
International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.41, July 2020

Event Extraction from Emails

Anupama M. Nair
Dept. of Computer Science and Engineering
Sree Chitra Thirunal College of Engineering

Trivandrum, India

Anusha Aji Justus
Dept. of Computer Science and Engineering
Sree Chitra Thirunal College of Engineering

Trivandrum, India

Arjun Ramesh
Dept. of Computer Science and Engineering
Sree Chitra Thirunal College of Engineering

Trivandrum, India

Binu Rajan M. R.
Assistant Professor

Dept. of Computer Science and Engineering
Sree Chitra Thirunal College of Engineering

Trivandrum, India

ABSTRACT
This is an era where people are too busy to check out their inbox.
They swipe off notifications, not knowing they might miss
something important. These could be anything like, personal
messages asking whether you are free to meet up or reminders to
events that you need to attend or some emails regarding interesting
events that are happening around you. The need of the hour is an
efficient way for keeping track of the important events from the
vast number of incoming messages. This paper proposes a solution
based on event extraction from emails. The scope of the project is
limited to Gmail. The primary component is an android
application that identifies event containing emails, extracts
important details and provides an automated reminder system for
the same depending on user needs. Various machine learning
techniques along with natural language processing are used for the
fulfillment for this project.

General Terms
Machine Learning, Natural Language Processing

Keywords
Email Classification, Event Extraction, Machine Learning, Named
Entity Recognition, Natural Language Processing

1. INTRODUCTION
In this digitizing world, all are receiving numerous emails. It is a
much easier and faster way to communicate than the traditional
mail. Nowadays, an average person receives about 84 notifications
in their phone per day. Due to busy schedules most people just
swipe through them and miss important notifications. People
receive a lot of text messages or emails about several events that
they are interested in. They usually keep track of these events by
adding them to their calender or some reminder application or any
means that would notify them about the event. They try not miss
out those events by any means possible but the issue in all these
systems is that all these are to be done manually. In this hectic

world, reading the mail manually and searching for event and then
adding data to a calendar is a very time-consuming and chaotic
job. Emails can be personal messages, community events or
official notifications. The main domain of concern is the set of
emails that arrive with an event in it. It includes emails having a
date, time and venue or either of these present which indicates an
event.

In this scenario where a single person receives an unmanageable
number of emails and other messages, the dependence on reminder
applications elevates. The core focus is on emails. This project aims
at automating the process of extraction of event and adding it on to
the calendar. Using this system, the manual efforts of viewing a
mail, understanding the event information, and manually adding to
calendar will be eliminated.

The core objectives of the proposed system include:

(1) Retrieve event information from emails in a real-time
environment.

(2) Avoid wastage of time by manually opening the mail.
(3) Eliminate any possibility of human negligence.
(4) Enable customization capabilities for the information

retrieved.
(5) Developing a user-friendly application.

The proposed application can be used for fetching events from any
users Gmail inbox. If tweaked accordingly, it can be used for
getting event details from social messaging applications as well.

2. MOTIVATION
Many of us get a large volume of email hitting the inbox. We
receive emails on certain mailing lists about events that may
interest us such as recruiting events, talks, and other social events
and it would be convenient if the event could be added with one
click instead of opening the calendar and entering the title, date,
time and venue manually. Indeed, Gmail already has such a feature
where it suggests a one-click add to a users calendar in certain
cases, but it is observed that in many cases Gmail does not provide

1



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.41, July 2020

such a suggestion even when the email contains event information
and the user would like to add it to his/her calendar quickly.

3. RELATED WORKS
The proposed system has been implemented after extensively
studying various related works in email classification and event
extraction.

3.1 Email Classification
Rita McCue in [1] used SVMLib to do spam email classification.
This application has four available kernels: linear, polynomial,
radial basis function, and sigmoid. Support Vector Machines
require parameter tuning in order to improve the accuracy of their
test results. She used 5-fold cross validation for each of the four
kernels. A logarithmic grid search method was performed to find
the best choices for C and gamma, those that had the best average
cross-validation accuracy are the ones chosen for use on the test
data. The RBF kernel maps samples into the higher dimensional
space in a non-linear fashion, so unlike the linear kernel, it can
handle cases where the class labels and attributes are related in a
non-linear manner. They obtained an accuracy of above 90% using
SVM.

Shashank Senapaty in [2] tried the Naive Bayes Multinomial
Event model using a specialized tokenization of the input. These
include special tokens like MONTH, TIME, DATE to replace
months, times and dates respectively in addition to basic tokens
like HTTPADDR, EMAILADDR, and NUMBER to replace
URLs, email addresses, and numbers. While this algorithm has
certain shortcomings for the task at hand, such as it doesnt capture
the sequence structure of the text, it still serves well as a baseline
since it is an algorithm known to perform well for a text
classification task.

Julie A. Black and Nisheeth Ranjan in [3], have identified three
types of emails as: Official meeting emails are all messages that
contain event information clearly delimited from all other text in
the email. Personal meeting emails are meeting proposals in which
the specifics of the meeting are presented within the body of the
email itself. Other emails are all incoming messages that are
non-event related. The raw email data is exported to a single text
file where personal, official, and other emails are demarcated by
XML tags. The email file is then processed by Perl and
categorized into three using a similarity measure based on TF-IDF
(Term Frequency-Inverse Document Frequency) and numerous
domain specific heuristics with hand-tuned weights.

Ola Amayri and Nizar Bouguila in [4] have researched in
developing suitable filters to separate spam emails. They used
Support Vector Machines through text classification approaches.
Instead of traditional kernels, various string kernels methods were
advocated to implement a solution for the existing spam filtering
problem. An online active framework system is proposed to cope
with real time situations.

3.2 Event Extraction
Aneesh G Nath, Krishnanth V, Kevin Biju Mathew, Pranav T S
and Sarath Gopi in [5] aim at automating the process of extraction
of event and adding it on to the calendar. Aswar Shreyas, Gaikwad
Priyanka, Merlyn Pearl and Shinde Swapnal in [6] do the same
with emails. Both use NLP to classify the event details in the
arriving email into subject, date, time and place. The extraction is

mainly grammar based. An extension was developed in order to
implement this by integrating python code. Grammar helps to
construct a tree which will help in event detail extraction. The
different stages of the project were tokenization, POS tagging,
parser, event extraction, validation, mapping to calendar. The final
results were not so accurate. In some cases it showed error while
identifying time, date or location. Moreover, the title of the event
could not be identified correctly in most cases.

Julie A. Black and Nisheeth Ranjan in [3] proposed an
architecture for automated event extraction from incoming email
messages. A successful system will classify event containing
messages, do information extraction, and present this information
to the user for confirmation. ANNIE (a Nearly New Information
Extraction System) was used as a named entity recognizer after
the preprocessing step. ANNIE helps to provide tags of people,
locations, dates, parts of speech, and sentence boundaries. These
tags appear in the output body of the raw email as XML tags
wrapping the recognized text. ANNIE provides a tokenizer, a
gazetteer, a sentence splitter, a part of speech tagger, a semantic
tagger, named entity transducer, an orthographic coreferencer, and
a pronominal coreferencer. In order to extract information from
the categorized email messages, the RAPIER algorithm that
employs a bottom up learning algorithm to learn patterns was
used. It uses pairs of sample documents and filled templates to
induce pattern match rules that directly extract fillers for the slots
in the template. It trains on a training set where each training
example is a collection of three files: the original email, the
original email after passing it through a sentence splitter and part
of speech tagger, a filled event template containing the date, time,
location, and title of the event contained in the email. The focus
was on extracting only the date, location and title of the event
using a few key features. They werent able to achieve the
performance necessary for deploying the information extraction
system as a plugin to an email client.

Eleni Partalidou and others in [7] built a part of speech tagger that
can detect the morphology of the tokens. For named entity
recognition using spaCy, a model that extends the standard
ENAMEX type was built. SpaCy uses sophisticated neural
network based models for the implementation of Natural
Language Processing components. In spaCys approach text is
inserted in the model in the form of unique numerical values for
every input that can represent a token of a corpus or a class of the
NLP task (part of speech tag, named entity class). At the
embedding stage, features such as the prefix, the suffix, the shape
and the lowercase form of a word are used for the extraction of
hashed values that reflect word similarities. At this stage a
vocabulary with hashed values and their vectors exist in the model.
For the exploitation of adjacent vectors in the state of encoding,
values pass through the Convolutional Neural Network (CNN) and
get merged with their context. The result of the encoding process
is a matrix of vectors that represents information. Before the
prediction of an ID, the matrix has to be passed through the
Attention Layer of the CNN, using a query vector to summarize
the input. At prediction, a Softmax function is used for the
prediction of a super tag with part of speech and morphology
information. Similarly, for named entities, the available class is
predicted. After the training process of the model, the CNN is able
to be used for NLP tasks.

Shashank Senapaty in [2] used a Maximum Entropy Markov
Model (MEMM), which combines a Maximum Entropy classifier
with a Viterbi decoder for event extraction. The MEMM classifier

2



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.41, July 2020

assigns a label among TITLE, VENUE, DATE, START TIME,
END TIME and OTHER to each token corresponding to the
attributes of interest. For each token in the email, features are
computed based on the token itself, the neighboring tokens, and
the label of the previous token. The conditional probability of a
class for a particular token is modeled as a linear combination of
the features combined by a softmax function. Two MEMM
classifiers are used, one for the subject and one for the mail body.
For extracting the value of an attribute, all candidates labeled with
that label are considered and one of the values is chosen based on
the probabilities associated with each of them. If a candidate for
an attribute is available from the subject, it is preferred over a
candidate from the body. The recall for the venue was a bit low
because in many cases there is not enough contextual information
surrounding the venue. This problem can be fixed by increasing
the training size to a more representative set or by building a
corpus of locations.

Ashraf Q. Mahlawi and Sreela Sasi in [8] have discussed the
process of extraction of structured data from emails. Their
research is done mainly in three phases: data cleaning, data
extraction and data consolidation. To improve the quality of data,
first, email data is cleaned to avoid data in incorrect format. Data
extraction phase comprises of data mining and NLP techniques to
extract specific parts of information from the emails. Finally, data
consolidation is done to combine all the various extracted data to
get the structured data present in the respective email. Named
Entity Recognition for event extraction has been also mentioned
by Michal Laclavik, Stefan Dlugolinsky, Martin Seleng, Marcel
Kvassay, Emil Gatial, Zoltan Balogh and Ladislav Hluchy in [9].

4. DATASET
4.1 Existing Dataset
Emails are quite private, so email datasets were least available.
One of the few available ones was the Enron Dataset. This dataset
was collected and prepared by the CALO Project. It contains mails
from about 150 users, mainly from the senior management of
Enron. The corpus contains a total of about 0.5 million messages.
This is the most complete email corpus available. The corpus is
one of the few publicly available mass collections of real emails
easily available for study, because such collections are typically
bound by numerous privacy and legal restrictions which render
them prohibitively difficult to access.

The existing dataset was insufficient to give a higher performance
owing to the following reasons:

(1) The Enron Dataset was huge, but the number of emails that
matched the concerned scenario was very few.

(2) Event email classification requires emails containing events in
order to set a clear demarcation from the other non- event
mails.

(3) The dataset contained mainly informal conversation mails
stating unclear events only.

(4) Using such a dataset would cause overfitting and
misclassification.

(5) Enron dataset is useful for spam mail classification, sentiment
analysis etc. and not for Event mail classification.

Thus, a new dataset was made, which was more problem specific.

4.2 Our Dataset
To train the Event Mail Classifier, a new dataset of 470 emails was
prepared. It was a balanced dataset with 235 Event mails and 235
Non-Event mails. Emails were collected from Gmail users from
various professions, different age groups and thus maximum
variance in emails was ensured. Since this dataset was made in a
problem specific manner, the accuracy and performance was
increased to a good level. Emails containing most date formats,
time formats and indirect events were included in dataset
preparation. Then, the Event Extraction NLP model was also
trained using a related Custom Tagged Entity dataset, having
nearly 12000 entities. The mails are tokenized into words using
the regex tokenizer. The required entities like Time, Date and
Venue were tagged.

4.3 Data Preprocessing
For proper training of the classifier, the emails in dataset were
preprocessed for:

(1) Removing HTML tags using BeautifulSoup4
(2) Removing space issues
(3) Removing quoted text using regular expressions
(4) Removing encoding issues that prevailed in Subject part of

mails.

5. METHODOLOGY
The proposed system has the following phases: (1) Event mail
classifier (2) Event extraction module (3) Android application (4)
Google Calendar connectivity. The block diagram in Fig. 1

Fig. 1. System Architecture

explains the system architecture of the proposed system. In Fig. 1,
the major modules can be seen. This includes the Data

3



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.41, July 2020

Preprocessor, Email Classifier based on SVM, a spaCy Extractor
and finally a Selector integrated with a Validator. Initially, the raw
Gmail content will pass through a Data Preprocessor where the
HTML tag removal, quoted text removal etc. will take place. The
cleaned mail body will be concatenated with the subject, and will
be transferred to the Support Vector Machine based Event Mail
Classifier. If it is classified as an Event Email, it is transferred to
the spaCy Extractor Module that will identify the event related
information such as date, time, venue and link (if any). These
details will be sent to a Validator to validate the date and time. In
this module, the right details will be chosen from the list of
entities identified by spaCy model. These processes take place in a
web server and then the event details are stored in the database.
An Android Application will provide the event details as well as
reminders, using the information from the database.

5.1 Machine Learning Framework for Classification
Although event details could be directly extracted from an email
body, the machine learning based classifier reduces the overload of
searching for date, time etc. in mails that do not contain an event.
Among the several machine learning techniques to design a binary
classifier, the one using Support Vector Machine was found to be
very simple and efficient. This technique is inspired from the
detailing of SVM in [1], where different methods were used to
perform spam email classification and SVM was proved to be
much better than others. The core idea of SVM is to find a
maximum marginal hyperplane (MMH) that best divides the
dataset into classes. In case of linearly inseparable data points,
SVM uses a kernel trick to transform a low-dimensional input
space and transforms it into a higher dimensional space.

Fig. 2. Training SVM Classifier

Fig. 2 illustrates the classifier training. The SVM classifier is
designed using a train-test split of 90:10. The train data is
tokenized into individual words and stopwords are removed from
the list of tokens to make the dataset more simple and specific.
The words form the vocabulary. All unique tokens (numbers,
words, special symbols, etc.) in the entire training corpus are
identified and each one is treated as a single feature. A feature
selection is applied to choose the most important words and
reduce dimensionality. Each mail body is then represented by a
vector that contains a normalized weighting for every word based
on its importance. An instance of CountVectorizer class is created
and the fit transform function is called, that learns the vocabulary
dictionary and return term-document matrix. Then the hyper
parameter tuning is done using Grid Search Cross Validation. The
RBF kernel function is used to transform the given dataset input
data into the required form. The RBF kernel on two samples x and
xi, represented as feature vectors in some input space, is defined
as:

K(x, xi) = exp(−gamma ∗ sum((x− x2
i )) (1)

where, gamma defines how far the influence of a single training
example reaches, with high values meaning close and low values
meaning far. C or the regularization parameter is used to maintain
regularization. It is the penalty parameter, which represents
misclassification or error term that tells the SVM optimization
how much error is bearable. This way the trade-off between
decision boundary and misclassification term can be controlled.
Thus, the model is tuned with the chosen hyperparameters and
then trained with the document matrix. This model is used to
perform the Event Email classification.

5.2 Natural Language Processing framework for
Event Extraction

An NER (Named Entity Recognition) system is used for event
details extraction, based on the idea advocated in [7], with lot of
customization and improvising. NER is a standard NLP problem
which involves detection of named entities from a chunk of text,
and classifying them into predefined set of categories. SpaCy is an
open-source library that provides an efficient system for NER in
python, which can assign labels to groups of tokens which are
contiguous. It provides a default model which can recognize a
wide range of named or numerical entities, which include person,
organization, language, event etc. Apart from these default
entities, spaCy allows adding arbitrary classes to the NER model,
by training the model to update it with newer trained examples.
SpaCy first tokenizes the text into words or word embedding.
Words are then split into features and then aggregated to a
representative number. This number is then fed to a fully
connected neural structure, which makes a classification based on
the weight assigned to each feature within the text.

The dataset required for training consists of nearly 220 mails. The
sentences were tokenized into words using the regex tokenizer
which avoided the problems of mistokenizing while using the
default NLTK tokenizer. Regular expressions were formed for
various formats of dates, time etc. and python nltk.tokenize.regexp
module was used. Each token was POS tagged using NLTK POS
tagger. Since this is a supervised learning problem, the training
data should be annotated manually. The dataset consists of the
following tags- DATE, TIME, VENUE and LINK. The dataset
follows a BIO type tagging. The BIO format (beginning, inside,
outside) is a common tagging format in named-entity recognition.

Fig. 3. Training spaCy model

The .csv file containing entities with POS tags and custom tags,
was converted to a .tsv file then converted to a .json file. The .json
was converted into a format needed by spaCy. SpaCy NER already
supports the entity types like- PERSON, NORP, FAC, ORG, etc.
The aim is to further train this model to incorporate new custom
entities present in the dataset. SpaCy training can be seen in Fig.
3.The existing en (English) model was initially loaded and all
other pipeline components were disabled during training using
nlp.disable pipes. This way, only the entity recognizer gets

4



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.41, July 2020

trained. New entity labels are added to the entity recognizer using
the add label method. At each word, it makes a prediction. It then
consults the annotations, to see whether it was right. If it was
wrong, it adjusts its weights so that the correct action will score
higher next time. Gradient is used to calculate weight change to
improve the predictions after each iteration. On training spaCy
model with several numbers of iterations, the 275 iteration model
gave the best results. This spaCy model was used to perform event
detail extraction.

5.3 Selector and Validator Module
All the details extracted by spaCy module are not necessary to
depict the event. The extracted data is validated and required ones
are selected using Selector and Validator module. It is simply a
Python code that works with the output of the extraction module.
Validation is done using Regular Expressions for Date, Time and
Link. Initially, the best date is selected. Then the time, venue etc.
are chosen based on that date’s position. The position of each
entity in the tagged entity list is used throughout for finding
proximity. All the date entities will be converted into
YYYY-MM-DD format and the least among them will be found.
Past dates are eliminated by comparing with today’s date. The
position of the least date will be kept for reference. If there are
multiple occurrences of the least date, all those positions will be
preserved as a list. For time selection, all valid times will be
converted into hh:mm hrs format. To start with, find the first time
to the right of chosen date. If found, it will be selected as the time,
else find the least of all times to the left of the chosen date. For
selecting venue, find nearest B-VENUE and I-VENUE tags on
either sides of the chosen date, since venue can be a multi-entity
value. If closest one is a B-VENUE on right, append that tag’s
value with the values in I-VENUE tags coming continuously right
after that, to get the venue. If closest one is an I-VENUE on left,
search for a B-VENUE to its left through a sequence of
I-VENUEs. If found, append together all values from tag
B-VENUE to the I-VENUE which was initially found to get the
venue, else discard the I-VENUE since its invalid. If closest one is
an I-VENUE on right, discard it. If closest one is a B-VENUE on
left, its value is the venue. If some invalid venue pops up in any
case, check for closest B-VENUE to either side of chosen date and
proceed as before. Online sessions, webinars etc. are identified
and such mails are not searched for venue. Instead, the
corresponding event like Webinar, Online Session etc. will be set
as venue. Links are also chosen based on least distance from
chosen date. If there are multiple occurrences of least date, time
will be found considering each occurrence and then the date-time
pair with minimum separation is selected. The same is done in
case of venue. This way, date (DD-MM-YYYY), time (hh:mm
hrs), venue and link are extracted by this module.

6. IMPLEMENTATION
6.1 Technology Stack
The technology stack for the proposed system is illustrated in Fig.
4. The machine learning model i.e. classifier is implemented using
Scikit learn. It is a free software machine learning library for
Python. Pandas as well as NLTK are used for the classification
phase. The NLP model for Event Extraction has been
implemented using spaCy, an open-source software library for
advanced natural language processing written in Cython and
Python. Regex and dateutil libraries have been used for validation
and other purposes. The Android application has been developed

Fig. 4. Technology Stack

using Android Studio that uses Java. This provides the user
interface as well. SQLite is used as the Database Management
System. It is a relational database management system contained
in C library. This is used to create a Client side database. Web
server is created using Flask, a micro web framework written in
Python. Further, this server is tested using Postman. The emails
are accessed via a Gmail API which is authorized using OAuth
2.0.

6.2 User-Interface
The user-interface of android application is created using Android
Studio. Upon logging in using Gmail credentials, user can view
the list of subject of event mails in the Events tab. On clicking
each subject, the user gets the details of that particular event such
as date (DD-MM-YYYY), time (hh:mm hrs), venue and link,
where the user gets options to open Gmail, star the event, add a
reminder for the event to the Google Calendar or delete the event.
The Starred tab will display the starred events. The Week tab
will give the list of upcoming events during the ongoing week.
Using the profile icon, the user can view account details and can
logout.

6.3 Database Implementation
A client-side database is implemented using SQLite used to avoid
overheads. The json response from the web server will be parsed
to obtain the event details. These details will be stored in the
database. When the application is installed in a device for the first
time, a database will be created in that device by the name
Userbase. When a user logs in for the first time, a table will be
created for him, with columns such as msg id, subject, date, time,
venue, link, calendar and starred. msg id stores message ID which
will be unique for each email and thus it will be taken as the
primary key. Starred is to identify starred events and Calendar is to
identify events that have been added to the Google Calendar.
Being a client-side database, it has some drawbacks like reduced
portability of information. To cope up with this, when a user logs
in a new device for the first time, his table will be created in
Userbase since there is no old table corresponding to him and the
event extractor model will run on the latest 50 mails and
corresponding events will be stored in the new table in database.

6.4 Gmail Connectivity
Gmail connectivity is realized using Gmail API. When the user
logs into the application using Google Signin, he/she is prompted

5



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.41, July 2020

for allowing access to sensitive data like Gmail mailbox and
Google Calendar. During this, a server authorization code is
requested, which is later exchanged for an access token. The value
of the access token is stored in the Authorization table in the
SQLite database, which in turn is used to build the Gmail API
service for accessing the mails. Various client libraries are used to
obtain a list of message resources containing message IDs and
some metadata. These message IDs are used to get the actual body
of the mails.

6.5 Google Calendar Mapping
Since authorization is common to both Gmail and Google
Calendar, access token already stored in the authorization table is
once again used to build the Google Calendar in this case. The
event is to be added to the Google Calendar of the current user.
The event date converted to YYYY-MM-DD format is given as the
start and end date. The subject is set as the title of the event. The
time, venue and link are also mapped to the Calendar as event
description. All the mapping is done using various client libraries
provided by Google. Upon clicking Add reminder button, all the
event details mentioned above are automatically added to the
primary calendar of the user in his/her Google Calendar.

7. RESULTS
7.1 Model Performance
The performance of the model is calculated by monitoring the
individual modules by using a test set of new emails that are from
various people and related to different events. The emails are
given to the model in the exact way in which they are rendered in
the final model.

1) SVM Classifier Performance: The SVM Classifier model
exhibited the highest performance when the RBF Kernel was used
with hyperparameters C as 1000 and gamma as 0.001. The
comparative performances on using other pairs of C and gamma
value are depicted in the graph in Fig. 5.

Fig. 5. Best Accuracy with C=1000 and gamma=0.001 (89.5%)

A training accuracy of 89.5% was obtained. On testing with 150
new emails, 131 were correctly classified and 19 were
misclassified. Thus, an accuracy of 87.33% was gained. Out of
these 19, 7 are non-event mails misclassified as event mails. This
error is rectified in the event extraction module as they are
discarded since no event is extracted from them. This gives an

effective accuracy of 92% for the classifier model. The Confusion
Matrix and Classification Report of testing can be seen in Fig. 6
and Fig. 7 respectively.

Fig. 6. Confusion Matrix - Testing

Fig. 7. Classification Report - Testing

2) Event Extraction Model Performance: The overall accuracy of
a spaCy model could not be calculated using any methods. For 275
iteration model, the loss was initially 6276.3559 which gradually
reduced to 4776.3059 at the end of 275 iterations. Increase in
number of iterations cause overfitting reduction leads to the
omission of important tagged entities. The model was tested using
100 mails and model performance was analyzed by calculating the
accuracy taking into consideration various cases. Out of the total
100 mails, 83 mails gave all the extraction details accurately and
17 mails had at least one mistake in extraction. Thus the spaCy
model has an accuracy of 83% in this regard. Out of these 17
mails, date and time were correct and venue was wrong for 12
mails. So the effective accuracy is to 95% ignoring venue.

3) Integrated Model Performance: It was done after merging
classifier and extraction modules. Integrated model was tested
using a dataset of 150 mails containing 103 event mails and 47
non-event mails. Out of this, 121 emails gave accurate results,
yielding an accuracy of 81.33% for the whole system. On ignoring
venue, the performance has been increased to an accuracy of
88.67%. Moreover, 5 out of 7 misclassified non-event mails have
been discarded in extraction module successfully. The reduction in
effective number of misclassifications was successfully achieved
by the extraction module.

6



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.41, July 2020

7.2 Testing and Validation
As stated in the previous section, each component of the system
has been tested separately. Integration testing was also performed
after the final system was built. The project was successfully
validated and verified to ensure that all the requirements as per the
problem statement, have been met. Several test cases used to test
the working of the system are outlined in this section from Table 1
to Table 4.

Table 1.

Test Case Event Mail with all Details
Preconditions The application is linked to user’s Gmail Account

Test Data

Dear sir, a meeting of Research Council is
scheduled at 3 PM to 3.20PM on 29th August,
2020 in the Conference hall. All members are
requested to attend.. With regards,
Dr. Chithraprasad, Dean Academic

Expected Result

DATE : 29-08-2020
TIME : 15:00 hrs
VENUE : CONFERENCE HALL
Event details displayed in Android App with an
option to set reminder.

Actual Result

[”B-TIME 3 PM”,”B-TIME 3.20PM”,”B-DATE
29th August, 2020”,”B-VENUE Conference”,
”I-VENUE hall”]
DATE : 29-08-2020
TIME : 15:00 hrs
VENUE : CONFERENCE HALL

Postconditions Event Details display in Android Application
Status Pass

Table 2.

Test Case Event Mail with fewer details
Preconditions The application is linked to user’s Gmail Account

Test Data

Subject: Forest Department Notification for
Forest Guard posts Webveus KFD Jobs
Recruitment of Forest Guard Posts Forest
Department Jobs Recruitment Notification 2020
Forest Department (KFD) inviting applications
for the positions of Forest Guard. Last Date for
Submission is : May 15th, 2020. APPLY NOW
webveus All Rights Reserved. To stop receiving
these emails please click here to unsubscribe.

Expected Result

DATE : 15-05-2020
TIME : Not Specified
VENUE : Not Specified
Event details displayed in Android App with an
option to set reminder.

Actual Result
[”B-DATE May 15th, 2020”]
DATE : 15-05-2020
TIME : Not Specified
VENUE : Not Specified

Postconditions Event Details display in Android Application
Status Pass

Table 3.

Test Case Non-Event Mail
Preconditions The application is linked to user’s Gmail Account

Test Data

Unlock your creativity and win exciting prizes
Participate now for a #BreakFromBoredom Email
not displaying correctly? View in Browser [image:
HDFC Bank NetBanking — Your home branch
way from home.] [image: HDFC Bank Net
Banking — Your home branch away from home.]
Participate Now Warm regards, HDFC Bank
Terms & conditions apply — Unsubscribe Based
on Retail Loan book size (excluding mortgages).
Source: Annual Reports FY 18-19 and No.1 on
market capitalisation based on BSE data as on
31st Dec, 2019.

Expected Result Email will be classified as Non-Event mail
and it will be discarded.

Actual Result Email Classifier classified the mail as
Non-Event and discarded

Postconditions No action taken.
Status Pass

Table 4.

Test Case Non-Event Mail
Preconditions The application is linked to user’s Gmail Account

Test Data

Scheme to implement the PMGKY package for
credit of Provident Fund Contributions for three
months by Govt. of India Dear employer, The
Govt. of India on 26.03.2020 announced Rs.1.70
Lakh Crore relief package under PMGKY for the
poor to help them fight the battle against Corona
Virus Pandemic. The Central Govt. proposes to
pay 24 percent of the monthly wages into EPF
accounts for next three months of Wage earners
below Rupees fifteen thousand per month, who
are employed in establishments having up to one
hundred employees, with 90% or more of such
employees earning monthly wages less than
Rs.15000/-. Regards, Regional PF Commissioner,
Thiruvananthapuram

Expected Result Email will be classified as Non-Event mail and
it will be discarded.

Actual Result

[”B-DATE 26.03.2020”,”B-VENUE Central”,
”B-DATE 90%”]
Email Classifier classified the mail as Event
mail but it was rectified in Extraction phase as
no proper date was traced and discarded.

Postconditions No action taken.
Status Pass

8. FUTURE SCOPE
This project is developed using the newly made custom datasets,
but such an approach is bound to have some flaws in the long run.
The two core models, SVM classifier and spaCy extractor can be
improved by using better datasets. The proposed application is
supposed to notify users in real time when he/she receives an event
mail but on a practical level this is quite difficult to achieve. The
current system finds out event mails from Gmail on each time the

7



International Journal of Computer Applications (0975 - 8887)
Volume 176 - No.41, July 2020

app opens. This is enough in user’s perspective, but it is not a
real-time process when Gmail is concerned. One of the methods of
achieving real-time processing is by using webhooks. However,
the way the backend server is setup, such an approach is out of the
question. Thus, the server setup can be improved in future. Various
features like setting custom reminders to events, editing Google
Calendar from within the app, etc. This project is based
specifically on Gmail and can be extended to other platforms like
Yahoo, Outlook, WhatsApp, Facebook Messenger, etc.

9. CONCLUSION
Daily life is getting more hectic and the new goal is to alleviate
some of it. On average, a person receives about 120 mails per day
according to studies. Hidden among this vast plethora of mails,
there are many important ones. These may range from invitation to
some event to some important official appointments. Going
through all the 120 mails is a huge task. This project makes this
easier by filtering out mails that contain any kind of event and
extracting the important details using NLP techniques. A user
friendly android application with features like adding events to
favorites, viewing the mail in Gmail app and most importantly, a
system was implemented that can map the events automatically to
Google Calendar on a single click to get notified each time a new
event is received has also been developed successfully. Data
privacy is also respected, since a client sided approach is used for
maintaining the database of the project. The source code for the
proposed system has been made available in GitHub under open
source license [10]. A project video [11] was also launched on
YouTube, which summarizes the purpose and working of the
system, along with the UI of the EventEx App. We expect this
project to be helpful to all those people that have a heavy mailbox
at the end of the day.

10. REFERENCES

[1] Rita McCue. “A Comparison of the Accuracy of Support
Vector Machine and Naive Bayes Algorithms In Spam
Classification,” University of California at Santa Cruz, 2009

[2] Shashank Senapaty. “Detection and Extraction of Events
from Emails,” Department of Computer Science, Stanford
University, Stanford CA, December 12, 2008.

[3] Julie A. Black and Nisheeth Ranjan. “Automated Event
Extraction from Email,” Stanford University, 2004.

[4] Ola Amayri, Nizar Bouguila. “A Study of Spam Filtering
Using Support Vector Machines,” Artif. Intell. Rev.. 34. 73-
108. 10.1007/s10462-010-9166-x, 2010.

[5] Aneesh G. Nath, Krishnanth V, Kevin Biju Mathew, Pranav
T S, Sarath Gopi. “NLP based Event Extraction from Text
Messages,” International Conference on Future Technology
in Engineering, 2016.

[6] Aswar Shreyas, Gaikwad Priyanka, Merlyn Pearl, Shinde
Swapnal. “Event information extraction from email and
updating event in calendar,” Vol-4 Issue-3 2018, IJARIIE-
ISSN(O)-2395-4396.

[7] Eleni Partalidou, Eleftherios Spyromitros-Xioufis, Stavros
Doropoulos, Stavros Vologiannidis, Konstantinos I.
Diamantaras. “Design and implementation of an open
source Greek POS Tagger and Entity Recognizer using
spaCy,” IEEE/WIC/ACM International Conference on Web
Intelligence (WI), 2019

[8] Ashraf Q. Mahlawi, Sreela Sasi. “Structured Data Extraction
from Emails,” International Conference on Networks
Advances in Computational Technologies (NetACT), vol. 37,
pp. 323-328, 2017.

[9] Michal Laclavk, Stefan Dlugolinsky, Martin Seleng, Marcel
Kvassay, Emil Gatial, Zolt an Balogh, Ladislav Hluchy.
“Email analysis and information extraction for enterprise
benefit,” Computing and Informatics, Vol. 30, 2011

[10] https://github.com/arjrrk/EventEX-Final-year-project
[11] https://youtu.be/WmAPrTs9cnk

8


	Introduction
	Motivation
	RELATED WORKS
	Email Classification
	Event Extraction

	DATASET
	Existing Dataset
	Our Dataset
	Data Preprocessing

	Methodology
	Machine Learning Framework for Classification
	Natural Language Processing framework for Event Extraction
	Selector and Validator Module

	Implementation
	Technology Stack
	User-Interface
	Database Implementation
	Gmail Connectivity
	Google Calendar Mapping

	Results
	Model Performance
	Testing and Validation

	Future Scope
	Conclusion
	References

