and restricts the repetitive parts in the

later sequence [3].

2) pointer-generator – It is a standard sequence to sequence

an attentional model based on a hybrid pointer generator

network. This hybrid pointer generator deals with rare or

OOV words problem [5].

3) pointer-generator+coverage –“pointer-generator” model is

extended by addition of a coverage mechanism to avoid the

repetition and denoted by “pg+cg” [5].

4) RL+ML – It is a new training approach for abstractive

summarization using a neural network with intra attention and

Pointer generator mechanism [6].

5) seq2seq+atten – It is a standard sequence-to-sequence

encoder-decoder model employed with attention mechanism

for abstractive text summarization [8].

6) SummaRuNNer-abs – It is a RNN based model for

abstractive summarization. It is converted from an extractive

model by using a novel training mechanism [10].

All above approaches including the proposed model are the

standard supervised sequence prediction model using

maximum-likelihood training except hybrid training method.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

55

Figure 2: Work Flow diagram of dual encoding model

DUC2004 Dataset

1) ABS - It uses a local attention-based mechanism to

generate each word of the summary [1].

2) ABS+ - It combines a conventional ABS and an additional

log linear extractive summarization model with hand crafted

features [1].

3) RAS-Elman - In this, summarization is performed using an

attentive encoder and RNN based decoder [2].

4) words-lvt5k-lsent – It is an attentional encoder decoder

model and uses large vocabulary tricks for summarization [3].

5) TOPIARY - It uses a linguistically motivated compression

method and an unsupervised topic detection algorithm for

summarization [11].

6) SEASS - It is a selective encoding model with a selective

gate network. It controls the information flow from encoder to

decoder and constructs a second level sentence representation

[12].

4.4 Evaluation Metrics
In this work, ROUGE (Recall-Oriented Understudy for

Gisting Evaluation) metric is used to automatically evaluate

the performance of the proposed model and compare it with

other reported performances in the literature. ROUGE is the

standard metric used to evaluate summary qualities. It

calculates a score for a generated summary based on how well

the summary overlaps with a set of golden truth summary

references. A loss is defined based on this ROUGE score. For

the good summary, the ROUGE score should be high and the

loss should be less. ROUGE-1 matches unigram, ROUGE-2

matches bigrams and ROUGE-L matches longest common

subsequences between reference summaries and system

generated summaries. Pyrouge package provided by python is

used to calculate ROUGE score.

4.5 Results on CNN/DailyMail Dataset
Table 1 shows experimental results of various model on

CNN/DailyMail testing dataset. Here, decoding length is set

to 20 to compare results across various models. The proposed

model achieves state-of-art performance compared to others.

Use of Pointer mechanism, RAM and dual encoding helps

model to improve results and produce a better summary.

Figure 3 shows performance comparison of various methods

across proposed model in graphical format.

Table 1 Performance comparison of various model on

CNN/DailyMail dataset using F1 score

Method ROUGE

1

ROUGE

2

ROUGE

L

Seq2seq+atten 31.34 11.79 28.10

Words-lvt2k-temp-att 35.46 13.3 32.65

SummaRuNNer-abs 37.5 14.5 33.4

Pointer-generator 36.44 15.66 33.42

RL+ML 39.87 15.82 36.90

Pg+cg 39.53 17.28 36.38

DEATS 40.85 18.08 37.13

Proposed System 41.75 19.44 38.81

In all above compared methods, only the “pg+cg” approach

uses a coverage mechanism to prevent the repetition.

Proposed model uses enhanced repetitions avoid mechanism

which combines the coverage mechanism with the previously

generated output of decoder to improve the quality of the

generated summary. All the compared methods conduct just

one encoding process on the input sequence to generate the

complete target summary in one step, while proposed method

uses a dual encoding with multistep decoding operation.

Specifically, the secondary encoding in the proposed model

performs fine and selective encoding based on the input and

the previous output that helps the decoder produce a better

summary.

Importance Weight αt

Weighted sum of hidden states

Partial Output Cd

Semantic Vector

Semantic Vector

Pw

Vocabulary Distribution

Context Vector

Preprocessed Text

Primary Encoder Secondary Encoder

Decoder

Attention Distribution

Summary

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

56

Figure 3: Performance comparison of various models on

the CNN/DailyMail testing set using ROUGE F1 score

To evaluate the influence of different decoding lengths on the

performance, length is set to K = {10, 15, 20, 25, 30, 40, 50,

100}. Model calculates ROUGE-1, ROUGE-2 and ROUGE-L

Recall, Precision and F1 score for different decoding lengths.

Table 2 shows experimental results of ROUGE precision

score and Table 3 shows results of ROUGE recall score for

different decoding lengths on CNN/DailyMail dataset.

Table 2 Performance comparison of proposed system for

different decoding lengths on the CNN/DailyMail testing

set using rouge precision score

Metric
ROUGE-1 ROUGE-2 ROUGE-L

Length

10 40.74 19.06 37.89

15 40.74 19.06 37.89

20 40.73 19.05 37.89

25 40.72 19.05 37.87

30 40.69 19.02 37.84

40 40.49 18.90 37.66

50 39.87 18.56 37.07

100 32.63 14.89 30.40

Table 3 Performance comparison of proposed system for

different decoding lengths on the CNN/DailyMail testing

set using rouge recall score

Metric
ROUGE-1 ROUGE-2 ROUGE-L

Length

10 45.85 21.28 42.60

15 45.86 21.28 42.60

20 45.86 21.28 42.61

25 45.89 21.29 42.63

30 45.93 21.30 42.67

40 46.16 21.39 42.89

50 46.95 21.72 43.63

100 55.53 25.35 51.76

Figure 4: ROUGE Recall vs Precision score of proposed

models on the CNN/DailyMail testing set

According to results in Table 1 and Table 5, proposed model

achieves more improvement in performance as compared to

DEATS model for both CNN/DailyMail and DUC2004

dataset. Repetition phenomenon affects the performance of

the generated summary which is well handle by the proposed

model. Secondary encoder of proposed model conducts a finer

encoding and helps model to consider richer and more

accurate information. Figure 4 shows comparison of ROUGE

recall vs ROUGE precision of proposed model for different

decoding lengths on CNN/DailyMail testing set. Figure

shows higher precision and lower recall results for different

decoding lengths.

Table 4 Performance comparison of proposed system for

different decoding lengths on the CNN/DailyMail testing

set using rouge F1 score

Length

ROUGE-1 ROUGE-2 ROUGE-L

Proposed

System
DEATS

Proposed

System
DEATS

Proposed

System
DEATS

10 41.74 38.26 19.44 16.44 38.80 34.90

15 41.74 40.35 19.44 17.57 38.81 36.72

20 41.75 40.85 19.44 18.08 38.81 37.13

25 41.76 40.62 19.44 17.37 38.82 37.37

30 41.72 40.71 19.44 18.18 38.83 37.23

40 41.82 40.76 19.43 17.99 38.86 37.20

50 41.88 40.75 19.42 17.52 38.93 37.16

100 39.98 39.85 18.23 17.45 37.26 36.58

Table 4 shows the experimental result of ROUGE F1 score for

different decoding lengths on CNN/DailyMail dataset. Table

compares result of proposed system vs result of DEATS

model [13]. Results shows model achieves more improvement

in performance compared to DEATS model.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

57

Table 5 Performance comparison of various model on

DUC 2004 dataset using Recall score

Method ROUGE-1 ROUGE-2 ROUGE-L

TOPIARY 25.12 6.46 20.12

ABS 26.55 7.06 22.05

ABS+ 28.18 8.49 23.81

RAS-Elman 28.97 8.26 24.06

words-lvt5k-lsent 28.61 9.42 25.24

SEASS 29.21 9.56 25.51

DEATS 29.91 9.61 25.95

Proposed Method 35.12 15.49 28.82

Table 5 shows the experimental result of various models on

DUC2004 testing set. Decoding length is set to 10 for

DUC2004 dataset. Proposed model achieves more

improvement in performance as compared to DEATS model.

Figure 5 shows performance comparison of various models

across proposed model in graphical format.

Figure 5: Performance comparison of various models on

the DUC2004 testing set using ROUGE F1 score

Table 6 shows experimental results of ROUGE recall score

for different decoding lengths on DUC2004 dataset.

Table 6 Performance comparison of proposed system for

different decoding lengths on the DUC 2004 testing set

using rouge recall score

Metric
ROUGE-1 ROUGE-2 ROUGE-L

Length

10 35.12 15.49 28.82

15 35.63 15.65 29.16

20 37.05 16.09 30.1

25 39.37 16.82 31.51

30 41.77 17.54 32.84

40 45.43 18.70 34.92

50 47.76 19.43 36.33

100 52.16 21.22 39.45

Figure 6 shows comparison of ROUGE recall vs precision of

proposed model for different decoding lengths on DUC 2004

testing set. Figures shows higher precision and lower recall

when decoding length is set to a smaller value. When

decoding length is set to larger value it shows opposite results.

When decoding length is set to 20-30, model achieves good

tradeoff between recall and precision.

Figure 6: ROUGE Recall vs Precision score of proposed

models on the DUC 2004 testing set

5. CONCLUSION
Abstractive Summarization using a dual encoding framework

is an extension of the standard sequence to sequence encoder

decoder model with attention mechanism, Pointer mechanism,

Repetition avoidance mechanism and multistage decoding.

Pointer Mechanism of decoder handles rare and out of

vocabulary words from input text. It helps the model to learn

new words during training and increases readability of the

model without increasing vocabulary size. Repetition

avoidance mechanism of decoder remembers the content

produced in the earlier time-step, which helps model to avoid

repetition problems. Dual encoding decodes the whole output

sequence by stages and produces partial fixed length sequence

at each stage which helps model to tackle problems of existing

methods. Dual encoding with all basic approaches produces

highly coherent and more accurate summary. It is worth

mentioning that model achieves better performance than

existing models, it achieves improved ROUGE 1 score 41.75

for CNN/DailyMail and 35.12 for DUC2004. The proposed

dual encoding model performs state of art results on

CNN/DailyMail and DUC2004 dataset.

6. REFERENCES
[1] A. M. Rush, S. Chopra, and J. Weston, “A neural

attention model for abstractive sentence summarization,”

in Proc. Conf. Empir. Methods Nat. Lang. Process.

(EMNLP), Lisbon, Portugal, Sep. 2015, pp. 379–389.

[2] S. Chopra, M. Auli, and A. M. Rush, “Abstractive

sentence summarization with attentive recurrent neural

networks,” in Proc. Conf. North Amer. Assoc. Comput.

Linguist. Human Lang. Technol., San Diego CA, USA,

Jun. 2016, pp. 93–98.

[3] R. Nallapati, B. Zhou, C. N. dos Santos, Ç Gülçehre, and

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 39, July 2020

58

B. Xiang, “Abstractive text summarization using

sequence-to-sequence RNNs and beyond,” in Proc. 20th

SIGNLL Conf. Comput. Nat. Lang. Learn. (CoNLL),

Berlin, Germany, Aug. 2016, pp. 280–290.

[4] W. Zeng, W. Luo, S. Fidler, and R. Urtasun, “Efficient

summarization with read-again and copy mechanism,”

CoRR, vol. abs/1611.03382, 2016.

[5] A. See, P. J. Liu, and C. D. Manning, “Get to the point:

Summarization with pointer-generator networks,” in

Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1:

Long Papers). Association for Computational

Linguistics, 2017, pp. 1073–1083.

[6] Romain Paulus, Caiming Xiong, and Richard Socher, “A

deep reinforced model for abstractive summarization”. In

Proceedings of the 6th International Conference on

Learning Representations, Vancouver, Canada, 2018.

[7] P. Li, W. Lam, L. Bing, and Z. Wang, “Deep recurrent

generative decoder for abstractive text summarization,”

in Proceedings of the 2017 Conference on Empirical

Methods in Natural Language Processing, 2017, pp.

2091–2100.

[8] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and

Y. Bengio, “End to end attention-based large vocabulary

speech recognition,” in Proc. IEEE Int. Conf. Acoust.

Speech Signal Process. (ICASSP), Shanghai, China, Mar.

2016, pp. 4945–4949.

[9] K. M. Hermann et al., “Teaching machines to read and

comprehend,” in Proc. Adv. Neural Inf. Process. Syst.

Annu. Conf. Neural Inf. Process.Syst., Montreal, QC,

Canada, Dec. 2015, pp. 1693–1701.

[10] R. Nallapati, F. Zhai, and B. Zhou, “SummaRuNNer: A

recurrent neural network based sequence model for

extractive summarization of documents,” in Proc. 31st

AAAI Conf. Artif. Intell, San Francisco, CA, USA, Feb.

2017, pp. 3075–3081.

[11] D. Zajic, B. Dorr, and R. Schwartz, “Bbn/umd at DUC-

2004: Topiary,” in Proc. Doc. Understanding Conf.

NLT/NAACL, 2004, pp. 112–119.

[12] Q. Zhou, N. Yang, F. Wei, and M. Zhou, “Selective

encoding for abstractive sentence summarization,” in

Proc. Meeting Assoc. Comput. Linguist, 2017, pp. 1095–

1104.

[13] Kaichun Yao, Libo Zhang, “Dual Encoding for

Abstractive Text Summarization”, IEEE

TRANSACTIONS ON CYBERNETICS, China, 2018

pp. 2168-2180.

IJCATM : www.ijcaonline.org

