
International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.6, October 2017

31

An Efficient Scheduling Strategy for Overloaded Real

Time System

Vijayshree Shinde
PG Scholar, Department of Computer Engineering

Terna Engineering College, Navi Mumbai, India

Seema C. Biday, PhD
Professor, Department of Electronics Engineering
Terna Engineering College, Navi Mumbai, India

ABSTRACT

Scheduling is a technique which makes an arrangement of

performing certain tasks at specified period. The intervals

between each function have been clearly defined by the

algorithm to avoid any overlapping. The bound in which real

time applications are needed to respond to the stimuli is

known as deadline. In order to achieve optimized results in

real time operations the various scheduling techniques are

developed. Earliest Deadline First algorithm is optimal

scheduling algorithm for single processor real time systems

when the systems are preemptive and underloaded. The

limitation of this algorithm is, its performance decreases

exponentially when system becomes slightly overloaded.

The objective of work is to achieve optimum performance in

underloaded condition and achieve high performance in

overloaded condition. Proposed algorithm is design for

scheduling periodic task on uniprocessor platform. With this

algorithm we group jobs with nearly identical deadline and

execute the jobs of a group by determining both slack time

and deadline of job is another approach. The performance of

the proposed algorithm is measured in terms of miss count,

average response time, average waiting time and number of

preemption count with existing Earliest Deadline First and

Group Priority Earliest Deadline first scheduling algorithm.

Results are presented by comparing proposed algorithm with

other real-time algorithms including, EDF and GPEDF. The

Proposed algorithm improves the success count and decrease

miss count more than 10% compared with GPEDF and more

than 30% compared with EDF.

Keywords

Real-time scheduling algorithms, deadline, overload

condition, EDF, GPEDF.

1. INTRODUCTION
A real-time system has to give quick response to its requested

services and complete its work within a specific period of

time. The most important attribute of real-time systems is that

the correctness of such systems depends not only on the

computed results but also on the time at which results are

produced. Since the timing constraints are the most important

characteristic of real-time systems, they are classified as hard

or soft according to the usefulness of the computed results

produced after the timing deadlines. In hard real-time systems,

all jobs must complete execution prior to their deadlines; a

missed deadline constitutes a system failure. Such systems are

used where the consequences of missing a deadline may be

serious or even disastrous. In a soft real-time system, the

behavior after missing a timing deadline reduces the quality of

service but the operational results could still be useful, or at

least do not compromise the integrity of the system, such as in

a multimedia system where an occasional delay in the display

of a frame decreases the video’s quality but will not result in a

disaster. This paper focuses on soft real-time systems which

do not have stringent timing requirements that must be

guaranteed.

Real-time systems are distinguished based on their

implementation. In preemptive systems, tasks may be

preempted by higher priority tasks, while non-preemptive

systems do not permit preemption. The simpler policy like

non-preemptive scheduling is easier to implement but might

cause blocking time to safety critical tasks. This is due to the

large schedulability overhead imposed by non-preemptive

scheduling, it also leads to the higher priority task misses its

deadline. It is our contention, however that preemptive

scheduling is more efficient than the non-preemptive

approach since the preemptive model always allows the

higher priority tasks to preempt currently running lower

priority task.

However, preemptive EDF techniques have produced near

optimal schedules for periodic and aperiodic tasks,

particularly when the system is lightly loaded. When the

system is overloaded, it has been shown that the EDF

approach leads to very poor performance (i.e., low success

rates) [1]. The poor performance of EDF is due to the fact

that, as tasks that are scheduled based on their deadlines, miss

their deadlines, other tasks waiting for their turn are likely to

miss their deadlines also – an outcome sometimes known as

the domino effect. In this paper a proposed methodology is

used to improve the success rate of EDF algorithm. A new

approach for scheduling soft real-time systems is based on

task grouping. Grouping approach is related to GEDF

algorithm [2], where jobs with identical near deadlines are

queued together and later execute them using another novel

approaches i.e SJF, Least Laxity First algorithm. We are in

the opinion that, dynamically grouping the jobs by means of

incorporating as many as dynamic parameters into the

grouping algorithm would boost the performance of soft real

time system.

The rest of paper is organized as follows: Section 2 explains

the literature studied. In section 3, described real-time task

model. Section 4 focuses on introducing real-time task

scheduling methodology. Section 5 focuses on results and

discussions. Finally, conclusion and future work is provided

in section 6.

2. LITURATURE SURVEY
Many researchers have extensively worked on real-time

scheduling algorithms. The Earliest Deadline First (EDF)

algorithm is a priority driven algorithm in which higher

priority is assigned to the request that has earlier deadline, and

a higher priority request always preempts a lower priority one

[3]. EDF is widely studied as a dynamic priority-driven

scheduling scheme. EDF is more efficient than many other

scheduling algorithms, including static Rate-Monotonic (RM)

scheduling algorithm [4]. For preemptive tasks, when the

system is lightly loaded, EDF is able to reach the maximum

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.6, October 2017

32

possible processor utilization. However, when the processor is

over-loaded (i.e., the combined requirements of pending tasks

exceed the capabilities of the system) EDF performs poorly

[5]. C. D. Locke proposed A Best-Effort algorithm [6] is

based on the assumption that the arrival probability of a high

value-density task is low. The value-density is defined by

V/C, where V is the value of a task and C is its worst-case

execution time. Given a set of tasks with defined values if

completed successfully, it can be shown that a sequence of

tasks in decreasing order by value-density will produce the

maximum value when compared to any other scheduling

technique. The Best-Effort algorithm admits tasks based on

their value-densities and schedules them using the EDF

policy. When higher value tasks are admitted, some lower

value tasks may be deleted from the schedule or delayed until

no other tasks with higher value exist. One key consideration

in implementing such a policy is the estimation of current

workload, which is either very difficult or very inaccurate in

most practical systems that utilize Worst Case Execution

Time (WCET) estimations. Best-Effort has been used as an

overload control strategy for EDF i.e., EDF is used when a

system is underloaded but Best-Effort is used when the

overload condition is detected.

Other approaches for detecting overload and rejecting tasks

were reported in [7, 8]. G. Buttazzo, M. Spuri, and F. Sensini

proposed Guarantee scheme in that, the load on the processor

is controlled by acceptance tests on new tasks entering the

system. If the new task is found schedulable under worst-case

assumptions, it is accepted otherwise, the arriving task is

rejected. In the Robust scheme [8] S. K. Baruah and J. R.

Haritsa, proposed the system in that, if the system is

underloaded, the acceptance test is based on EDF; if the

system is overloaded, one or more tasks may be rejected

based on their importance. Because the Guarantee and Robust

algorithms also rely on computing the schedules of tasks that

are based on worst-case estimates, they usually lead to

underutilization of resources. Thus Best-Effort, Guarantee, or

Robust scheduling algorithms are not good for soft real-time

systems or applications that are generally referred to as

“anytime” or “approximate” algorithms [9]. In 2004 Peng Li

and Binoy Ravindran developed new best effort scheduling

algorithms [10] called MDASA (Modified Dependent

Activity Scheduling Algorithm) and MLBESA (Modified

Locke’s Best Effort Scheduling Algorithm), are novel in the

way that they heuristically, yet accurately, mimic the behavior

of the Dependent Activity Scheduling Algorithm (DASA)

[11] and Locke’s Best Effort Scheduling Algorithm

(LBESA)[6] algorithms, but are faster with O(n) and O(n

log(n)) worst-case complexities, respectively. MDASA and

MLBESA perform almost as well as DASA and LBESA,

respectively. However under highly bursty and heavily

overloaded situations, DASA and LBESA may perform

MDASA and MLBESA. Furthermore, the process response

time under MDASA and MLBESA are also found to be very

close to the values under their counterpart scheduling

algorithms. While MDASA has better performance than

MLBESA and has better worst case complexity, MLBESA

guarantees the optimal schedule during underload condition.

G. C. Buttazzo [12] state best effort algorithm is efficient for

soft real time applications. A best effort scheduling algorithm

tries to do its best to meet deadlines, but there is no guarantee

of finding a feasible schedule. In 2008 S. Agrawal, P. Bhatt,

and K.K Shukla [13] developed Modified EDF they

Combining Random Dropping (RD) with EDF during

overloaded for soft real time application. Basically, a job is

segmented into a mandatory and optional part, where the

optional part is subjected to abortion at the benefit of meeting

the deadline. Ketan Kotecha and Apurva Shah [5] applied the

Ant Colony Optimization algorithm on real time operating

system in 2010. ACO are computational models inspired by

the collective foraging behavior of ant. ACO are the most

appropriate for scheduling of task in soft real time system.

During simulation result it has been observed that the ACO

algorithm is equally optimal during underloaded condition

and it performs better during overloaded condition. Many

researchers worked on overload condition to improve the

system performance, Devendra Thakor and A. Shaha [14]

proposed D_EDF scheduling algorithm which combines

Earliest Deadline First with Deadline Monotonic. Switch

between the algorithms by recording the deadline miss count

and deadline meet count. If two jobs miss the deadline

continuously occur then switch Earliest Deadline First to

Deadline Monotonic. If ten jobs achieve the deadline then

switch back to EDF. In this way, advantages of two

algorithms combine to speed up overall performance. In 2008

Ketan Kotecha and Apurva Shah [15] proposed the Adaptive

algorithm which is the combination of two scheduling

algorithms: Earliest Deadline First algorithm (EDF) and Ant

Colony Optimization (ACO) Scheduling algorithm. During

under loaded condition, the algorithm uses EDF algorithm i.e.

priority of the job will be decided dynamically depending on

its deadline. During overloaded condition, it uses ACO based

scheduling algorithm i.e. priority of the jobs will be decided

depending on the pheromone value laid on each schedulable

task and heuristic function. Initially the proposed algorithm

uses EDF algorithm considering that the condition is not

overloaded. But when a job has missed the deadline, it will be

identified as overloaded condition and the algorithm will

switch to ACO based scheduling algorithm. There are various

efficient methods to overcome the problem of overloaded

condition of the real time system but these algorithms also

have some drawback. Some algorithms required detection of

system condition and switching time between algorithms. It

increases the overhead of system.

3. REAL-TIME TASK MODEL
Let T= {T1, T2, Ti,….. Tn} be a set of N periodic task in a

uniprocessor system. The tasks are mutually independent and

the processor time is the only resource that needs to be

scheduled. Each task Ti is defined as Ti = (Ci, Pi, Di), where Ci

is its execution time, Pi is its period and Di is its deadline, Ci ≤

Di.

4. REAL-TIME TASK SCHEDULING

ALGORITHMS
A real-time system will usually have to meet many demands

within a bound time. The significance of the demands may

vary with their nature (e.g. a safety-related demand may be

more important than a simple data-logging demand) or with

the time available for a response. So the allocation of the

system resources needs to be planned so that all demands are

met by the time of their respective deadlines. The scheduling

is done using a scheduler which implements a scheduling

policy that defines how the resources of the system are

allocated to the program. Scheduling policies are revealed

mathematically so the accuracy of the formal specification

and program development stages can be complemented by a

mathematical timing analysis of the program properties.

4.1 Earliest Deadline First scheduling

algorithm
In 1973 Liu and Layland, suggested the most popular real

time scheduling algorithms Earliest Deadline First (EDF) [3].

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.6, October 2017

33

EDF is a dynamic priority algorithm in which task with the

earliest deadline has the highest priority. EDF is an optimal

uniprocessor scheduling algorithm. The optimal scheduling

algorithm gives 100% CPU utilization. EDF algorithm gives

best performance and minimize miss ratio, when systems

operating under low or moderate levels of resource and data

contention. However, the performance of Earliest Deadline

First algorithm is suddenly degraded in an overloaded system.

This is because, under heavy loading, tasks gain high priority

only when they are close to their deadlines.

Algorithm

 Enter number of tasks n.

 For n tasks enter different times as periodic time,

execution time and deadline time.

 Check the schedulability condition

U=

 If U <=1 then EDF is schedulable else not

schedulable.

 Arrange different tasks in ascending order of deadline.

 Then schedule the task according to its deadline and

release time.

 If execution time of current task comes in between the

release time of next task then, check deadline of

current task and next task.

 If deadline of current task is less than deadline of next

task then, current task execution continues else next

task is executed.

 This loop repeats till i<n condition satisfies.

 End Loop.

Consider Table 1, which represents a sample tasks set that

will be used as common example throughout this paper to

better understand the differences among real time task

scheduling approaches. This task set is schedule using fully

pre-emptive Earliest Deadline First Scheduling algorithm

show in figure 1.

Table 1. The repetition period, computation time and

deadline of the tasks T1, T2, T3, T4

Tasks Ci Di Pi

T1 3 4 4

T2 3 5 5

T3 3 6 6

T4 3 7 7

Fig 1: Schedule generated by the EDF algorithm

Schedule generated by the EDF algorithm is shown in Figure

1. T1 with minimum deadline is executed first followed by

task T2. At t=4 T1 is activated but still T2 is executed because

deadline of T2 is less than T1. At t=5 task T2 is activated,

here again deadline of T3 is less than T1 and T2 so that

service is given to task T3. At t=6 Task T3 is activated but T4

having the next least deadline than T1, T2, and T3. So priority

is given to task T4. From this figure 4.14 we say that if we

apply EDF on such a task set then there is lot of chances of

miss count. As we see up to 20 times unit only 1 task is

executed successfully that is task T1. This task set will be

executed based on their deadline until the total time elapses.

4.2 A Group Priority Earliest Deadline

First scheduling algorithm
GPEDF perform schedulability test prior to grouping a

particular job. Following method is used to solve the problem
of how to group jobs together [19].

j=1,2,….,N

……………………(2)

All the jobs in job set Jt behind first job in a set can be

executed before first job and the system will still be

schedulable, where Csum is the sum of the execution times of

the jobs in job set except first job in job set, and Cex is the sum

of execution time of the jobs that would be ready later than

time t and have absolute deadline shorter than last job in job

set. If there is a job set Jt which satisfies eq. (2) at time t, the

order of the jobs in job set Jt can be changed randomly. This

means that the jobs can be form in job set Jt into a group, in

which the jobs can be reordered as required without reducing

the schedulability. GPEDF scheduling algorithm can be

described in three parts as follows;

First part is enqueue, when a new job arrives, enqueue sort

new job into Jt. The second dequeue and third exqueue

methods invoked every time unit. dequeue deletes the jobs

which have absolute deadlines shorter than current time t.

exqueue creates group of jobs and execute shortest job first

algorithm within groups. When there is no group in the

system, the jobs are put into group one by one according to

the order they appeared in job set Jt and will be stopped until

one job cannot satisfy Eq. (2). If a job cannot form a group

with other jobs, then it forms the group with itself. If the

system is overloaded and when there is only one job in the

group at that time a job may not be completed successfully

because the remaining time may not be enough for the job to

execute.

In the GPEDF scheduling algorithm, jobs with short execution

time can be executed first in the group, which leaves more

time for other jobs to execute. This allows more jobs to be

completed, the number of switches is decreased and the

response is reduced.

Following figure shows the detail working of GPEDF

algorithm for task set shown in table 1. In figure 2, T1, T2,

T3 and T4 arrives at t=0. T1 form a group by itself and run up

to three time unit. T2 also form a group by itself and run t=3

to 4, during the execution of T2 task T1 is activated but

current group contains T2 with highest priority value so that

T2 is continue up to 5 time unit. At t =5, tasks T2 is activated ,

but latest group contains T3 with highest priority hence, T3

run up to 1 time unit and miss its deadline. Again at t =6,

tasks T3 is activated , but latest group contains T4 with

highest priority hence, T4 run up to 1 time unit and miss its

deadline. Likewise task set shown in table 1 are scheduled by

GPEDF algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.6, October 2017

34

Fig 2: Schedule generated by the GPEDF algorithm

From this figure we can see that GPEDF performed same as

EDF for given task set.

4.3 Proposed System
Proposed system is model on uniprocessor system with

preemptive periodic task, which compose of job activation, a

scheduler, dispatcher, task execution and last one is task

termination. In job activation, jobs are activated based on the

specified input parameters. Parameters compose of the

common four tupples of a real time task namely release time,

execution time, relative deadline and period basically we

consider release time as 0.

gEDF scheduling algorithm [2] use Group range parameter

(Gr). So, we believe that, instead of using Gr, which is a static

parameter, incorporating parameters that changes dynamically

throughout the scheduling process into the algorithm would

produce much better result. Historically, dynamic algorithm

has been shown to be more efficient in terms of Deadline

Meeting Task Rate than static algorithm [18]. It follows, we

then seek to determine all the dynamic parameters which

affect the system scheduability and we detected two

parameters [17].

 One is the left over time available after the first job

executes denoted by:

(Di – Ci)

 Second, is another dynamic value, which is amount of

load on the system competing to fit in the left over

time denoted by U.

From these parameters, by means of intuition we design

our algorithm into the following logic. Assuming Ti is the job

at the head of group, and then Tj is a member of this group if

and only if it satisfied the equation 3.

Di <= Dj <= (Di +(Ut *(Di – Ci))………………………...(3)

In the above equation we have set up lower and upper limit of

the dynamic deadline (Dj) of a job Tj which gets into a group

of jobs. The lower limit of Tj says that, dynamic deadline

must be greater than or equal to the dynamic deadline of the

head job. Apart from that, the upper limit of Tj must not be

greater than the current value of the left over time upon the

execution of the head job multiply by the dynamic current

load. This is what we meant by incorporating dynamically

changing parameters as determinant of which jobs gets into a

group [17].

In proposed system we first group the jobs with near deadlines

together based on the above equation (3). Within the group

the jobs were sorted based on execution value, where jobs

with smaller execution value will be executed first it means

SJF is used to improve the performance of the system. In case

execution times of tasks are same then we need to apply LLF.

Following figure shows the detail working of proposed

algorithm for task set shown in table 1.

Fig 3: Schedule generated by the proposed algorithm

In figure 3, T1, T2, T3 and T4 arrives at t=0. Task T1,T2 and

T3 form a group, all these tasks has same execution time so,

tasks are schedule according to laxity. T1 executed first as

laxity of T1 is less than T2 and T3. At t=3, laxity of task T2 is

negative so that this task is deleted from a queue and priority

is given to task T3. At t=4 task T1 is activated but priority is

given to task T3 as remaining execution time of task T3 is less

than T1. Likewise task set shown in table 4.3 are scheduled by

proposed algorithm. The above schedule shows that how and

when we used LLF algorithm in proposed system. Here up to

20 time unit 6 task executed successfully only because of LLF

logic.

5. RESULTS AND DISCUSSIONS
To evaluate the effectiveness of the proposed algorithm, we

performed a series of experiments with different kinds of task

sets. We have implemented our algorithms using java

programming in NetBeans environment and run simulations

to accumulate empirical data. The result of the proposed

algorithms is compared with each other in the same

environment. Then we report the results; analyze the

sensitivity of proposed algorithm along with various

parameters used in the experiments, the effects of the

percentage of CPU utilization on the miss count, response

time, waiting time and how well proposed algorithm performs

when compared to EDF and GPEDF algorithms. In this

experiment we use the periodic preemptive task model. In

which, load of the system is defined as summation of ratio of

executable time and period of each task. In our simulation

experiments, we assume that:

 All tasks are periodic with deadline parameter of each

task equals to its request period.

 All tasks start simultaneously at time zero.

5.1 Performance Evaluation Parameter
A reasonable way to measure the performance of a scheduling

algorithm during an overload is the amount of work the

scheduler can feasibly schedule according to the algorithm,

therefore number of miss task (miss count), average response

time, average waiting time and context switching are

considered as our main performance measuring criteria and

defined as;

 Tasks which are not completed their deadline are

called as miss tasks.

 The response time is the time interval between the task

execution request (equal to the ready time) and the end

of task execution.

 Average Waiting Time is the time spends waiting for

the ready queue. It is the sum of the periods spent

waiting in ready queue.

5.2 Experimental Results and Analysis
Main goal of proposed algorithm is to determine how well the

algorithm performs with respect to their counterpart EDF and

GPEDF scheduling algorithms. We conduct simulation

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.6, October 2017

35

studies to determine above performance metrics using

different workloads.

Fig 4: Miss count comparison between three algorithms

when Load <=1 to >1

The Our observation from figure 4 reveals that during light

load the miss count of EDF, GPEDF and Proposed algorithm

are almost identical, where these algorithms manage to

successfully schedule almost 100% of the jobs. No doubt, that

there are some differences which are very tiny, which we

consider negligible. However, when system load is increases,

the miss count of EDF and GPEDF starts to increase more

abruptly as compared to proposed algorithm. Proposed

algorithm minimizes more than 10% miss count of GPEDF

algorithm, where as when compared with EDF this value is

more than 30%. The SJF used in both proposed algorithm and

GPEDF means that more jobs with short execution time are

completed successfully than in EDF. The grouping method

used in proposed algorithm ensures that every job in a group

can be successfully completed, which gives it a higher success

count and less miss count than EDF.

Here another parameter of interest is analyzed, which average

response time is shown in figure 5. Logically, executing jobs

with shorter execution time would result in better average

response time. We only presented the average response time

of those jobs that manages to meet their deadlines. Hence,

during overload we see drop in average response time due to

less percentage of jobs manages to meet their deadline. Also if

jobs with relatively shorter Execution Time would be the one

which successfully execute and finishes before their deadlines

leads to drop in average response time.

Fig 5: Average response time comparison between three

algorithms when Load <=1 to >1

Fig 6: Average waiting time comparison between three

algorithms when Load <=1 to >1

Figure 6 shows that waiting time of proposed algorithm is less

than EDF and little bit less than GPEDF. Proposed algorithm

outperforms EDF in terms of the waiting time, when the

system is loaded. As we seen from the above results, if

response time of algorithm is less obviously waiting time of

that algorithm is also less.

6. CONCLUSION
We developed a new real-time scheduling algorithm that

combines Shortest Job First scheduling, Earliest Deadline

First scheduling and Least Laxity First Scheduling algorithms.

Tasks were grouped together with deadlines that are very

close to each other, and scheduled jobs within a group based

on using SJF scheduling. In case execution ties occur between

the tasks then LLF scheduling algorithm is used. Based on the

experimental results, proposed algorithm has lower miss count

as well as faster response times with less waiting time.

EDF produces practically acceptable performance even for

preemptive systems when the system is underloaded, EDF

performs get reduced when the system is heavily loaded.

Proposed algorithm performs is same as EDF in terms of miss

rate when a system is underloaded. In addition, proposed

algorithm consistently outperforms EDF in overloaded

systems. We also compared proposed algorithm with Group

Priority Earliest Deadline First scheduling algorithms in

underloded as well as overloaded condition. In general,

proposed algorithm used under all system loads that show

performance similar or better than EDF and GPEDF. Our test

results show that proposed algorithm can be used effectively

in real world systems. The performance of the proposed

algorithm is better than EDF and little bit better than GPEDF

with respective miss count, average response time and

average waiting Time.

Future Work

In proposed algorithm number of preemption is more because

of least laxity first. So, in future a new algorithm should be

developed that will minimize context switching under

overloaded as well as underload system condition.

7. REFERENCES
[1] Apurva Shah and Ketan Kotecha, “Scheduling Algorithm

for Real –Time Operating Systems using ACO”,

International Conference on Computational Intelligence

and Communication Networks, 2010, pp. 617 – 621, DOI

10.1109/CICN.2010,122.

[2] Wenming Li, Krishna Kavi and Robert Akl, “A non-

preemptive scheduling algorithm for soft real-time

systems”, ELSEVIER Article in Press Computers and

Electrical Engineering, 2006.

International Journal of Computer Applications (0975 – 8887)

Volume 176 – No.6, October 2017

36

[3] Liu and J.W. Layland, “Scheduling Algorithms for

Multiprogramming in a Hard Real Time Environment”,

Journal of the ACM, 1973,20(1):46-61.

[4] T. Abdelzaher, V. Sharma, and C. Lu, “A Utilization

Bound for Aperiodic Tasks and Priority Driven

Scheduling”, IEEE Transaction on Computers, Vol. 53

No. 3, March 2004.

[5] Apurva Shah and Ketan Kotecha, “Scheduling Algorithm

for Real –Time Operating Systems using ACO”, IEEE

International Conference on Computational Intelligence

and Communication Networks, pp. 617 - 621 DOI

10.1109/CICN.2010,122.

[6] C. D. Locke, “Best-Effort Decision Making for Real-

Time Scheduling”, (PhD Thesis), Computer Science

Department, Carnegie-Mellon University, 1986, CMU-

CS-86-134.

[7] G. Buttazzo, M. Spuri, and F. Sensini, Scuola Normale

Superiore, Pisa, Italy, “Value vs. Deadline Scheduling in

Overload Conditions”, Proceedings of the 16th IEEE

Real-Time Systems Symposium (RTSS’95) Pisa, Italy,

pp. 90-99, December 1995.

[8] S. K. Baruah and J. R. Haritsa, “Scheduling for Overload

in Real-Time Systems”, IEEE Transactions on

Computers, Vol. 46, No. 9, September 1997.

[9] S. Zilberstein, “Using Anytime Algorithms in Intelligent

Systems”, AI Magazine, 1996, pp.71-83.

[10] Peng Li and Binoy Ravindran, “Fast, Best-Effort Real-

Time Scheduling Algorithms”, IEEE Transaction on

Computers, Vol. 53, No. 9, September 2004.

[11] R. K, Clark, “Scheduling Dependent Real-Time

Activities,” PhD Dissertation, Carnegie Mellon

University, 1990.

[12] G.C. Bhttazzo, “Hard Real Time Computing System:

Predictable Scheduling algorithms and applications”,

IEEE Transactions On Computers, Vol. 53, No. 5, May

2001.

[13] S. Agrawal, P. Bhatt, and K.K Shukla, “Modified MUF

and EDF Algorithms for Overload Soft Real Time”,

WSEAS Conferences on Recent Advances in Systems,

Communications and Computers, April 6-8 2008, pp. 99-

104.

[14] D. Thakor and A. Shah, “D_EDF, An efficient

scheduling algorithm for real-time multiprocessor

system”, 2011 World Congress on Information and

Communication Technologies (WICT), pp. 1044-1049.

[15] Ketan Kotecha and Apurva Shah, “Adaptive Scheduling

Algorithm for Real-Time Operating System”, IEEE

World Congress on Computational Intelligence, pp. 2109

- 2112, DOI: 10.1109/CEC.2008.4631078.

[16] http://c2.com./cgi/wiki?RealTime

[17] Zahereel Ishwar Abdul Khalib, Badlishah R Ahmad, and

Ong Bi Lynn Ong , “High Deadline Meeting Rate of

Non-Preemptive Dynamic Soft Real Time Scheduling

Algorithms”, IEEE International Conference on Control

System, Computing and Engineering, Penang, Malaysia,

2012, pp. 296 – 301.

[18] G. C. Buttazo, “Rate Monotonic vs EDF: Judgment

Day”, Real Time Systems, Vol.29 No.1, pp.5-26, January

2005.

[19] Qi LI and Wei BA, “A group priority earliest deadline

first scheduling algorithms”, Research article of frontiers

of Computer Science, 2012, 6950: 560-567 DOI

10.1007/s 11704-012-1104-4.

IJCATM : www.ijcaonline.org

