
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 41, July 2020

55

Effectiveness of Deep Learning in Real Time Object

Detection

Faysal Hossain
Institute of ICT

Bangladesh University of
Engineering and Technology

Dhaka-1205, Bangladesh

Md. Raihan-Al-Masud
Institute of ICT

Bangladesh University of
Engineering and Technology

Dhaka-1205, Bangladesh

M. Rubaiyat Hossain Mondal
Institute of ICT

 Bangladesh University of
Engineering and Technology

Dhaka-1205, Bangladesh

ABSTRACT

Deep learning based object detection has recently gained

significant interest. This work focuses on real time object

detection using two deep learning models named Faster

Regional Convolution Neural Network (Faster-RCNN) and

MobileNet Single Shot MultiBox Detector (MobileNet-SSD).

An experiment is done using Python for programming,

TensorFlow library for computing and OpenCV for computer

vision. The Faster-RCNN and MobileNet-SSD models are

trained using 400 images of four objects which are persons,

watches, cell phones, and books. It is shown that for the

images considered, Faster-RCNN can successfully detect

these four objects with higher accuracy than MobileNet-SSD.

Faster-RCNN also requires less time than MobilneNet-SSD

for training the objects. However, Faster-RCNN model is

slightly slower than MobileNet-SSD in real time object

detection.

Keywords

Image; object detection; deep learning; Fast-RCNN; CNN.

1. INTRODUCTION
The ability to visually detect and track multiple objects across

a scene has been a long-standing challenge within the

computer vision and machine learning communities [1-9].

Object detection is useful in the field of automation for

example, for self-driving cars, monitoring pedestrians, and

traffic signals on the road and experiments in medical science.

Some of the common classical methods in object detection are

Hough transform, frame-difference, background subtraction,

optical flow, sliding window, and deformable part model

methods. Compared to the classical methods, the deep

learning based object detection methods have strong

capability in feature expression and feature learning. Deep

learning based approaches [10-17] work in the mode of region

selection, feature extraction and classification. Deep learning

along with machine learning algorithms [18, 19, 20] and

image processing techniques [21-22] have the potential for the

prediction of novel coronavirus disease 2019 known as

COVID-19 [23, 24, 25]. One algorithm of deep learning is

the convolutional neural network (CNN) which is a form of

artificial neural network (ANN) [10-12]. In CNN, convolution

operation is done to extract features from the input image,

pooling is performed to reduce the dimensionality of each

feature map, and flattening is done to transform two-

dimensional data into one-dimensional.

The work in [2] presents the design details of a face

recognition system. CNN algorithm has been used in [7]

because of their robustness to real-life scenarios and

scalability to training data size. However, accuracy becomes

challenging when real time objects of videos are to be

recognized. Faster regional CNN (Faster-RCNN) and

mobilenet single shot multibox detector (MobileNet-SSD)

models are popular object detector models in deep learning

field. Faster-RCNN uses the region proposal technique where

MobileNet-SSD uses the single forward path multi box

technique. Another technique is you only look once (YOLO)

[17] which reframes object detection as a single regression

issue, starting from pixels to the coordinates of bounding box

and classification. While YOLO identifies objects very

quickly it suffers from lack of accuracy in the case of some

small objects.

This paper describes the algorithms of Faster-RCNN and

MobileNet-SSD models for detecting real time objects within

images captured by a camera. The performance of these two

models are compared using four set of images. The speciality

of this research is that instead of using publicly available

datasets, this paper creates and then uses a dataset by

collecting images of 4 objects: person, watch, cell phone, and

book from the Internet. The rest of the paper is organized as

follows. Section 2 describes Faster-RCNN and MobileNet-

SSD models. The system implementation is presented in

Section 3 and performance evaluation is shown in Section 4.

The concluding remarks are presented in Section 5.

2. DESCRIPTION OF FASTER-RCNN

AND MOBILENET-SSD
This section describes Faster-RCNN and MobileNet-SSD.

Firstly, Faster-RCNN is considered. Faster-RCNN is derived

from its predecessors regions with CNN (RCNN) [16] and

Fast-RCNN [13]. RCNN uses selective search algorithm [14]

to extract 2000 region from each image, these regions are then

warped and fed into a CNN block to produce a feature vector.

The CNN block extracts features and then send to a support

vector machine classifier to find the presence of objects.

RCNN is time consuming as it has to classify 2000 region

proposals per image. For the case of Fast-RCNN, the input

image is directly fed to the CNN block which produces a

convolutional feature map. This feature map is used to

identify region proposals (using selective search) which are

then warped into squares. These are then fed to a region of

interest (RoI) pooling layer which makes the squares into

fixed size output suitable for passing to the next fully

connected layers. The output from RoI poling is classified by

softmax layer. Fast-RCNN is still slow because of the use of

fixed selective search algorithm. Faster-RCNN combats the

somewhat complex training pipeline that both RCNN [16] and

Fast-RCNN [13] exhibit. Faster-RCNN, is composed of two

networks: firstly, region proposal network (RPN) for

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 41, July 2020

56

generating region proposals and secondly, a network using

these proposals to detect objects. The stages of Faster-RCNN

are shown in Fig. 1. The entire system is a single, unified

network for object detection. The operation of Faster-RCNN

is similar to that of Fast-RCNN except that Faster-RCNN uses

a separate network to predict region proposals, while Fast-

RCNN uses selective search [14] to generate region proposals.

The time cost of generating region proposals is much smaller

in RPN than selective search, where RPN shares the most

computation with the object detection network. Briefly, RPN

ranks region/anchor boxes and proposes the ones most likely

containing objects [26].

MobileNet-SSD is developed to predict all at once with the

bounding boxes and the class probabilities with end-to-end

CNN architecture [15]. This model takes an image as input

which passes through multiple convolutional layers with

different sizes of filters. Feature maps from convolutional

layers at different position of the network are used to predict

the bounding boxes. They are processed by a specific

convolutional layer with 3x3 filters called extra feature layers

to produce a set of bounding boxes like to the anchor boxes of

the Fast-RCNN [13]. The stages of MobileNet-SSD are

illustrated in Fig. 2.

Fig. 1: Typical steps of Faster-RCNN

Fig. 2: Typical steps of MobileNet-SSD

3. IMPLEMENTATION
This project was implemented using several software libraries,

packages and programs to apply machine learning. Python

with TensorFlow was used for the deep learning

computations. The GPU version of TensorFlow was used

which required extra programs from the GPU designer

NVIDIA, such as CUDA 9.0 Toolkit, cuDNN 7.0.5 and their

GPU drivers. The card used for this project was a NVIDIA

GeForce mx150. OpenCV was applied for computer vision

purposes. In addition, Anaconda consisting of Jupiter

Notebook and Spyder was used.

In order to create custom object recognized classifier, images

of 4 objects: person, watch, cell phone, and book were

collected from the Internet as data set. A total of 400 images

of four objects were collected which were then divided into

two parts as training and test data set. For each of the objects,

70 percent was used for training and 30 percent for testing.

First of all, the images were labelled using LabelImage [27]

function to classify by the object detection. LabelImgage

saved a .xml file containing the label data for each image. The

.xml files were used to generate TFRecords, which were one

of the inputs to the TensorFlow trainer. For this purpose, the

xml_to_csv.py and generate_tfrecord.py scripts were used to

create .csv files containing all the data for the train and test

images. Next a label map was created and the training

configuration file was edited. The configurations were then

performed for the object detection training pipeline which

defined the model and parameters for training.

The progress of the training job was viewed by the use of

TensorBoard which provides information and graphs about

the progression of the training. The loss graph showed the

overall loss of the classifier over time. When the training was

completed, the last step was to generate the frozen inference

graph (.pb file). The .pb file contained the object detection

classifier. With the use of the library called CV2, a video feed

was opened with the window size of 800 by 600 pixels. It

drew a box around the object that was found, wrote what type

of object it was and the confidence of the identification being

correct.

Each step of training reported the loss which started high and

got lower as the training progressed. For the training of

Faster-RCNN, the Faster-RCNN-Inception-V2 model was

used. The total loss of Faster-RCNN model was reduced to

below 0.1 by completing almost 17 thousand steps within 3

hours training. For MobileNet-SSD, the loss was reduced to

below 1.5 after completing 25 thousand steps in approximate

6 hours and 30 minutes time duration.

Training Algorithm:

Input: Image of four objects: person, book, cell phone, watch

Output: Trained classifier for object detection inference graph

Process:

1. Collect image of four objects: person, book, cell phone

and watch

2. Split image data into 70% for training and 30% for

testing

3. Label image by LabelImage tools that generate .xml files

4. Convert .xml files into two separate train_labels.csv and

test_labels.csv files

5. Convert train_labels.csv to train.record and

test_labels.csv to test.record files

6. Create label map for four objects in labelmap.pbtxt file

format

7. Configure the object detection classifier Faster-

RCNN/MobileNet-SSD for four objects by changing the

number of classes, changing the fine_tune_checkpoint

path, changing TensorFlow record path and changing the

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 41, July 2020

57

label map path

8. Train the object detection classifier Faster-RCNN/

MobileNet-SSD

9. Observe the training accuracy and loss on TensorBoard

10. Train the model until good accuracy is obtained

11. Stop the training when good accuracy is achieved

12. Create frozen inference graph from trained classifier

Real time Evaluation Algorithm:

Input: Real time pixel of objects

Output: Recognition the objects

Process:

1. Import necessaries libraries such as numpy, OpenCV,

TensorFlow

2. Create TensorFlow graph with tf.Graph() function

3. Load the object detection frozen inference graph into

memory with TensorFlow graph

4. Load the object detection label map

5. Configure the camera through OpenCV by

cv2.VideoCapture() function

6. Create TensorFlow Session with object detection frozen

inference graph

7. Capture real time pixels through OpenCV and camera by

cap.read() function

8. Expand the captured pixels into a shape [frame, weight,

height, channel]

9. Initialize five tensors: image_tensor, boxes, scores,

classes, num_detections

10. Feed pixel data into the detection graph and run the

TensorFlow session.

11. Visualize the output of the object detection model

through OpenCV

12. Press „q‟ to destroy window and to release camera

4. PERFORMANCE EVALUATION
This section compares the performance of Faster-RCNN and

MobileNet-SSD in detecting objects from real time captured

images. During the training period of these two models, the

loss is reduced below a threshold. The loss versus iteration of

Faster-RCNN is shown in Fig. 3. It can be seen that the loss is

blow 0.1 at around 17k steps. The loss versus iteration of

MobileNet-SSD is shown in Fig. 4. It can be seen that the loss

is below 1.5 approximately at 25k steps. Therefore, compared

to MobileNet-SSD, Faster-RCNN requires less time and less

steps to obtain low loss that is more accuracy during training

of objects.

When training is completed, both the models were tested

through camera of a laptop. The testing device had the same

configuration as the training device. The output of the Faster-

RCNN is shown in Fig. 5. There are six images marked as (a),

(b), (c), (d), (e) and (f) in Fig. 5. In the images of Fig. 5, (a)

contains a person and a cell phone, (b) contains a person and a

watch, (c) contains a person, a cell phone, and a watch, (d)

contains a person and a book, (e) contains a person, a book

and a person within a book, and (f) contains a person, book,

watch, and a person within a book.

Fig 3: Total loss of Faster-RCNN.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 41, July 2020

58

Fig 4: Total loss of MobileNet-SSD model

(a)

(b)

(c)

(d)

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 41, July 2020

59

(e)

(f)

Fig 5: Illustration of real time image detection using Faster-RCNN method

It can be seen from Fig. 5 that Faster-RCNN model

successfully detects the objects with a high score. For

instance, a person and a cell phone are detected with an

accuracy of 99% by Faster-RCNN as shown in the image of

Fig. 5(a). Similarly, a person, a watch and a cell phone are

detected with accuracies of 99%, 84% and 99%, respectively,

by Faster-RCNN as shown in the image of Fig. 5(c). The

same six images in Fig. 5 are used to detect the object using

MobileNet-SSD. Therefore, separate figures with score are

not illustrated for MobileNet-SSD. From our experiments it is

found that MobileNet-SSD cannot detect the objects

accurately in some cases. For instance, for the image in Fig.

5(c), MobileNet-SSD cannot detect a watch, while it detects a

person at 59% accuracy and a cell phone at 98% accuracy. For

the case of Fig. 5(f), both Faster-RCNN and MobileNet-SSD

fail to detect the person within a book. However, Faster-

RCNN detects the other objects in that image with higher

accuracy than MobileNet-SSD. So, the accuracy of the Faster-

RCNN model is higher than MobileNet-SSD model in this

scenario.

Table 1 summarizes the accuracy of these two models in

detecting objects of the six images illustrated in Fig. 5. It can

be seen that the confidence score or the accuracy in detecting

the objects is greater for Faster-RCNN in all the six cases.

Hence, Faster-RCNN model is more reliable than MobileNet-

SSD model. It is already shown that in the training period,

Faster-RCNN takes significantly less time and less steps to

achieve more accuracy than MobileNet-SSD. However,

Faster-RCNN model is slightly slower than MobileNet-SSD

model in real time response.

Table 1: Reliability of the models

Model Confidence score of objects

Faster-

RCNN

(a) Person: 99%, cell phone: 99%

(b) Person: 99%, watch: 87%

(c) Person: 99%, watch: 84%, cell phone: 99%

(d) Person: 99%, book: 99%

(e) Person: 99%, book: 99%, person in a book:

83%

(f) Person: 99%, book: 99%, watch: 96%,

person in a book not detected

Model Confidence score of objects

MobileNet-

SSD

(a) Person: 76%, cell phone: 86%

(b) Person: 96%, watch wrongly detected as a

cell phone

(c) Person: 59%, watch not detected, cell phone:

98%,

(d) Person: 89%, book: 90%

(e) Person 96%, book wrongly detected as a cell

phone, person in a book not detected

(f) Person: 99%, book: 56%, watch: 90%,

person in a book not detected

5. CONCLUSIONS
In this paper, the effectiveness of Faster-RCNN and

MobileNet-SSD methods are studied for real time object

detection. Firstly, the algorithms of these two models are

described. Performance evaluation is done using a training

dataset of 400 images of four different objects which are

persons, watches, cell phones, and books. During training,

Faster-RCNN takes significantly less time and less steps to

achieve more accuracy than MobileNet-SSD. However,

during real time detection, Faster-RCNN model has better

accuracy at the cost of lower response compared to

MobileNet-SSD. Moreover, in a number of cases, MobileNet-

SSD fails to detect objects in real time, while Faster-RCNN

can detect successfully. For instance, a person, a watch and a

cell phone within a real time captured image are detected by

Faster-RCNN with accuracies of 99%, 84% and 99%,

respectively. On the other hand, for the same captured image,

MobileNet-SSD cannot detect the watch, while it detects the

person at 59% accuracy and the cell phone at 98% accuracy.

In future, the performance of these models will be improved

by using more training data, using higher resolution cameras

and using powerful Nvidia GPU.

6. ACKNOWLEDGMENTS
A part of this research is from the postgraduate diploma (ICT)

project of the first author (Faysal Hossain) conducted under

the supervision of the third author (M. Rubaiyat Hossain

Mondal) at the Institute of Information and Communication

Technology (IICT) of Bangladesh University of Engineering

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No. 41, July 2020

60

and Technology, Bangladesh. Therefore, the authors would

like to thank IICT, BUET for its support.

7. REFERENCES
[1] Mathe, S., and Sminchisescu, C., "Actions in the eye:

dynamic gaze datasets and learnt saliency models for

visual recognition," in IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 37, no. 7, pp.

1408-1424, July 1 2015. doi:

10.1109/TPAMI.2014.2366154.

[2] Chellappa, R. et al., "Towards the design of an end-to-

end automated system for image and video-based

recognition," Information Theory and Applications

Workshop, La Jolla, CA, 2016, pp. 1-7.

[3] Nikan, S. and Ahmadi, M., "Effectiveness of various

classification techniques on human face recognition,"

2014 International Conference on High Performance

Computing & Simulation (HPCS), Bologna, 2014, pp.

651-655. doi: 10.1109/HPCSim.2014.6903749.

[4] Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S. and

Ma, Y., "Robust face recognition via sparse

representation," IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 31, pp. 210-227, February 2009.

[5] Huang, G. B., Zhou, H., Ding, X. and Zhang, R.,

"Extreme learning machine for regression and multiclass

classification," IEEE Trans. Syst., Man, Cybern., Syst.,

vol. 45, pp. 513-529, April 2012.

[6] Nikan, S. and Ahmadi, M., "Study of the Effectiveness of

Various Feature Extractors for Human Face Recognition

for Low Resolution Images," in: Proc. International

Conf. on Artificial Intell. and Software Eng. (AISE14).

Phuket, pp. 1-6, January 2014.

[7] Wu, J., Ma, L. and Hu, X., "Delving deeper into

convolutional neural networks for camera relocalization,"

2017 IEEE International Conference on Robotics and

Automation (ICRA), Singapore, 2017, pp. 5644-5651.

doi: 10.1109/ICRA.2017.7989663.

[8] N. Kumar and A. Sethi, "Fast Learning-Based Single

Image Super-Resolution," in IEEE Transactions on

Multimedia, vol. 18, no. 8, pp. 1504-1515, Aug. 2016.

doi: 10.1109/TMM.2016.2571625.

[9] C. M. Bishop, “Pattern Recognition and Machine

Learning (Information Science and Statistics)”. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[10] S. Ren, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks”,

CoRRabs/1506.01497(2015). URL:

http://arxiv.org/abs/1506.01497.

[11] N. Ketkar, “Deep Learning with Python: A Hands-on

Introduction”, Bangalore, Karnataka, India, ISBN-13

(electronic): 978-1-4842-2766-4, DOI 10.1007/978-1-

4842-2766-4.

[12] I. Goodellow, Y. Bengio, A. Courville, “Deep Learning

(Adaptive Computation and Machine Learning)”, An

MIT Press Book, URL:

https://www.deeplearningbook.org/ Accessed: 2018-05-

28.

[13] G. Ross, “Fast R-CNN”, Proceedings of the IEEE

International Conference on Computer Vision. 2015, pp.

1440–1448.

[14] J. R. R. Uijlings, et al, "Selective search for object

recognition", URL: http://disi.unitn.it/

uijlings/SelectiveSearch.html.

[15] W. Liu, C. Szegedy, SSD: Single Shot MultiBox

Detector, In arXiv:1512.02325.

[16] R. Girshick, J. Donahue, J. Malik, Rich feature

hierarchies for accurate object detection and semantic

segmentation Tech report (v5), URL: http://arxiv.org:

1311.2524.

[17] J. Redmon, S. Divvala, Girshick, R., and Farhadi, A.,

"You only look once: unified, real-time object detection,"

IEEE Conference on Computer Vision and Pattern

Recognition, Las Vegas, USA, 2016, pp. 779-788.

[18] Bharati S., Podder P., and Mondal, M. R. H., “Artificial

Neural Network Based Breast Cancer Screening: A

Comprehensive Review”, International Journal of

Computer Information Systems and Industrial

Management Applications, MIR Labs, USA, vol. 12

(2020), pp. 125-137, May 2020.

[19] Bharati S., Podder P., and Mondal, M. R. H., Diagnosis

of Polycystic Ovary Syndrome Using Machine Learning

Algorithms. Presented at 2020 IEEE Region 10

Symposium (TENSYMP), 5-7 June 2020, Bangladesh.

[20] Masud, M. R. A., and Mondal, M. R. H., "Data-Driven

Diagnosis of Spinal Abnormalities Using Feature

Selection and Machine Learning Algorithms," in PLOS

One, 15(2): e0228422, Feb

2020,https://doi.org/10.1371/journal.pone.0228422.

[21] Kabir, M. A., and Mondal, M. R. H., "Edge-Based and

Prediction-Based Transformations for Lossless Image

Compression", Journal of Imaging, vol. 4, no. 5, DOI:

10.3390/jimaging4050064, May 2018.

[22] Kabir, M. A., and Mondal, M. R. H., "Edge-based

Transformation and Entropy Coding for Lossless Image

Compression". International Conference on Electrical,

Computer and Communication Engineering (ECCE

2017), Cox's Bazar, Bangladesh, Feb 2017.

[23] Khanam F., Nowrin I., and Mondal M. R. H., “Data

Visualization and Analyzation of COVID-19”, Journal of

Scientific Research and Reports, vol. 26, no. 3, pp. 42-

52, Apr. 2020,

https://doi.org/10.9734/jsrr/2020/v26i330234.

[24] Mondal, M. R. H., Bharati, S., Podder, P., Podder, P.,

“Data Analytics for Novel Coronavirus Disease”,

Informatics in Medicine Unlocked, Elsevier, 2020,

100374, https://doi.org/10.1016/j.imu.2020.100374.

[25] Bharati S., Podder P., Mondal M.R.H., Hybrid deep

learning for detecting lung diseases from X-ray images,

Informatics in Medicine Unlocked, Elsevier, Volume 20,

2020, 100391, ISSN 2352-9148,

https://doi.org/10.1016/j.imu.2020.100391.

[26] Stanford Lecture: http://cs231n.github.io/. Accessed:

2018-05-28.

[27] LabelImage, https://github.com/tzutalin/labelImg.

Accessed:2018-05-28.

IJCATM : www.ijcaonline.org

https://doi.org/10.1016/j.imu.2020.100374
https://doi.org/10.1016/j.imu.2020.100391
https://github.com/tzutalin/labelImg.%20Accessed:2018-05-28
https://github.com/tzutalin/labelImg.%20Accessed:2018-05-28
https://github.com/tzutalin/labelImg.%20Accessed:2018-05-28

