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ABSTRACT 

Deep learning based object detection has recently gained 

significant interest. This work focuses on real time object 

detection using two deep learning models named Faster 

Regional Convolution Neural Network (Faster-RCNN) and 

MobileNet Single Shot MultiBox Detector (MobileNet-SSD). 

An experiment is done using Python for programming, 

TensorFlow library for computing and OpenCV for computer 

vision. The Faster-RCNN and MobileNet-SSD models are 

trained using 400 images of four objects which are persons, 

watches, cell phones, and books. It is shown that for the 

images considered, Faster-RCNN can successfully detect 

these four objects with higher accuracy than MobileNet-SSD. 

Faster-RCNN also requires less time than MobilneNet-SSD 

for training the objects. However, Faster-RCNN model is 

slightly slower than MobileNet-SSD in real time object 

detection.   
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1. INTRODUCTION 
The ability to visually detect and track multiple objects across 

a scene has been a long-standing challenge within the 

computer vision and machine learning communities [1-9]. 

Object detection is useful in the field of automation for 

example, for self-driving cars, monitoring pedestrians, and 

traffic signals on the road and experiments in medical science.  

Some of the common classical methods in object detection are 

Hough transform, frame-difference, background subtraction, 

optical flow, sliding window, and deformable part model 

methods. Compared to the classical methods, the deep 

learning based object detection methods have strong 

capability in feature expression and feature learning. Deep 

learning based approaches [10-17] work in the mode of region 

selection, feature extraction and classification. Deep learning 

along with machine learning algorithms [18, 19, 20] and 

image processing techniques [21-22] have the potential for the 

prediction of novel coronavirus disease 2019 known as 

COVID-19 [23, 24, 25].  One algorithm of deep learning is 

the convolutional neural network (CNN) which is a form of 

artificial neural network (ANN) [10-12]. In CNN, convolution 

operation is done to extract features from the input image, 

pooling is performed to reduce the dimensionality of each 

feature map, and flattening is done to transform two-

dimensional data into one-dimensional. 

The work in [2] presents the design details of a face 

recognition system. CNN algorithm has been used in [7] 

because of their robustness to real-life scenarios and 

scalability to training data size. However, accuracy becomes 

challenging when real time objects of videos are to be 

recognized. Faster regional CNN (Faster-RCNN) and 

mobilenet single shot multibox detector (MobileNet-SSD) 

models are popular object detector models in deep learning 

field. Faster-RCNN uses the region proposal technique where 

MobileNet-SSD uses the single forward path multi box 

technique. Another technique is you only look once (YOLO) 

[17] which reframes object detection as a single regression 

issue, starting from pixels to the coordinates of bounding box 

and classification. While YOLO identifies objects very 

quickly it suffers from lack of accuracy in the case of some 

small objects. 

This paper describes the algorithms of Faster-RCNN and 

MobileNet-SSD models for detecting real time objects within 

images captured by a camera. The performance of these two 

models are compared using four set of images. The speciality 

of this research is that instead of using publicly available 

datasets, this paper creates and then uses a dataset by 

collecting images of 4 objects: person, watch, cell phone, and 

book from the Internet. The rest of the paper is organized as 

follows. Section 2 describes Faster-RCNN and MobileNet-

SSD models. The system implementation is presented in 

Section 3 and performance evaluation is shown in Section 4. 

The concluding remarks are presented in Section 5.  

2. DESCRIPTION OF FASTER-RCNN 

AND MOBILENET-SSD 
This section describes Faster-RCNN and MobileNet-SSD. 

Firstly, Faster-RCNN is considered. Faster-RCNN is derived 

from its predecessors regions with CNN (RCNN) [16] and 

Fast-RCNN [13]. RCNN uses selective search algorithm [14] 

to extract 2000 region from each image, these regions are then 

warped and fed into a CNN block to produce a feature vector. 

The CNN block extracts features and then send to a support 

vector machine classifier to find the presence of objects. 

RCNN is time consuming as it has to classify 2000 region 

proposals per image. For the case of Fast-RCNN, the input 

image is directly fed to the CNN block which produces a 

convolutional feature map. This feature map is used to 

identify region proposals (using selective search) which are 

then warped into squares. These are then fed to a region of 

interest (RoI) pooling layer which makes the squares into 

fixed size output suitable for passing to the next fully 

connected layers. The output from RoI poling is classified by 

softmax layer. Fast-RCNN is still slow because of the use of 

fixed selective search algorithm. Faster-RCNN combats the 

somewhat complex training pipeline that both RCNN [16] and 

Fast-RCNN [13] exhibit. Faster-RCNN, is composed of two 

networks: firstly, region proposal network (RPN) for 
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generating region proposals and secondly, a network using 

these proposals to detect objects. The stages of Faster-RCNN 

are shown in Fig. 1. The entire system is a single, unified 

network for object detection. The operation of Faster-RCNN 

is similar to that of Fast-RCNN except that Faster-RCNN uses 

a separate network to predict region proposals, while Fast-

RCNN uses selective search [14] to generate region proposals. 

The time cost of generating region proposals is much smaller 

in RPN than selective search, where RPN shares the most 

computation with the object detection network. Briefly, RPN 

ranks region/anchor boxes and proposes the ones most likely 

containing objects [26].  

MobileNet-SSD is developed to predict all at once with the 

bounding boxes and the class probabilities with end-to-end 

CNN architecture [15]. This model takes an image as input 

which passes through multiple convolutional layers with 

different sizes of filters. Feature maps from convolutional 

layers at different position of the network are used to predict 

the bounding boxes. They are processed by a specific 

convolutional layer with 3x3 filters called extra feature layers 

to produce a set of bounding boxes like to the anchor boxes of 

the Fast-RCNN [13]. The stages of MobileNet-SSD are 

illustrated in Fig. 2. 

 

Fig. 1: Typical steps of Faster-RCNN 

 

Fig. 2: Typical steps of MobileNet-SSD 

3. IMPLEMENTATION 
This project was implemented using several software libraries, 

packages and programs to apply machine learning. Python 

with TensorFlow was used for the deep learning 

computations. The GPU version of TensorFlow was used 

which required extra programs from the GPU designer 

NVIDIA, such as CUDA 9.0 Toolkit, cuDNN 7.0.5 and their 

GPU drivers. The card used for this project was a NVIDIA 

GeForce mx150. OpenCV was applied for computer vision 

purposes. In addition, Anaconda consisting of Jupiter 

Notebook and Spyder was used. 

In order to create custom object recognized classifier, images 

of 4 objects: person, watch, cell phone, and book were 

collected from the Internet as data set. A total of 400 images 

of four objects were collected which were then divided into 

two parts as training and test data set. For each of the objects, 

70 percent was used for training and 30 percent for testing. 

First of all, the images were labelled using LabelImage [27] 

function to classify by the object detection. LabelImgage 

saved a .xml file containing the label data for each image. The 

.xml files were used to generate TFRecords, which were one 

of the inputs to the TensorFlow trainer. For this purpose, the 

xml_to_csv.py and generate_tfrecord.py scripts were used to 

create .csv files containing all the data for the train and test 

images. Next a label map was created and the training 

configuration file was edited. The configurations were then 

performed for the object detection training pipeline which 

defined the model and parameters for training.  

The progress of the training job was viewed by the use of 

TensorBoard which provides information and graphs about 

the progression of the training. The loss graph showed the 

overall loss of the classifier over time. When the training was 

completed, the last step was to generate the frozen inference 

graph (.pb file). The .pb file contained the object detection 

classifier. With the use of the library called CV2, a video feed 

was opened with the window size of 800 by 600 pixels. It 

drew a box around the object that was found, wrote what type 

of object it was and the confidence of the identification being 

correct. 

Each step of training reported the loss which started high and 

got lower as the training progressed. For the training of 

Faster-RCNN, the Faster-RCNN-Inception-V2 model was 

used. The total loss of Faster-RCNN model was reduced to 

below 0.1 by completing almost 17 thousand steps within 3 

hours training. For MobileNet-SSD, the loss was reduced to 

below 1.5 after completing 25 thousand steps in approximate 

6 hours and 30 minutes time duration. 

Training Algorithm: 

Input: Image of four objects: person, book, cell phone, watch 

Output: Trained classifier for object detection inference graph 

Process: 

1. Collect image of four objects: person, book, cell phone 

and watch 

2. Split image data into 70% for training and 30% for 

testing 

3. Label image by LabelImage tools that generate .xml files 

4. Convert .xml files into two separate train_labels.csv and 

test_labels.csv files 

5. Convert train_labels.csv to train.record and 

test_labels.csv to test.record files 

6. Create label map for four objects in labelmap.pbtxt file 

format 

7. Configure the object detection classifier Faster-

RCNN/MobileNet-SSD for four objects by changing the 

number of classes, changing the fine_tune_checkpoint 

path, changing TensorFlow record path and changing the 
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label map path 

8. Train the object detection classifier Faster-RCNN/ 

MobileNet-SSD 

9. Observe the training accuracy and loss on TensorBoard 

10. Train the model until good accuracy is obtained 

11. Stop the training when good accuracy is achieved  

12. Create frozen inference graph from trained classifier 

Real time Evaluation Algorithm: 

Input: Real time pixel of objects 

Output: Recognition the objects  

Process: 

1. Import necessaries libraries such as numpy, OpenCV, 

TensorFlow 

2. Create TensorFlow graph with tf.Graph() function 

3. Load the object detection frozen inference graph into 

memory with TensorFlow graph 

4. Load the object detection label map 

5. Configure the camera through OpenCV by 

cv2.VideoCapture() function 

6. Create TensorFlow Session with object detection frozen 

inference graph 

7. Capture real time pixels through OpenCV and camera by 

cap.read() function 

8. Expand the captured pixels into a shape [frame, weight, 

height, channel] 

9. Initialize five tensors: image_tensor, boxes, scores, 

classes, num_detections 

10. Feed pixel data into the detection graph and run the 

TensorFlow session. 

11. Visualize the output of the object detection model 

through OpenCV 

12. Press „q‟ to destroy window and to release camera 

4. PERFORMANCE EVALUATION 
This section compares the performance of Faster-RCNN and 

MobileNet-SSD in detecting objects from real time captured 

images. During the training period of these two models, the 

loss is reduced below a threshold. The loss versus iteration of 

Faster-RCNN is shown in Fig. 3. It can be seen that the loss is 

blow 0.1 at around 17k steps. The loss versus iteration of 

MobileNet-SSD is shown in Fig. 4. It can be seen that the loss 

is below 1.5 approximately at 25k steps. Therefore, compared 

to MobileNet-SSD, Faster-RCNN requires less time and less 

steps to obtain low loss that is more accuracy during training 

of objects. 

When training is completed, both the models were tested 

through camera of a laptop. The testing device had the same 

configuration as the training device. The output of the Faster-

RCNN is shown in Fig. 5. There are six images marked as (a), 

(b), (c), (d), (e) and (f) in Fig. 5. In the images of Fig. 5, (a) 

contains a person and a cell phone, (b) contains a person and a 

watch, (c) contains a person, a cell phone, and a watch, (d) 

contains a person and a book, (e) contains a person, a book 

and a person within a book, and (f) contains a person, book, 

watch, and a person within a book. 

 

Fig 3: Total loss of Faster-RCNN. 
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Fig 4: Total loss of MobileNet-SSD model 

 

(a) 

 

 

(b) 

 

(c) 
 

(d) 
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(e) 

 

(f) 

Fig 5: Illustration of real time image detection using Faster-RCNN method 

It can be seen from Fig. 5 that Faster-RCNN model 

successfully detects the objects with a high score. For 

instance, a person and a cell phone are detected with an 

accuracy of 99% by Faster-RCNN as shown in the image of 

Fig. 5(a). Similarly, a person, a watch and a cell phone are 

detected with accuracies of 99%, 84% and 99%, respectively, 

by Faster-RCNN as shown in the image of Fig. 5(c). The 

same six images in Fig. 5 are used to detect the object using 

MobileNet-SSD. Therefore, separate figures with score are 

not illustrated for MobileNet-SSD. From our experiments it is 

found that MobileNet-SSD cannot detect the objects 

accurately in some cases. For instance, for the image in Fig. 

5(c), MobileNet-SSD cannot detect a watch, while it detects a 

person at 59% accuracy and a cell phone at 98% accuracy. For 

the case of Fig. 5(f), both Faster-RCNN and MobileNet-SSD 

fail to detect the person within a book. However, Faster-

RCNN detects the other objects in that image with higher 

accuracy than MobileNet-SSD. So, the accuracy of the Faster-

RCNN model is higher than MobileNet-SSD model in this 

scenario.  

Table 1 summarizes the accuracy of these two models in 

detecting objects of the six images illustrated in Fig. 5. It can 

be seen that the confidence score or the accuracy in detecting 

the objects is greater for Faster-RCNN in all the six cases. 

Hence, Faster-RCNN model is more reliable than MobileNet-

SSD model. It is already shown that in the training period, 

Faster-RCNN takes significantly less time and less steps to 

achieve more accuracy than MobileNet-SSD. However, 

Faster-RCNN model is slightly slower than MobileNet-SSD 

model in real time response. 

Table 1: Reliability of the models 

Model Confidence score of objects 

 

 

 

Faster- 

RCNN 

(a) Person: 99%, cell phone: 99% 

(b) Person: 99%, watch: 87% 

(c) Person: 99%, watch: 84%, cell phone: 99% 

(d) Person: 99%, book: 99% 

(e) Person: 99%, book: 99%, person in a book: 

83% 

(f) Person: 99%, book: 99%, watch: 96%, 

person in a book not detected 

Model Confidence score of objects 

 

 

 

MobileNet- 

SSD 

(a) Person: 76%, cell phone: 86% 

(b) Person: 96%, watch wrongly detected as a 

cell phone 

(c) Person: 59%, watch not detected, cell phone: 

98%, 

(d) Person: 89%, book: 90% 

(e) Person 96%, book wrongly detected as a cell 

phone, person in a book not detected 

(f) Person: 99%, book: 56%, watch: 90%, 

person in a book not detected 

 

5. CONCLUSIONS 
In this paper, the effectiveness of Faster-RCNN and 

MobileNet-SSD methods are studied for real time object 

detection. Firstly, the algorithms of these two models are 

described. Performance evaluation is done using a training 

dataset of 400 images of four different objects which are 

persons, watches, cell phones, and books. During training, 

Faster-RCNN takes significantly less time and less steps to 

achieve more accuracy than MobileNet-SSD. However, 

during real time detection, Faster-RCNN model has better 

accuracy at the cost of lower response compared to 

MobileNet-SSD. Moreover, in a number of cases, MobileNet-

SSD fails to detect objects in real time, while Faster-RCNN 

can detect successfully. For instance, a person, a watch and a 

cell phone within a real time captured image are detected by 

Faster-RCNN with accuracies of 99%, 84% and 99%, 

respectively. On the other hand, for the same captured image, 

MobileNet-SSD cannot detect the watch, while it detects the 

person at 59% accuracy and the cell phone at 98% accuracy. 

In future, the performance of these models will be improved 

by using more training data, using higher resolution cameras 

and using powerful Nvidia GPU. 
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